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Abstract

Analytic results are obtained for the mean and covariance structure of an idealised

zonal jet which fluctuates in strength, position, and width. Through a systematic per-

turbation analysis, the leading Empirical Orthogonal Functions (EOFs) and Principal

Component (PC) time series are obtained. These EOFs are built up of linear com-

binations of basic patterns corresponding to monopole, dipole, and tripole structures.

The analytic results demonstrate that in general the individual EOF modes cannot be

interpreted in terms of individual physical processes. In particular, while the dipole

EOF (similar to the leading EOF of the midlatitude zonal mean zonal wind) describes

fluctuations in jet position to leading order, its time series also contains contributions

from fluctuations in strength and width. No simple interpretations of the other EOFs

in terms of strength, position, or width fluctuations are possible. Implications of these

results for the use of EOF analysis to diagnose physical processes of variability are

discussed.
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1 Introduction

Empirical Orthogonal Function (EOF) analysis, also known as Principal Component Analy-

sis (PCA), is a standard technique for decomposing an observed geophysical field into a set

of orthogonal spatial patterns with associated temporally uncorrelated time series. These

spatial patterns (denoted the EOFs), are obtained as the eigenvectors of the covariance ma-

trix of the field, while the time series (denoted the principal components, or PCs) arise as the

projection coefficients of the corresponding EOF pattern on the original field. It is common

to interpret individual EOF/PC pairs (together referred to as a mode) as corresponding to

distinct physical processes, where the term physical process is used to denote a degree of

freedom of the system with a clear physical interpretation. It was emphasized by North

(1984), however, that individual EOF modes correspond to individual physical modes only

in a very limited class of physical systems (those governed by linear dynamics for which

the linear operator commutes with its adjoint). In general, observed geophysical flows do

not belong to this class of systems (e.g. Farrell and Ioannou, 1996; Penland, 1996; Palmer,

1999). In particular, if the underlying physical processes are localised, nonstationary, not

mutually orthogonal, or nonlinearly coupled, they will generally be spread across a number

of EOF modes (e.g. Ambaum et al., 2001; Dommenget and Latif, 2002; Fyfe, 2003; Monahan

et al., 2003; Fyfe and Lorenz, 2005). Individual EOF modes cannot in general be expected

to correspond to individual physical processes.

In particular, EOF analysis has been used to study the low-frequency (10-100 days)

variability of the extratropical atmosphere (e.g. Barnston and Livezey, 1987; Thompson

and Wallace, 2000). In both hemispheres, throughout the troposphere, it is found that the

meridional spatial structure of the dominant EOF mode of the zonal mean zonal wind is a

dipole centred at approximately the latitude of the core of the time-mean jet. This structure

is generally interpreted as representing meridional displacements of the eddy-driven jet (the
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so-called zonal index), while higher order EOFs are interpreted as reflecting changes in jet

strength or width (e.g. Feldstein and Lee, 1998; Feldstein, 2000; DeWeaver and Nigam, 2000;

Codron, 2005; Vallis et al., 2004). Wittman et al. (2005) consider numerical simulations of the

EOF structure of an idealised midlatitude zonal jet (as in Fyfe (2003) and Fyfe and Lorenz

(2005)) characterised by Gaussian fluctuations in strength, position, and width (denoted

respectively pulsing, wobbling, and bulging). It is shown that a meridional dipole arises

as the leading EOF of pure wobbling motion, and that neither pulsing nor bulging (both of

which are symmetric about the jet axis) produce dipole EOF patterns (which are asymmetric

about the jet axis). A meridional dipole was also found in the study of Gerber and Vallis

(2005) as the leading EOF of a one-dimensional spatially stochastic process that conserves

angular momentum.

The present study takes as its starting point the idealised midlatitude jet considered in

Wittman et al. (2005), and obtains analytic expressions for the EOFs and PCs in terms of the

fluctuations in jet strength, position, and width. These analytic results allow unambiguous

diagnoses of the relationships between the EOF modes and the underlying physical processes.

It will be shown that while the leading EOFs are made up of a small number of basic spatial

patterns, and are therefore simple in structure, the associated time series inextricably couple

the underlying processes of jet variability. Furthermore, because the EOFs associated with

one physical process are not orthogonal to those associated with another, these EOFs will be

seen to be mixed when both processes are present simultaneously. It will be shown that in

this idealised (but physically motivated) system, while some EOF modes may be associated

with individual physical processes to a leading order approximation, this association cannot

generally be made. The present study differs from earlier studies demonstrating difficulties

in associating individual physical processes with individual EOF modes (e.g. Ambaum et al.,

2001; Dommenget and Latif, 2002) in its use of a physically motivated system: the fluctuating

zonal jet.
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Section 2 describes the idealised fluctuating midlatitude jet considered in this study.

The EOFs of the jet in the case of pure fluctuations in strength, position, and width are

considered respectively in Sections 3, 4 and 5. Section 6 describes the covariance structure

in the presence of simultaneous fluctuations in both strength and position, while the case of

correlated fluctuations in strength and width is considered in Section 7. The EOF structure

for simultaneous fluctuations in strength, position, and width is discussed in Section 8. A

discussion and conclusions are presented in Section 9.

