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Abstract—Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutation in the X-linked MECP2 gene.

Random X-inactivation produces a mosaic of mutant (MT) and wild-type (WT) neurons in female Mecp2+/− (het) mice.

Many RTT symptoms are alleviated by increasing activity in medial prefrontal cortex (mPFC) in RTT model mice

(Howell et al., 2017). Using a GFP-MeCP2 fusion protein to distinguish WT from MT pyramidal neurons in mPFC we

found cell autonomous (cell genotype specific) and non-autonomous effects of MeCP2 deficiency on spontaneous

excitatory/inhibitory balance, nicotinic acetylcholine receptor (nAChR) currents and evoked activity. MT Layer 5 and

6 (L5, L6) neurons of male nulls, and MT L6 of het mice had reduced spontaneous excitatory synaptic input compared

to WT in wild-type male (WTm), female (WTf) and het mice. Inhibitory synaptic charge in MT L6 equaled WT in 2–4-

month hets. At 6–7 months inhibitory charge in WT in het slices was increased compared to both MT in het and WT

in WTf; however, in hets the excitatory/inhibitory charge ratio was still greater in WT compared to MT. nAChR currents

were reduced in L6 of nulls and MT L6 in het slices compared to WT neurons of het, WTm and WTf. At 2–4 months,

ACh perfusion increased frequency of inhibitory currents to L6 neurons equally in all genotypes but increased exci-

tatory inputs to MT and WT in hets less than WT in WTfs. Unexpectedly ACh perfusion evoked greater sustained IPSC

and EPSC input to L5 neurons of nulls compared to WTm. © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: MeCP2, Rett syndrome, nicotinic acetylcholine receptor, excitation/inhibition balance, medial prefrontal cortex, cell
autonomous.
INTRODUCTION

Rett syndrome (RTT) is a severe autism-like disorder occur-
ring at a frequency of one in 10,000–15,000 live female
births (Burd et al., 1991). Mutations in methyl-CpG-binding
protein 2 (MeCP2), which regulates chromatin organization
and global gene transcription account for 95% of RTT cases
(Amir et al., 1999; Wan et al., 1999). RTT is characterized
by a spectrum of symptoms including severe motor, sen-
sory, cognitive and autonomic deficiencies that manifest in
the first year of postnatal development (Percy et al., 2010;
Bhattacherjee et al., 2017) including stereotyped limb
movements, dystonia, dyskinesia, progressive rigidity, and
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profound intellectual disability (Humphreys and
Barrowman, 2016) and epileptic seizures are a co-
morbidity in approximately 80% of 7–12-year-old RTT
patients (Jian et al., 2007).
MeCP2 is expressed in all human tissues, but is particu-

larly highly expressed within neurons (Lewis et al., 1992;
Tate et al., 1996). In the central nervous system, MeCP2
is expressed at low levels at first, but increases during neu-
ronal maturation and synaptogenesis reaching its peak in
post-migratory neurons, suggesting a role for MeCP2 in
maintaining neuronal maturation, plasticity and activity
(Cohen et al., 2003; Jung et al., 2003). Due to random X
chromosome inactivation female heterozygous (het) RTT
patients are mosaic, with approximately half of cells expres-
sing the mutant MECP2 allele, while the others express the
normal. Loss of MeCP2 function in het RTT model mice has
been reported to have both cell autonomous effects (speci-
fic to the MeCP2 status of the neuron) and cell non-
autonomous effects (affecting cells that express mutant or
non-mutant MeCP2) (Kishi and Macklis, 2010; Gantz et
al., 2011; Rietveld et al., 2015). The heterogeneity of neuro-
nal genotype within the MECP2+/− brain presents
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challenges for developing therapies and requires studies to
include neuronal MeCP2 status when characterizing circuit
function and responses to pharmacological and other
interventions.
A growing body of evidence is revealing that the balance

