
XSLT Constructors

Martin Holmes

XSLT Constructors

2

XSLT Constructors
• Normally, to create a result element in your output, you just type it literally:

<div class="chapter"> [...] </div>

• However, there are some circumstances when you can't do that. For instance, the name of
the element you want to create may change based on the XML input. For instance:

• If you're processing a TEI <list> element, you may need to produce either or in
your output, depending on whether it's an unordered or an ordered list:

•
<list type="bulleted"> #

<list type="ordered"> #

• We can handle this with the XSLT element constructor.

The element constructor

<xsl:element name="h2">
 [...contents of the h2 element...]
</xsl:element>

An example element constructor

<xsl:element name="{if (@type='ordered') then 'ol' else 'ul'}">
 [...]
</xsl:element>

• The XPath logic is contained in {curly braces}.
• Be careful with nested quotes!

XSLT Constructors

3

The attribute constructor
Just as you can create an element with a constructor, you can also create an attribute:

<xsl:attribute name="class">
 [... value of the class attribute ...]
</xsl:attribute>

You might do this if you need to generate the attribute value dynamically based on the
content.

Like <xsl:variable>, the value can be given as the value of a @select attribute, or as
the content.

An example attribute constructor

<xsl:template match="div | p | ab">
 <div>
 <xsl:attribute name="class" select="local-name()"/>
 <xsl:apply-templates/>
 </div>
</xsl:template>

XSL constructors: Task 1
Write a constructor for an element called <div> with an attribute called "class", whose value
is "chapter".

XSL constructors: Task 1 answer
A constructor for an element <div> with a @class attribute whose value is "chapter":

XSLT Constructors

4

<xsl:element name="div">
 <xsl:attribute name="class">chapter</xsl:attribute>
</xsl:element>

XSL constructors: Task 1 discussion
A constructor for an element <div> with a @class attribute whose value is "chapter":

<xsl:element name="div">

 [What can go in this location?]

 <xsl:attribute name="class">chapter</xsl:attribute>

 [What can go in this location?]

</xsl:element>

XSL constructors: Task 1 discussion
A constructor for an element <div> with a @class attribute whose value is "chapter":

<xsl:element name="div">

 [Only attribute constructors can go here.]

<xsl:attribute name="class">chapter</xsl:attribute>

 [Lots of things can go here, including
 <xsl:apply-templates>, other attribute
 constructors, and other element
 constructors.]

</xsl:element>

XSLT Constructors

5

XSL constructors: Task 2
• When would I ever actually use this?
• We've already come across a perfect use-case in the Hamlet transformation:

<xsl:template match="head">
 <h2>
 <xsl:apply-templates/>
 </h2>
</xsl:template>

• This matches <head> elements for both Act headings and Scene headings.
• What's the problem with it?

• Open hamlet.xml and the example_01.xsl file.
• Set up a transformation scenario (elicit the steps).
• Do the transform, and show the problem.
• Discuss possible solutions. Arrive at the counting of ancestor divs.
• Elicit the initial fix, which would use h{count(ancestor::div)+1}.
• Once that's working, elicit the problem with the general case (h7 etc.).
• Elicit the solution to it (h{min(count(ancestor::div)+1), 6)}.