2 The Idealised Gaussian Jet

Following Fyfe (2003), Fyfe and Lorenz (2005), and Wittman et al. (2005) we consider

our fundamental dynamical object to be a jet in the zonal mean zonal wind with a simple

Gaussian profile:

u(φ, t) = U(t) exp

(
−(φ− Φ(t))2

2σ2(t)

)
, (1)

where the U(t), Φ(t) and σ(t) are the jet strength, position and width, respectively. We

proceed to investigate the statistical structure of u(φ, t) by assuming

U(t) = U0 + ξ(t) (2)

Φ(t) = φ0 + λ(t) (3)

σ−1(t) = σ−1
0 (1 + η(t)), (4)

where ξ(t), λ(t), and η(t) are individually Gaussian time series with mean zero, i.e.,

p(ξ) =
1√

2πγ2
exp

(
− ξ2

2γ2

)
(5)

p(λ) =
1√

2πw2
exp

(
− λ2

2w2

)
(6)

p(η) =
1√

2πv2
exp

(
− η2

2v2

)
. (7)
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For the purposes of calculating means and covariances of the zonal wind, the temporal

autocorrelation structures of these time series are irrelevant. Note that the expression for

the inverse width (Eqn. (4)) allows σ to become negative, which is of course unphysical;

in practice, the standard deviation of η is sufficiently small that the probability of negative

values of the jet width is negligible.

Observational justification for these approximations is provided in Figure 1, the top

panel of which shows the leading EOFs of daily Southern Hemisphere winter (May-Sep.)

500 hPa zonal mean zonal wind after fitting to the profile (1) (following the direct procedure

in Appendix B) and then reconstructing λ(t) and η(t) to be individually Gaussian with

observed variances. Additionally, in order to preserve the observed correlation between

strength and inverse width, we set ξ(t) = ρη(t). As discussed in Fyfe and Lorenz (2005),

the observed correlation between strength and inverse width reflects conservation of angular

momentum:

M(t) =
∫ ∞

−∞
u(φ, t)dφ =

√
2πσ0

U0 + ξ(t)

1 + η(t)
(8)

(where the sphericity of the domain has been neglected). We note that there is no manifest

dependence between either strength and position or width and position. Of course, angular

momentum conservation on a spherical domain implies that poleward (equatorward) dis-

placements of the jet should be associated with increased (decreased) jet strength; the lack

of correlation between U(t) and Φ(t) indicates that this relationship is weaker than that be-

tween U(t) and σ(t). Under these assumptions the system is completely described in terms

of the following best fit parameters: U0 ≈ 23.3 m s−1, γ ≈ 2.7 m s−1, φ0 ≈ −47.5 deg,

w ≈ 2.7 deg, σ−1
0 ≈ 0.095 deg−1, v ≈ 0.165 and ρ ≈ 13.1 m s−1. We now compare the lead-

ing EOFs obtained in this way with the leading EOFs of the unfit zonal mean zonal winds

(Figure 1, bottom). We see that despite all the rather stringent approximations imposed by

(1)-(7) the two sets of leading EOFs compare very well: the idealised model does a good job

of capturing the mean and covariance structure of the original data.
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Having specified the statistical structure of the fluctuations in jet strength, position, and

width, we can calculate the time mean of u(φ, t):

〈u(φ)〉 =
∫
p(ξ, λ, η)(U0 + ξ) exp

(
−(φ− φ0 − λ)2(1 + η)2

2σ2
0

)
dξdλdη, (9)

and the spatial covariance function of u(φ, t):

C(φ1, φ2) = 〈u(φ1)u(φ2)〉 − 〈u(φ1)〉 〈u(φ2)〉 , (10)

where the angle brackets 〈·〉 denote the expectation (or averaging) operator (and we use the

simplified notation 〈u(φ)〉 = 〈u(φ, t)〉). Once the covariance function has been calculated,

the eigenvalue problem for the EOFs can be posed as an integral equation as described in

Appendix A. For the analysis of C(φ1, φ2) which follows it is useful to define the functions:

f0(φ) =

(
1√
πσ0

)1/2

exp

(
−(φ− φ0)2

2σ2
0

)
(11)

f1(φ) =

(
1√
πσ0

)1/2

H1

(
(φ− φ0)√

2σ0

)
exp

(
−(φ− φ0)2

2σ2
0

)
(12)

f2(φ) =

(
1

3
√
πσ0

)1/2

H2

(
(φ− φ0)√

2σ0

)
exp

(
−(φ− φ0)2

2σ2
0

)
, (13)

where H1(x) = 2x and H2(x) = 4x2−2 are the Hermite polynomials of order 1 and 2 (Arfken,

1985). The functions fi(φ) are normalised to have unit square norm:
∫∞
−∞ f

2
i (φ) dφ = 1 , i =

0, 1, 2. Plots of these functions are given in Figure 2. It is worth noting that despite their

resemblance to parabolic cylinder functions (e.g. Gill, 1982), these functions are not mutually

orthogonal. By symmetry, f1(φ) is orthogonal to both f0(φ) and f2(φ) but f0(φ) and f2(φ)

are not mutually orthogonal, i.e.
∫∞
−∞ f0(φ)f2(φ) dφ = −1/

√
3. Figure 3 provides a geometric

representation of the vector space spanned by these functions.

We now proceed to develop analytic expressions for the covariance function and EOFs of

the fluctuating jet for progressively complex forms of variability: first, individual fluctuations

in strength, position, and width; and second, simultaneous fluctuations in strength and

position, and in strength and width. While these individual examples do not describe the
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full covariance structure of the fully variable jet, they represent important limiting cases

which can be used to understand the more complex case. In this analysis, the sphericity of

the earth will be neglected: the jet will be taken to exist on an infinite domain.

3 Fluctuations in Jet Strength Alone

Consider first the case in which only fluctuations in strength are nonzero (i.e. γ 6= 0, w = 0,

v = 0). The time mean jet is:

〈u(φ)〉 =
∫ ∞

−∞
p(ξ)(U0 + ξ) exp

(
−(φ− φ0)2

2σ2
0

)
dξ

= U0 exp

(
−(φ− φ0)2

2σ2
0

)
. (14)

In this case the time mean jet is identical to the instantaneous jet with time mean strength.