of excitation to inhibition (E/I) is changed, up or down, by
loss of MeCP2 in a variety of brain regions including medial
prefrontal cortex (mPFC), somatosensory cortex, hippo-
campus and brainstem (Dani et al., 2005; Li et al., 2016;
Sceniak et al., 2016; Xu and Pozzo-Miller, 2017). Many
aspects of neurochemistry are altered in RTT, including
levels of neurotrophic factors and neuromodulatory systems
(Zoghbi et al., 1989; Chang et al., 2006; Chao et al., 2010;
Zhang et al., 2010; Durand et al., 2012; Kron et al., 2014;
Oginsky et al., 2014; Li et al., 2016). Cholinergic (acetylcho-
line) transmission is known to be compromised in RTT
patients. Although RTT is not a neurodegenerative disorder,
fewer detectable choline acetyltransferase positive cells in
basal forebrain (Wenk and Hauss-Wegrzyniak, 1999) and
a reduction in choline acetyltransferase in hippocampus
and thalamus (Wenk, 1997) have been reported. Studies
have suggested that expression of several sub-types of
nicotinic acetylcholine receptor (nAChR) mRNA is altered
by MeCP2 mutation (Oginsky et al., 2014; Leung et al.,
2017) and patients with a CHRNA5 (α5 nAChR subunit
gene) mutation have been diagnosed with an RTT-like phe-
notype (Lucariello et al., 2016). Leung et al. (2017) identified
nicotinic-dependent differences in locomotor behavior
wherein injection of nicotinic agonists produced increased,
rather than the normal decreased locomotor activity in
MeCP2-null and has a reduced inhibitory effect on locomo-
tion in symptomatic female mice. In mouse models loss of
MeCP2 targeted to cholinergic neurons results in a partial
RTT phenotype (Zhang et al., 2016). On the other hand,
choline supplementation decreases some of the behavioral
and neurobiological abnormalities of the RTT phenotype
(Ward et al., 2009; Ricceri et al., 2011) possibly by enhan-
cing NGF and BDNF expression in cortical regions as seen
in cortical cultures (Johansson et al., 2009). Increased avail-
ability of choline during neurogenesis and synaptogenesis
increases hippocampal dendritic spine density and ACh
tissue content and permanently affects ACh turnover
(Blusztajn, 1998; Jones et al., 1999). Selective restoration
of MeCP2 in cholinergic neurons is sufficient to reverse
locomotor impairments and decrease anxiety-like behaviors
in RTT mice at least in early symptomatic stages, support-
ing future development of therapies associated with the
cholinergic system (Kerr et al., 2012; Zhou et al., 2017).
ACh can affect a neuron directly, through postsynaptic

receptors, or indirectly by presynaptically enhancing inhibi-
tory or excitatory transmitter release and it is considered to
be an essential modulator for complex cognitive functions
such as learning, memory and attention as well as regulat-
ing locomotor motivation and coordination (Picciotto et al.,
2012). mPFC is a part of the associational cortex, promi-
nently implicated in attention deficit disorder and reduced
nAChR sensitivity specific to mPFC has been demonstrated
in an ADD mouse model, possibly due to changes in the
subunit composition of α4 receptors (Tian et al., 2014).
Attention deficit is one of the early symptoms of RTT that
appear in infants (Parikh et al., 2007). Hypofunction in
mPFC in RTT model mice has recently been shown to con-
tribute to many symptoms of the disorder (Sceniak et al.,
2016; Howell et al., 2017). mPFC is significantly modulated
by nAChRs and the developmental profile of this modulation
and description of cortical layer specific differences in
nAChR subtype expression have been reported (Parikh et
al., 2007; Alves et al., 2010; Klinkenberg et al., 2011;
Poorthuis et al., 2013b; Tian et al., 2014). Recently nicotine
treatment has been shown to relieve PFC hypofunction in a
mouse model of addiction and schizophrenia (Koukouli et
al., 2017).
We aim to understand the consequences of MeCP2 loss-

of-function on nAChR-mediated transmission in the female
het (Mecp2+/−) and male null (Mecp2−/y) CNS in areas
including mPFC for which cholinergic dysfunction could
contribute to the motor and attentional deficits of RTT. Our
goal is to evaluate how lack of functional MeCP2 alters cir-
cuit function in the mPFC with particular focus on het
females with their mosaic of neurons expressing either
mutant (MT) or wild-type (WT) MeCP2. In het brains how
does the presence of neurons with non-functional MeCP2
in mPFC affect basal activity and neuromodulation by
nAChRs and does it differentially affect MT and WT
neurons?
EXPERIMENTAL PROCEDURES

