
XSL Variables

Martin Holmes

XSL Variables

2

XSL Variables
• XSL variables allow you to store values (strings, integers etc.) so that you can re-use them

easily.
• XSL variables are NOT VARIABLE. Once you set the value, you're stuck with it.
• This is different from other programming languages, where variables can have different

values assigned to them.

Creating an XSL variable

<xsl:variable name="uvicName"
 select="'University of Victoria'" />

• The required @name attribute gives us a way to refer to the variable later, using a dollar
sign: $uvicName.

• The optional @select attribute specifies a value that is assigned to the variable. More on
this later.

Assigning a value to your variable
• A variable can hold lots of different value types, either hard-coded (as in the example

above) or assigned through XPath expressions. Here are some examples:
• A hard-coded integer:

<xsl:variable name="myAge"
 select="53" />

• The result of a calculation:

<xsl:variable name="numCards"
 select="13 * 4 + 2" />

• A hard-coded string (note the single quotes inside the double quotes):

XSL Variables

3

<xsl:variable name="myName"
 select="'Martin Holmes'" />

• An element from the input document, found through XPath:

<xsl:variable name="docTitle"
 select="/TEI/teiHeader/titleStmt/title[1]" />
<xsl:variable name="docAuthor"
 select="/TEI/teiHeader/titleStmt/author[1]" />

• A sequence of elements from the input document, found through XPath:

<xsl:variable name="docAuthors"
 select="/TEI/teiHeader/fileDesc/titleStmt/author" />

How to use an XSL variable (1)
• If your variable contains an atomic value such as a string or a number, you can output it

with <xsl:value-of>:

My name is <xsl:value-of select="$myName"/>.

• You can do XPath calculations with the value of your variable:

In ten years I shall be <xsl:value-of select="$myAge + 10"/>.

• If your variable contains an element, you can treat it just like an element.

This book was written by
<xsl:value-of select="$docAuthor/persName/forename"/>
<xsl:value-of select="$docAuthor/persName/surname"/>.

How to use an XSL variable (2)
• If your variable contains a sequence of elements, you can treat it just like any sequence.

XSL Variables

4

<p>This book was written by the following people:</p>

 <xsl:apply-templates select="$docAuthors"/>

<p>But <xsl:value-of select="$docAuthors[1]/persName/surname"/> is listed
 first.</p>

<xsl:template match="author">

 <xsl:text>author #</xsl:text>
 <xsl:value-of select="position()"/>
 <xsl:text> is </xsl:text>
 <xsl:apply-templates select="./persName/forename"/>
 <xsl:text> </xsl:text>
 <xsl:apply-templates select="./persName/surname"/>

</xsl:template>

Why use XSL variables?
XSL variables can be very convenient in a lot of different circumstances:

• For instance, you might need to output the title of a document many times in different
places. If you put it in an XSL variable, and the title changes, you only need to change it in
one location in your XSLT.

• For instance, you may want to use the value of the current date hundreds of times. Instead
of calling current-date() every time, you can call it once, and store the value in a
variable.

• For instance:

 <xsl:variable name="maxGeos" select="max(//place/
count(descendant::geo))"/>
 <xsl:value-of select="//place[count(descendant::geo) = $maxGeos]/
@xml:id"/>

XSL Variables

5

<xsl:for-each select="ref">
 <xsl:variable name="targetBiblId" select="substring-after(@corresp,
 '#')" />
 <xsl:value-of select="//div[@xml:id='bibliography']//bibl[@xml:id=
$targetBiblId]/title"/>
</xsl:for-each>