The covariance function is

C(φ1, φ2) = γ2 exp

(
−(φ1 − φ0)2

2σ2
0

)
exp

(
−(φ2 − φ0)2

2σ2
0

)
(15)

=
√
πσ0γ

2f0(φ1)f0(φ2). (16)

Thus, the integral equation defining the eigenvalue problem for the EOFs (67) is charac-

terised by a kernel that is trivially separable in the function f0(φ), which is therefore the

only eigenfunction associated with a nonzero eigenvalue (Arfken, 1985). In the presence of

Gaussian fluctuations in the jet strength alone, the leading (and only) EOF is the monopole

E(1)(φ) = f0(φ). (17)

Note that this provides an analytic demonstration of the result found numerically in Wittman

et al. (2005).
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4 Fluctuations in Jet Position Alone

Now consider the case in which only fluctuations in jet position are nonzero (i.e. γ = 0,

w 6= 0, v = 0). The time mean jet is:

〈u(φ)〉 =
∫ ∞

−∞
p(λ)U0 exp

(
−((φ− φ0)− λ)2

2σ2
0

)
dλ

=
U0σ0√
σ2

0 + w2
exp

(
− (φ− φ0)2

2(σ2
0 + w2)

)
. (18)

In this case the time mean jet differs from the instantaneous jet at the time mean position.

In particular, the jet wobbling around its mean position produces a mean jet that is weaker

and wider than the instantaneous jet at the mean position. The covariance function is

C(x, y) =
U2

0σ0√
σ2

0 + 2w2
exp

(
− σ2

0 + w2

σ2
0 + 2w2

(x2 + y2)

)
exp

(
2w2

σ2
0 + 2w2

xy

)

− U2
0σ

2
0

σ2
0 + w2

exp

(
− σ2

0

σ2
0 + w2

(x2 + y2)

)
, (19)

where we have defined the new coordinates

x =
φ1 − φ0√

2σ0

(20)

y =
φ2 − φ0√

2σ0

. (21)

Defining the parameter h = w/σ0 the covariance function can be expressed

C(x, y) =
U2

0√
1 + 2h2

exp

(
− 1 + h2

1 + 2h2
(x2 + y2)

)

×
[
exp

(
2h2

1 + 2h2
xy

)
−
√

1 + 2h2

1 + h2
exp

(
h4

(1 + h2)(1 + 2h2)
(x2 + y2)

)]
. (22)

This covariance function is not obviously separable for general values of h. However, in the

limit of small fluctuations in position (h << 1), expanding the quantity in square brackets

in (22) in powers of h yields:

C(x, y) = U 2
0 e
−(x2+y2)

[
1

2
(h2 − 2h4)H1(x)H1(y) +

1

8
h4H2(x)H2(y) +O(h6)

]
(1 +O(h2)).

(23)
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Changing coordinates back to φ1, φ2, the covariance function can be written in the manifestly

separable form:

C(φ1, φ2) =

√
πσ0U

2
0

2

[
(h2 − 2h4)f1(φ1)f1(φ2) +

3

4
h4f2(φ1)f2(φ2) +O(h6)

]
(1+O(h2)). (24)

As discussed in Appendix A, because the functions f1(φ) and f2(φ) are mutually orthogonal,

it follows that these functions are also EOFs. Furthermore, the ordering of the EOFs is clear

from the expansion in powers of h:

E(1)(φ) = f1(φ) (25)

E(2)(φ) = f2(φ). (26)

For small fluctuations in jet position (relative to jet width), the first EOF is the dipole f1(φ)

and the second EOF is the tripole f2(φ), precisely in accordance with the numerical results

of Wittman et al. (2005).

Having obtained analytic expressions for the EOFs, it is possible to calculate the PC

time series:

α(i)(t) =
∫ ∞

−∞
E(i)(φ)(u(φ, t)− 〈u(φ)〉)dφ. (27)

To leading order, these are respectively

α(1)(t) =

(√
π

2σ0

)1/2

U0λ(t) +O(h2) (28)

α(2)(t) =

(
3
√
π

σ0

)1/2
U0

4σ0

(λ(t)2 − w2) +O(h4). (29)

While the PC time series are uncorrelated by construction, α(1)(t) and α(2)(t) are clearly not

independent: their joint distribution is parabolic. For the problem under consideration, at

every time t, the wind field is specified by the single number λ(t). Because variations in the

jet project on a spectrum of EOFs, the PC of all of these EOFs must be determined uniquely

by the scalar time series λ(t), and cannot be mutually independent. This result was first

obtained by Fyfe and Lorenz (2005) using a Taylor series expansion of the wobbling jet; the

above analysis formalizes the argument.
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5 Fluctuations in Jet Width Alone

Consider the case in which only fluctuations in jet width are nonzero (i.e. γ = 0, w = 0,

v 6= 0). The time mean jet is

〈u(φ)〉 =
∫ ∞

−∞
p(η)U0 exp

(
−(1 + η)2

2σ2
0

(φ− φ0)2

)
dη

=
U0σ0√

σ2
0 + v2(φ− φ0)2

exp

(
− (φ− φ0)2

2(σ2
0 + v2(φ− φ0)2)

)
. (30)

As was the case with fluctuations in position, the mean jet is not equal to the instantaneous

jet at mean width. The covariance function is

C(x, y) =
U2

0√
(1 + v2x2)(1 + v2y2)

exp

(
− x2 + y2

2(1 + v2(x2 + y2))

)

×


√√√√1 +

v4x2y2

1 + v2(x2 + y2)
− exp

(
−1

2

v2x2y2

1 + v2(x2 + y2)

[
1

1 + v2x2
+

1

1 + v2y2

])
 .(31)

where

x = (φ1 − φ0)/σ0 (32)

y = (φ2 − φ0)/σ0. (33)

As was the case with fluctuations in position alone, this covariance function is not obviously

separable for general values of v. However, for v << 1,

C(x, y) =
U2

0√
(1 + v2x2)(1 + v2y2)

exp

(
− x2 + y2

2(1 + v2(x2 + y2))

)(
v2x2y2 +O(v4)

)
(34)

so to O(v4),

C(φ1, φ2) =
3
√
πσ0U

2
0

4
v2

[
f2(φ1) +

2√
3
f0(φ1)

] [
f2(φ2) +

2√
3
f0(φ2)

]
+O(v4). (35)

The leading EOF for pure fluctuations in jet width is therefore,

E(1)(φ) = f2(φ) +
2√
3
f0(φ). (36)
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This EOF, illustrated in Figure 4, is in excellent agreement with the leading EOF of pure

fluctuations in jet width obtained numerically in Wittman et al. (2005).