Animals

Experimental protocols were approved by the Animal Care
Committee at the University of Victoria and all experiments
were performed in accordance with guidelines from the
Canadian Council of Animal Care. Mecp2 mutant mice
(Mecp2 tm1.1Jae/Mmcd) (MMRRC, UC Davis) (Jaenisch)
were maintained on a C57BL/6 background. Although
strictly not a null mutation since a truncated MeCP2 protein
lacking the DNA binding region is produced in small quanti-
ties we refer to male Mecp2−/Y mice as “null” for purposes
of this study. Female Mecp2+/− heterozygotes (het) were
crossed with male GFP-Mecp2+/Y (WTm) mice (Mecp2-
tm3.1Bird/J, Jackson Laboratories) which express wild-type
MeCP2 fused to GFP. Resultant Mecp2+/− offspring were
produced in which cells expressing wild-type MeCP2 were
labeled with green nuclei and mutant nuclei were without
fluorescent label. Steroid hormones have been reported to
alter nicotinic receptor function directly through allosteric
modulation of α4β2* (* indicating that there may be other
nACR subunits in the receptor) nicotinic receptors (Bertrand
et al., 1991; Valera et al., 1992). Progestin binding sites are
concentrated in cortical layer 6 (L6) suggesting that proges-
terone receptors are expressed in the deeper layers of cor-
tex (Shughrue et al., 1991, 1992) so we used female mice in
diestrus phase to reduce possible variability in responses.
47 female mice (30 wild-type and 17 het) and 50 male

mice (19 null and 31 wild-type) were deeply anesthetized
with isofluorane and decapitated for electrophysiological
recording. The genotype of all animals resulting from
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crosses of het females with males wild-type for Mecp2 was
confirmed by PCR after completion of physiological record-
ing. At 6–8 weeks all the male null mice used for this study
exhibited pronounced hindlimb and sometimes forelimb
clasping when held by the tail, were hesitant in their locomo-
tion, displayed a typically crouched posture and scruffy fur
so that genotyping although undertaken was redundant.
Visual assessment of females at 2–4 months was usually
not readily predictive of genotype although slight hindlimb
clasping was often observed. At >6 months moderate
symptoms including pronounced hindlimb and forelimb
clasping, ambulatory deficits (slight rolling gait) and some-
times weight gain were seen. Genotyping was performed
on ear notches after completion of successful recordings.
Electrophysiology

Prefrontal coronal cortical slices (310 μm) were prepared
from adult mice (male 6–8 weeks and female 2–7 months
in diestrus stage). After transcardial perfusion with
25–30 ml of room temperature carbogenated (95% O2/5%
CO2) N-Methyl-D-glucamine-based slicing solution contain-
ing (in mM): 92 NMDG, 2.5 KCl, 1.25 NaH2PO4, 30
NaHCO3, 20 Hepes, 25 D-glucose, 5 sodium ascorbate, 3
sodium pyruvate, 0.5 CaCl2, and 10 MgSO4 (pH 7.4 and
290–300 mOsm), prefrontal slices were cut (Leica 1000S,
Concord, Canada) from anterior to posterior using the
appearance of white matter and the corpus callosum as
anterior and posterior land marks to target recording to med-
ial prelimbic region. Slices were incubated for 30 min at
room temperature in aCSF (125 mM NaCl, 10 mM D-
glucose, 26 mM NaHCO3, 2 mM CaCl2, 1 mM MgSO4,
2.5 mM KCl, 1.25 mM NaH2PO4, myo-inositol 3 mM
pH 7.4 and 290–300 mOsm). Slices were transferred to
the recording chamber (Warner Instrument) and perfused
with 31–33 °C carbogenated (95% O2/5% CO2) standard
aCSF (2–3 ml/min).
Whole-cell voltage clamp recordings were obtained from