The orientations in the space spanned by f0(φ), f1(φ), and f2(φ) of the leading EOFs for

the cases of pure fluctuations in jet strength, position and width are presented in Figure 5.

6 Independent Fluctuations in Strength and Position

We now turn to the case in which only fluctuations in width are zero (i.e. γ 6= 0, w 6= 0,

v = 0), and where, as suggested by the observations, the fluctuations in strength and position

are independent, i.e.:

p(ξ, λ) = p(ξ)p(λ) =
1

2πγw
exp

(
− ξ2

2γ2

)
exp

(
− λ2

2w2

)
. (37)

Then the time mean jet is:

〈u(φ)〉 =
∫ ∞

−∞

∫ ∞

−∞
(U0 + ξ) exp

(
−((φ− φ0)− λ)2

2σ2
0

)
p(ξ, λ) dξ dλ

=
U0σ0√
σ2

0 + w2
exp

(
− (φ− φ0)2

2(σ2
0 + w2)

)
. (38)

Not surprisingly, the mean jet depends on fluctuations in jet position but not in jet strength.

Defining the coordinates x and y as in Eqns. (20) and (21), the covariance function is

C(x, y) =
U2

0√
1 + 2h2

exp

(
− 1 + h2

1 + 2h2
(x2 + y2)

)
(39)

×
[
(1 + l2) exp

(
2h2

1 + 2h2
xy

)
−
√

1 + 2h2

1 + h2
exp

(
h4

(1 + h2)(1 + 2h2)
(x2 + y2)

)]

where l = γ/U0. As was the case of fluctuations in jet position alone, this covariance function

becomes manifestly separable when we assume that h is small and expand in powers of h:

C(x, y) = U 2
0 exp(−(x2 + y2)) (40)

×
[
l2 +

1

2
(h2 + l2h2 − 2h4)H1(x)H1(y) +

1

8
h4H2(x)H2(y) + h.o.t.

]
(1 +O(h2))
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where we have also assumed that l is “small”. Transforming back to the original coordinates

we obtain

C(φ1, φ2) =
√
πσ0U

2
0

[
l2f0(φ1)f0(φ2) +

1

2
(h2 + l2h2)f1(φ1)f1(φ2) +

3

8
h4f2(φ1)f2(φ2)

]
+ h.o.t.

(41)

The covariance function is clearly separable in fj(φ), j = 0, 1, 2. As noted earlier, while

f1(φ) is orthogonal to both f0(φ) and f2(φ), f0(φ) and f2(φ) are not mutually orthogonal.

Thus, while f1(φ) is one of the three leading EOFs of the covariance function (41), the other

two will be orthogonal linear combinations of f0(φ) and f2(φ):

E(±)(φ) = β
(±)
0 f0(φ) + β

(±)
2 f2(φ) (42)

where the plus (minus) superscript labels the EOF associated with the larger (smaller)

variance. The EOF problem can then be recast as a 2-dimensional eigenvalue problem,

details of which are given in Appendix A. Figure 6 displays plots of β
(±)
0 and β

(±)
2 as functions

of the ratio 3h4/8l2. For small values of the ratio, that is, for h4 << l2, β+
0 ' 1 and

β+
2 ' 0. The EOF E(+)(φ) is therefore approximately equal to f0(φ), the leading EOF for

pure fluctuations in jet strength (up to a sign, always arbitrary for EOFs). For large values

of the ratio, that is, for h4 >> l2, β+
2 ' 1 and β+

0 ' 0. In this limit, E(+)(φ) ' f2(φ),

the second EOF for pure fluctuations in jet position. However, for intermediate values of

the ratio, E(+)(φ) is necessarily a mixture of f0(φ) and f2(φ); that is, is a hybrid structure

which does not correspond to an EOF found in either of the cases of pure jet position or

strength fluctuations (Figure 7). For all values of the ratio 3h4/8l2, E(−)(φ) is also a hybrid

of the vectors f0(φ) and f2(φ). Fluctuations in both strength and position are combined

inextricably in the structure of the EOFs. The structure of the dipole EOF of jet position

variations, on the other hand, is unaffected by fluctuations in the jet strength.

Note that these calculations allow us not only to identify the leading EOFs, but their

ordering as well. It is straightforward to show (Appendix A, Eq. (73)) that the ratio of
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the variance of the PC time series associated with the eigenvector E (−)(φ) to that of the

eigenvector f1(φ) is (at most) of order h2, so f1(φ) is always a higher order EOF than E(−)(φ).

The ordering of E(+)(φ) relative to f1(φ) depends on the relative magnitudes of the variance

of the PC corresponding to E(+)(φ),

µ(+) =

√
πσ0U

2
0

2


l2 +

3h4

8
+

√√√√
(
l2 +

3h4

8

)2

− l2h4


 (43)

(Appendix A), and that of the PC corresponding to f1(φ),
√
πσ0U

2
0h

2/2:

{
E(1)(φ), E(2)(φ), E(3)(φ)

}
=
{
f1(φ), E(+)(φ), E(−)(φ)

}
if

2µ(+)

√
πσ0U2

0

< h2,

{
E(1)(φ), E(2)(φ), E(3)(φ)

}
=
{
E(+)(φ), f1(φ), E(−)(φ)

}
if

2µ(+)

√
πσ0U2

0

> h2.

As it is the first of these two cases that is relevant to the midlatitude tropospheric jets, we

will assume this ordering for the remainder of this section.

While the spatial pattern of the dipole EOF arising in the case of pure jet position

fluctuations is unaffected by the addition of jet strength fluctuations, the associated principal

component time series couples both forms of variability:

α(1)(t) =

(√
π

2σ0

)1/2

(U0 + ξ(t))λ(t) + h.o.t. (44)

Variations of ξ(t) change the overall amplitude of u(φ, t), so they must project on the dipole

EOF. Clearly, the time series of the dipole EOF cannot be simply interpreted as reflecting

variability in jet position alone (although for relatively weak fluctuations in jet strength the

differences will be small).

The interpretation of the second principal component time series, α(2)(t) is even more

complicated because E(2)(φ) is a hybrid of f0(φ) and f2(φ):

α(2)(t) = β
(+)
0

(√
πσ0

)1/2
[
ξ(t)− U0

4σ2
0

(λ2(t)− w2)− λ2(t)ξ(t)

4σ2
0

]

+β
(+)
2

(
3
√
π

σ0

)1/2
(U0 + ξ(t))

4σ0

(λ(t)2 − w2) + h.o.t. (45)
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Regardless of the degree of alignment of E(2)(φ) along either f0(φ) or f2(φ), the PC time

series α(2) is an inextricable mixture of variability in both jet strength and position. Only

in the limiting cases of l >> h2 and l << h2 can this time series reasonably be interpreted

as reflecting fluctuations in strength or position, respectively.

To illustrate this coupling of strength and position fluctuations in the PC time series,

104 realizations of the field (1) with h = w/σ0 = 0.26 were made for a range of values of

l = γ/U0 (selected such that f1(φ) remains the leading EOF), and the time series α(1)(t) and

α(2)(t) were calculated. Scatter plots of these time series are plotted in Figure 8, conditioned

on the sign of ξ(t) (dark for ξ < 0, light for ξ > 0). It is evident in Figure 8 that, for

sufficiently weak fluctuations in jet strength, the distribution clusters around the parabolic

curve associated with the projection of position fluctuations on both E (1)(φ) and E(2)(φ). It

is also clear that both fluctuations in strength and position generally project along E (2)(φ),

precluding its interpretation in terms of either individually.

7 Dependent Fluctuations in Strength and Width

Consider now the case in which only fluctuations in position are zero (i.e. γ 6= 0, w = 0,

v 6= 0), and where, as suggested by the observations, the fluctuations in strength and inverse

width are correlated, i.e. ξ(t) = ρη(t). Then

u(φ, t) = (U0 + ρη(t)) exp

(
−(φ− φ0)2

2σ2
0

(1 + η(t))2

)
. (46)

The time mean jet is:

〈u(φ)〉 =
∫ ∞

−∞

1√
2πv2

exp

(
− η2

2v2

)
u(φ, t) (47)

=
σ0√

σ2
0 + v2(φ− φ0)2

(
U0 −

ρv2(φ− φ0)2

σ2
0 + v2(φ− φ0)2

)
exp

(
−1

2

(φ− φ0)2

σ2
0 + v2(φ− φ0)2

)
.
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As before, the mean jet is distinct from the instantaneous jet with mean width. Calculating

the covariance function, we find that:

C(x, y) =
1√

(1 + v2x2)(1 + v2y2)
exp

(
−1

2

x2 + y2

1 + v2(x2 + y2)

)
×



√

1 +
v4x2y2

1 + v2(x2 + y2)





(
U0 −

ρv2(x2 + y2)

1 + v2(x2 + y2)

)2

+
ρ2v2

1 + v2(x2 + y2)



 (48)

− exp

(
−1

2

v2x2y2

1 + v2(x2 + y2)

[
1

1 + v2x2
+

1

1 + v2y2

])(
U0 −

ρv2x2

1 + v2x2

)(
U0 −

ρv2y2

1 + v2y2

)]
,

where x and y are defined as in Eqns (32) and (33). This function is not manifestly separable

for general values of v, but for v << 1, we have:

C(x, y) =
1√

(1 + v2x2)(1 + v2y2)
exp

(
−1

2

x2 + y2

1 + v2(x2 + y2)

)(
v2[ρ− U0x

2][ρ− U0y
2] +O(v4)

)

(49)

so

C(φ1, φ2) =
√
πσ0U

2
0 v

2

[(
ρ

U0

)2

−
(
ρ

U0

)
+

3

4

]
E(1)(φ1)E(1)(φ2) +O(v4) (50)

where

E(1)(φ) =
1√

4
3

(
ρ
U0

)2 − 4
3

(
ρ
U0

)
+ 1

[f2(φ) +
2√
3

(
1− ρ

U0

)
f0(φ)] (51)

is the leading EOF for pure correlated fluctuations in jet strength and inverse width.

The mixing of the functions f0(φ) and f2(φ) in E(1)(φ) depends on the ratio ρ/U0; in

particular, when this ratio is equal to 1, E (1)(φ) is aligned along f2(φ) (i.e. it is a tripole)

and when the ratio is very large, E(1)(φ) is approximately aligned along f0(φ) (i.e. it is a

monopole). Figure 9 displays plots of E(1)(φ) for a representative range of the values of the

ratio ρ/U0.

8 Fluctuations in Strength, Position, and Width

In considering the general cases of fluctuations in both strength and width, or all three of

strength, position, and width, direct calculation of the covariance matrix is mathematically
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intractable. In the limiting cases considered in Sections 3 through 7, the leading EOFs lie

in the 3-dimensional space spanned by f0(φ), f1(φ), and f2(φ). Motivated by these results,

we proceed by assuming that (to a first approximation) the zonal mean zonal wind u(φ, t)

can be expressed in terms of the basis vectors f0(φ), f1(φ) and f2(φ) alone:

u(φ, t) = a0(t)f0(φ) + a1(t)f1(φ) + a2(t)f2(φ). (52)

We then consider the statistical structure of the zonal mean zonal wind projected into this

3-dimensional subspace.