pyramidal neurons in layer 5 or 6 of mPFC visualized by
an Olympus BX51WI microscope. Recording pipettes (fila-
mented borosilicate capillary glass 1.5 mm O.D. and
0.86 mm I.D., Sutter, USA) had tip resistances between 5
and 7 MΩ and were filled with pipette solution containing
(in mM): 135 CsMeSO3, 5.5 CsCl, 5 QX-314-Cl, 10
HEPES, 10 Na-phosphocreatine, 2 MgATP and 0.3
NaGTP, 0.5 EGTA. The pH was set to 7.3–7.4 titrating with
1 M CsOH and the osmolarity adjusted to 290–300 mOsm.
MT and WT neurons were compared with respect to 1)

spontaneous synaptic activity, 2) nAChR currents evoked
by brief puffs of ACh (1 mM for 1 s) and 3) the effect of
nAChR activity on excitatory and inhibitory synaptic inputs
by continuous application of ACh (1 mM for 1 min).
WT and MT neurons were identified in het slices by the

presence or absence of MeCP2-GFP, after recording to
avoid bias. By recording from MT and WT neurons located
in the same local area in het slices, sequentially and some-
times simultaneously, we tested the hypothesis that effects
of MeCP2 on nAChR-mediated transmission are predomi-
nantly cell autonomous. The drug applicator system utilized
low volume, solenoid controlled valves (Lee Co., Charlotte
NC) and a theta tube that can rapidly switch between per-
fusing ACSF or agonist in less than 0.3 ms as measured
by 10–90% rise time of a change in junction potential (see
Komal et al., 2011) for description of rapid drug delivery
apparatus). ACh was preferred to nicotine for these studies
since it is removed by endogenous acetylcholinesterase
and washes out more rapidly so is less prone to persistently
desensitize receptors. To evoke direct nAChR-mediated
currents, ACh was applied using 1-s, localized, rapid
onset/offset puffs in the presence of atropine (200 nM) to
block muscarinic AChRs. Repeated puff applications were
separated by >2 min while holding at the Cl- reversal poten-
tial (≈ −75 mV).
Spontaneous and nAChR-evoked EPSCs and IPSCs

were evaluated by holding at either the Cl- or GluR current
reversal potentials (−75 or − 10 mV). Bicuculine was
applied in several control experiments to verify the isolation
of EPSCs or IPSCs at these holding potentials. The mem-
brane potential was corrected for liquid junction potential
(11 mV) and series resistance was monitored throughout
the experiment. 50 μM 2-amino-5-phosphonovaleric acid
(APV), 20 μM 6, 7-dinitroquinoxaline-2, 3-dione (DNQX),
20 μM bicuculine and 10 nM methyllycaconitine (α7nAChR
antagonist), were used in some experiments.

Statistical analysis

Spontaneous and ACh-evoked EPSCs and IPSCs were
analyzed using MiniAnalysis™ (Synaptosoft). Statistics
were calculated using GraphPad Prism 6 or Social
Sciences Calculator (https://www.socscistatistics.com/
tests/). Statistical significance was determined using
unpaired Student's T-test (within-group comparison of
unpaired events) after confirming normalcy (Kolgoromov)
and Tukey's multiple comparisons test to evaluate the criter-
ion for statistical significance. Between one and seven cells
(usually three or four) were sampled in each animal from left
and/or right hemispheres of one or two sequential slices. All
data in figures are presented as mean ± SEM of the number
of cells. The number of cells and the number of animals
from which the slices were obtained are indicated as cells
(animals) in the figures and in the figure legends. Statistical
comparisons based on the number of cells, and the average
value for the cells in each animal are included in the text.
Data sets which did not pass normalcy tests were evaluated
non-parametrically. Symbols representing significance
thresholds for figures are P < 0.05 (*), P < 0.01 (**), and
P < 0.001 (***).
RESULTS

Experiments were undertaken in prelimbic area of mPFC to
characterize spontaneous excitatory (E) and inhibitory (I)
synaptic input, direct nAChR evoked currents and modulation
of synaptic input by nAChR activation. For these studies we
used puff and continuous application of ACh. We obtained
recordings from L5 and L6 pyramids in Mecp2+/Y (WTm)
andMecp2−/Y (null) male slices. In female slices we recorded
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from neurons expressing wild-type MeCP2 (WT) and mutant
MeCP2 (MT) in Mecp2+/− (het) slices and compared these
to WT neurons in Mecp2+/+ (WTf) slices.

Male mice: Layer 6 pyramids

We recorded from L6 pyramids in 6–8 week old male slices to
provide a comparison to measurements in het slices. L6 pyra-
midal neurons in null slices had significantly reduced sponta-
neous EPSC total charge compared to WTm, primarily due to
a 31% reduction in the frequency of EPSCs (cells: t(98) =
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3.16, P ≤ 0.01; animals t(25) =2.34, P < 0.05) (Fig. 1). IPSC
frequency was higher in null slices (cells: t(43) = 4.05,
P < 0.001; animals t(8) = 3.19, P = 0.01) resulting in a greater
inhibitory charge assessed from the population of cells (t(43) =
2.14, P < 0.05), but not at the level of the small sample size for
animals (t(8) = 1.67 P = 0.13). Overall there was a clear shift in
the basal activity towards reduced excitation, due primarily to
changes in spontaneous frequency of EPSCs and IPSCs. In
this study our main focus was on neurons in female brains
and due to a small sample size for which both E and I were
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obtained in the same male neurons a pairwise statistical eva-
luation of E/I ratio was not possible.
L6 pyramids express significant levels of α4* nAChR

(Poorthuis et al., 2013b). Applying 1-s puffs of ACh directly
to neurons in null slices we found AChR-currents were
reduced 28% on average compared to non-GFP expressing
neurons in WTm slices (cells: t(47) = 2.59, P < 0.05; ani-
mals t(8) = 2.20, P < 0.05). We also examined ACh-
evoked currents in neurons expressing WT MeCP2 fused
to GFP (WT-GFP) and found no difference compared to
WT MeCP2 alone confirming a lack of effect of GFP fusion
(t(26) = 0.98, P = 0.33). Including data from these three
male animals expressing WT-GFP yields t(11) = 2.91,
P < 0.01) (Fig. 2A). Currents were unaffected by application
of the α7 antagonist methyllycaconitine (10 nM not shown).
Perfusing slices with 1 mM ACh we found the increase in

the rate of spontaneous EPSCs was more sustained than
for IPSCs. Although the spontaneous rate of IPSCs was
higher in null slices, the increase during ACh application
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spontaneous EPSC frequency in null slices was lower (as
shown also in Fig. 1) but the initial change in frequency
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the duration of ACh application (F (17,486) = 0.36, P =
0.99). As a result the frequency of EPSCs in null slices did
not attain levels similar to those in WTm and overall E to I
balance remained lower in null vs WTm.
Female mice: Layer 6 pyramids