Defining the projections of u(φ, t) on the basis vectors fi(φ):

pi(t) =
∫ ∞

−∞
u(φ, t)fi(φ)dφ, (53)

direct integration gives the following explicit forms:

p0(t) = (2
√
πσ0)1/2Z(t) (54)

p1(t) = 2(
√
πσ0)1/2 [1 + η(t)]2

1 + [1 + η(t)]2

(
λ(t)

σ0

)
Z(t) (55)

p2(t) = −2

(
2
√
πσ0

3

)1/2 [1 + η(t)]4
(

1−
(
λ(t)
σ0

)2
)

+ [1 + η(t)]2

(1 + [1 + η(t)]2)2
Z(t) (56)

where

Z(t) =
U0 + ξ(t)

(1 + [1 + η(t)]2)1/2
exp


−1

2

[1 + η(t)]2

1 + [1 + η(t)]2

(
λ(t)

σ0

)2

 . (57)

Because the vectors in the basis (f1(φ), f2(φ), f3(φ)) are not mutually orthogonal, the

projection coefficients pi(t) will not equal the components ai(t) in Eq (52). In fact, the

vector of components a(t) is related to the vector of projections p(t) by:

a = G−1p (58)

where

Gij =
∫ ∞

−∞
fi(φ)fj(φ)dφ (59)
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so

G−1 =
1

2




3 0
√

3

0 2 0

√
3 0 3



. (60)

Denoting by a′i(t) the anomalies of the components a′i(t) = ai(t) − 〈ai(t)〉 we can write the

covariance matrix as:

C(φ1, φ2) =
〈
(a′0)2

〉
f0(φ1)f0(φ2) +

〈
(a′1)2

〉
f1(φ1)f1(φ2) (61)

+
〈
(a′2)2

〉
f2(φ1)f2(φ2) + 〈a′0a′2〉 [f0(φ1)f2(φ2) + f2(φ1)f0(φ2)], (62)

where we have assumed that position fluctuations are uncorrelated with fluctuations in

strength and inverse width (as suggested by the observations), so 〈a′0a′1〉 = 〈a′1a′2〉 = 0.

Writing the eigenvector E(φ) over the basis set fi(φ):

E(φ) = b0f0(φ) + b1f1(φ) + b2f2(φ) (63)

the integral equation for the eigenfunctions (67) can be expressed as

Mb = µb (64)

where

M =




〈(a′0)2〉 − 1√
3
〈a′0a′2〉 0 − 1√

3
〈(a′0)2〉+ 〈a′0a′2〉

0 〈(a′1)2〉 0

− 1√
3
〈(a′2)2〉+ 〈a′0a′2〉 0 〈(a′2)2〉 − 1√

3
〈a′0a′2〉




(65)

and b = (b1, b2, b3). From this, we can read off the fact that f1(φ) is an EOF with PC time

series a1(t) = p1(t) (as 〈a1〉 = 0 for symmetric fluctuations in λ). The other two EOFs are

hybrids of f0(φ) and f2(φ), with components given by the solutions to the reduced eigenvalue

problem


〈(a′0)2〉 − 1√

3
〈a′0a′2〉 − 1√

3
〈(a′0)2〉+ 〈a′0a′2〉

− 1√
3
〈(a′2)2〉+ 〈a′0a′2〉 〈(a′2)2〉 − 1√

3
〈a′0a′2〉






b0

b2


 = µ



b0

b2


 . (66)
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The ordering of these EOFs will depend on the details of the covariance structure of λ(t), η(t),

and ξ(t). When restricted to this three-dimensional subspace, the dipole arises as an EOF of

u(φ, t) even in the presence of simultaneous fluctuations in jet strength, width, and position.

As was the case in the absence of fluctuations in width, while the PC time series associated

with the dipole EOF represents fluctuations in jet position to leading order, there are higher

order correction terms involving fluctuations in jet strength and width. Furthermore, while

the PC time series will be uncorrelated, they will not be independent, as each will involve

the time series of fluctuations in jet strength, position, and width. The dipole f1(φ) clearly

emerges as a privileged pattern in the set of leading EOFs, but one without a direct physical

interpretation.

9 Discussion and Conclusions

This study has considered analytic calculations of the statistical structure of an idealised (yet

physically motivated) midlatitude jet characterised by Gaussian fluctuations in its strength,

position, and width. The following results were obtained.

• In general, the time mean jet does not equal the jet with time mean strength, width, and

position. This difference implies an ambiguity in the definition of the jet climatology,

although the difference is small for the parameters characteristic of the midlatitude

troposphere.

• The leading EOF patterns of the fluctuating jet found in Wittman et al. (2005) were

obtained analytically. To a first approximation, these EOFs can be described in terms

of three elementary functions, f0(φ), f1(φ), and f2(φ) (Eqns. (11)-(13) and Figures 2

and 3), representing monopole, dipole, and tripole patterns respectively. The dipole is

spatially orthogonal to the monopole and the tripole, so it arises naturally as an EOF

if fluctuations in jet position are uncorrelated with fluctuations in strength and inverse
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width. The monopole and tripole, however, are not orthogonal, so the remaining EOFs

arise as linear combinations of these two structures. In particular, the EOF patterns

for fluctuations in jet position or strength alone are not retained in the presence of

fluctuations in both strength and position; these structures are mixed, or hybridised.

Caution must therefore be exercised in interpreting a particular EOF pattern in terms

of the EOFs produced by individual physical processes.

• The PC time series inextricably couple together the time series associated with the

individual underlying physical processes. Individual EOF modes therefore cannot be

associated in general with individual physical processes. The dipole EOF, which only

occurs in the presence of fluctuations in jet position, has a corresponding PC time

series which combines fluctuations in jet strength, position, and width. Although the

strength and width fluctuations only come in as second order corrections to the PC time

series, the dipole EOF mode does not simply correspond to fluctuations in jet position.

The higher order EOFs cannot be simply interpreted (even to leading order) in terms

of fluctuations in strength, width, or position. Note that the distinct physical processes

in the PC time series cannot be decoupled through the selection of another basis set,

such as would follow from a rotated EOF analysis. Furthermore, the dependence of

each of the PC time series on all of the underlying processes implies that while these

time series are uncorrelated, they are not independent (as is often assumed).

• The dipole pattern does arise naturally as an EOF of the fluctuating jet (although one

without a straightforward physical interpretation), requiring only that fluctuations

in jet position be uncorrelated with those in strength and inverse width. Angular

momentum conservation, which was used in the model of Gerber and Vallis (2005), is

not required to produce this structure.
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The fluctuating jet considered in this study was idealised both in its meridional struc-

ture, and in the statistical structure of its fluctuations. In fact, observed jets are generally

asymmetric about their peak and fluctuations in strength, position, and inverse width are

generally non-Gaussian. A goal of future work is to investigate the effects on the jet covari-

ance structure of jet asymmetries and non-Gaussian fluctuations.

The present study has therefore demonstrated, in the context of a fluctuating idealised

zonal jet, that individual EOF modes cannot generally be associated with individual phys-

ical processes. This result, which is not surprising in light of the general study of North

(1984), still stands in contrast to common practice (e.g. Feldstein and Lee, 1998; Feldstein,

2000; DeWeaver and Nigam, 2000; Vallis et al., 2004; Codron, 2005; Wittman et al., 2005).

Empirical Orthogonal Function analysis is a powerful tool for dimensionality reduction in

multivariate datasets, but it is a purely statistical operation. At times, it may be possi-

ble to interpret individual EOF modes in terms of underlying physical processes, but such

interpretations should be approached with the utmost caution.
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Appendix A: Calculating the EOFs

Consider the covariance function C(φ1, φ2), defined as in Eq. (10). The EOFs E(j)(φ) of

u(φ) are then defined as solutions of the integral equation:

∫ ∞

−∞
C(φ1, φ2)E(j)(φ2) = µ(j)E(j)(φ1). (67)

If the covariance matrix is separable, that is, if it can be expressed in the form:

C(φ1, φ2) =
N∑

i=1

θigi(φ1)gi(φ2), (68)

for some linearly independent functions gi(φ), i = 1, ..., N , then the integral equation can be

reduced to the matrix equation:

N∑

k=1

θiGika
(j)
k = µ(j)a

(j)
i , (69)

where a
(j)
i are the components of E(j)(φ) over the basis gi(φ):

E(j)(φ) =
N∑

i=1

a
(j)
i gi(φ) (70)

and

Gik =
∫ ∞

−∞
gi(φ)gk(φ) dφ. (71)

Thus, if the covariance matrix is separable, the infinite dimensional integral equation for

the EOFs can be reduced to a finite dimensional eigenvalue problem. In particular, if the

functions gi(φ) are mutually orthogonal, i.e., if Gjk = νjδij, then the functions gi(φ) are

identical to the EOFs (up to a normalization factor).

For the covariance function (41) of Section 6, the integral equation (67) reduces to the

problem of diagonalising a 3×3 matrix. As the vector f1(φ) is orthogonal to both f0(φ) and

f2(φ), it is an eigenvector of C(φ1, φ2); the EOF problem is thus reduced to a 2× 2 problem

for the eigenvectors in the space spanned by f0(φ) and f2(φ):

√
πσ0U

2
0




l2 − l2√
3

−
√

3h4

8
3h4

8






β0

β2


 = µ



β0

β2


 (72)
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for which the eigenvalues (corresponding to the EOF variances) are

µ(±) =

√
πσ0U

2
0

2


l2 +

3h4

8
±
√√√√
(
l2 +

3h4

8

)2

− l2h4


 . (73)

The components of the associated eigenvectors satisfy:

β
(±)
0 =

l2√
3 [l2 − µ(±)/(

√
πσ0U2

0 )]
β

(±)
2 (74)

with normalization constraint

(β
(±)
0 )2 − 2√

3
β

(±)
0 β

(±)
2 + (β

(±)
2 )2 = 1. (75)

In the limit of that l2 << h4,

µ(+) ∼ √
πσ0U

2
0

3h4

8
(76)

µ(−) ∼ 4

3

π

σ 0
U2

0 l
2 (77)

and |β(+)
0 | << |β(+)

2 | while |β(−)
0 | and |β(−)

2 | are of the same order of magnitude. Conversely,

in the limit that l2 >> h4,

µ(+) =
√
πσ0U

2
0 l

2 (78)

µ(−) =

√
πσ0h

4

8
(79)

and |β(+)
0 | >> |β(+)

2 | while |β(−)
0 | and |β(−)

2 | are of the same order of magnitude.

Thus, when jet strength fluctuations are relatively weak, the larger of the two EOFs

spanned by f0(φ) and f2(φ) corresponds to the second EOF of the case with fluctuations in

jet position alone, lying almost parallel to f2(φ) and explaining exactly the correct amount

of variance (c.f. Eq. (24)). When jet strength fluctuations are relatively strong, the larger of

the two EOFs spanned by f0(φ) and f2(φ) corresponds to the leading EOF of the situation

in which there are fluctuations in jet strength alone, also with the correct variance (c.f. Eq.

(16)). In both limiting cases, the smaller of the two EOFs spanned by f0(φ) and f2(φ) is a

mixture of both vectors. To leading order, in the limits of both weak and strong fluctuations

in jet strength, the respective cases of fluctuations in jet position alone is recovered and in

jet strength alone is recovered.
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Appendix B: Gaussian Jet Fitting Procedure

Given the jet structure,

u(φ) = U exp

(
−(φ− Φ)2

2σ2

)
(80)

we can take logarithms of both sides (over the latitude range where u(φ) > 0) to obtain

lnu = lnU − 1

2σ2
(φ− Φ)2

=

(
lnU − Φ2

2σ2

)
+

Φ

σ2
φ− 1

2σ2
φ2

= a1 + a2φ+ a3φ
2. (81)

Optimizing the parameters a1, a2, a3 to minimise the squared misfit:

ε2 =
(
lnu− a1 − a2φ− a3φ

2
)2

(82)

is a simple multiple linear regression problem which can be expressed:




〈ln u〉

〈φ ln u〉

〈φ2 ln u〉




=




1 〈φ〉 〈φ2〉

〈φ〉 〈φ2〉 〈φ3〉

〈φ2〉 〈φ3〉 〈φ4〉







a1

a2

a3




(83)

where 〈·〉 denotes the spatial average over the range of latitudes used for the fitting. Writing

this equation as Y = MX we solve for the vector X = (a1, a2, a3) as X = M−1Y. From

this, we obtain:

σ =

√
− 1

2a3

(84)

Φ = − a2

2a3

(85)

U = exp

(
a1 −

a2
2

4a3

)
. (86)
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Figure Captions

Figure 1: Leading EOFs of daily Southern Hemisphere winter (May-Sep) 500 hPa zonal

mean zonal wind (1958-2003). Top: Following the fitting procedure in accord with Eqns

(1)-(7). Bottom: Not following the fitting procedure. Solid curves: E (1). Dashed curves:

E(2).

Figure 2: Dramatis Personae: Plots of the functions f0(φ), f1(φ), and f2(φ) (Eqns.

(11)-(13)) from which the leading EOFs are constructed, rescaled to be of unit norm.

Figure 3: Geometric illustration of the vectors (in function space) f0(φ), f1(φ), and f2(φ).

Because f0(φ) and f2(φ) are not orthogonal, they cannot simultaneously be eigenvectors of

a symmetric function such as the covariance. If both of these vectors contribute to the

leading EOFs, these EOFs must be orthogonal linear combinations of these vectors.

Figure 4: Leading EOF of pure Gaussian fluctuations in jet width (Eq. 36).

Normalization as in Figure 2.

Figure 5: The orientations in the space spanned by f0(φ), f1(φ), f2(φ) of the leading EOFs

for the cases of pure fluctuations in jet strength, position, and width.

Figure 6: Components of the EOFs spanned by f0(φ) and f2(φ) for fluctuations in both

jet strength and position, (a) for the EOF with the larger variance µ(+) , and (b) for the

EOF with the smaller variance µ(−).

Figure 7: Hybrid EOFs E(+) of the covariance function (41) for values of the ratio 3h4/8l2

equal to 0.3 (thin solid curve), 1 (thick curve), and 3 (dashed curve).

Figure 8: Scatter plots of numerically calculated α(1)(t)/U0 vs. α(2)(t)/U0 for h = 0.26

and 3h4/8l2 = 0.1, 0.25, 1, 2.5, and 10. Dark dots denote those points for which ξ < 0, light

dots those points for which ξ > 0.

Figure 9: Leading EOF in case of correlated strength and inverse width fluctuations, for

ρ/U0 = 0.01 (thin solid line), ρ/U0 = 1 (thick solid line), and ρ/U0 = 100 (dashed line).
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Figure 1: Leading EOFs of daily Southern Hemisphere winter (May-Sep) 500 hPa zonal

mean zonal wind (1958-2003). Top: Following the fitting procedure in accord with Eqns

(1)-(7). Bottom: Not following the fitting procedure. Solid curves: E (1). Dashed curves:

E(2).
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Figure 2: Dramatis Personae: Plots of the functions f0(φ), f1(φ), and f2(φ) (Eqns. (11)-(13))

from which the leading EOFs are constructed, rescaled to be of unit norm.
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Figure 3: Geometric illustration of the vectors (in function space) f0(φ), f1(φ), and f2(φ).

Because f0(φ) and f2(φ) are not orthogonal, they cannot simultaneously be eigenvectors of a

symmetric function such as the covariance. If both of these vectors contribute to the leading

EOFs, these EOFs must be orthogonal linear combinations of these vectors.
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Figure 4: Leading EOF of pure Gaussian fluctuations in jet width (Eq. 36). Normalization

as in Figure 2.
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Figure 5: The orientations in the space spanned by f0(φ), f1(φ), f2(φ) of the leading EOFs

for the cases of pure fluctuations in jet strength, position, and width.
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Figure 6: Components of the EOFs spanned by f0(φ) and f2(φ) for fluctuations in both jet

strength and position, (a) for the EOF with the larger variance µ(+) , and (b) for the EOF

with the smaller variance µ(−).
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Figure 7: Hybrid EOFs E(+) of the covariance function (41) for values of the ratio 3h4/8l2

equal to 0.3 (thin solid curve), 1 (thick curve), and 3 (dashed curve).
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Figure 8: Scatter plots of numerically calculated α(1)(t)/U0 vs. α(2)(t)/U0 for h = 0.26 and

3h4/8l2 = 0.1, 0.25, 1, 2.5, and 10. Dark dots denote those points for which ξ < 0, light dots

those points for which ξ > 0.
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Figure 9: Leading EOF in case of correlated strength and inverse width fluctuations, for

ρ/U0 = 0.01 (thin solid line), ρ/U0 = 1 (thick solid line), and ρ/U0 = 100 (dashed line).
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