To examine the effect of MeCP2 loss of function in mPFC in
female mice, we recorded from L6 pyramidal neurons of
young WTf and pre- or mildly symptomatic (2–4 months)
and older symptomatic (6–7 months) het slices (Fig. 3). L6
MT neurons of hets at both ages received significantly
reduced spontaneous EPSC input compared to WT neu-
rons in het slices, which was more evident at older ages.
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WTMeCP2-GFP and red is the MT neurons. (B) At 2–4 months no difference in IPSC frequency or total synaptic charge in neurons expressing MT, WT-GFP
or WTMeCP2. At 6–7 months frequency is increased in both genotypes in het slices relative toWTf and for WT (n = 15(4)) compared to MT neurons (n = 13
(5) in het slices and WT neurons (n = 25(3) inWTf slices. (C) Ratio of excitatory charge to inhibitory charge is lower in MT versusWT neurons in het slices at
both ages. Cumulative plots are single neurons representative of the average. #(#) indicates number of cells and (animals)), error bars are +/−SEM. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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was reduced compared to WT in hets (cells: F(2,44) =6.65,
P < 0.001; animals: F(2,9) = 5.62, P < 0.01) and WT in
WTfs (cells: F(2,44) = 7.23, P < 0.001; animals: F(2,9) 5.2,
P < 0.01) (Fig. 3A). The difference in frequency, combined
with a lack of difference in average EPSC amplitude
resulted in a reduced excitatory charge which was some-
what more pronounced in older animals (2–4 months, cells:
t(44) =3.18, P < 0.01; but animals: t(12) P > 0.05). At 6–
7 months MT neurons received less spontaneous EPSC
charge than WT (cells: F(2,44) = 3.52, P < 0.001; but ani-
mals: F(2,9), P > 0.05) and less than WT-GFP neurons
(cells: F(2,44) = 6.04, P < 0.001; but animals F(2,9) =
3.47, P = 0.08) similar to MT neurons in symptomatic null
males. At 2–4 months no difference was seen for IPSC
amplitude, frequency or total charge between MT and WT
neurons in hets. However, at 6–7 months the average fre-
quencies of IPSCs in WT and MT neurons in het slices were
statistically elevated compared to WT in WTf slices (Fig. 3B
Tukeys multiple comparison F(2,50) = 8.53, P < 0.001)
suggesting a more generalized cell non-autonomous effect
of mutation as motor symptoms become established. Over-
all, IPSC total charge was reduced at 6–7 months in MT
neurons compared to WT in het slices (cells: t(26) =2.37,
P ≤ 0.05; animals: t(7) = 4.49, P < 0.01) although this
appeared to be primarily due to greater increased IPSC
activity in the WT neurons in het slices rather than a reduc-
tion in MT neurons. Comparing MT neurons in het slices to
WT neurons in WTf slices we saw no difference while WTf
neurons had less inhibitory charge than WT in het mice (t
(38) = 4.11 P < 0.001) (Fig. 3B right panel). The net effect
of Mecp2 mutation is illustrated in panel 3C, which shows
the E/I charge ratio for spontaneous synaptic inputs was
significantly reduced at both ages in MT neurons compared
to their WT counterparts in het slices (cells: t(34) =2.90,
P ≤ 0.01 and t(21) =2.38, P < 0.05; animals: NS P > 0.05)
(Fig. 3C). Overall these data indicate a reduction of sponta-
neous excitatory tone specific to neurons lacking functional
MeCP2 in het animals (cell autonomous), which is more
pronounced in older mice and development of hyperexcit-
ability of spontaneous inhibitory activity in both MT and
WT neurons.
We next examined the response to a 1-s puff of ACh to

assess surface nAChR expression. In younger (2–4) and
older (6–7 months) het slices we found reduced nAChR cur-
rents in MT compared to WT neurons (t(23) = 2.58 P < 0.05
and t(23) = 5.01, P < 0.001) (Fig. 4). In slices from 2–4-
month WTf animals we also compared neurons expressing
WT MeCP2-GFP fusion protein to neurons expressing WT
MeCP2 and found no difference consistent with a lack of
effect of the fusion of GFP to MeCP2 (t(44) = 0.10, P =
0.92). Limited numbers of animals were available for this
study but currents were similar in average and distribution
at both ages. Combining data from hets at the two ages sup-
ported a significant reduction in ACh current assessed
across animals, (t(13) = 5.07, P < 0.001). Since currents
in the WT cells in hets were similar to those in homozygous
WTf animals at both ages the negative effect of mutation on
nAChR sensitivity is primarily cell autonomous in L6 and
restricted to the MT neurons.
ACh was applied for 1 min to compare activation of EPSC
and IPSCs into L6 neurons in slices from 2–4- and 6–7-
month mice (Fig. 5). Since the basal frequency of PSCs dif-
fered between MT and WT neurons we assessed both the
absolute and proportional effects for each genotype. ACh
evoked a transient followed by a sustained increase in
EPSCs. At 2–4 months the absolute, transient increase in
EPSC frequency during the first 10 s was comparable for
WT and MT neurons in het slices but lower than WT neu-
rons in WTf slices (5–6 Hz, versus 10 Hz) suggesting an
overall cell non-autonomous effect of lack of functional
MeCP2 in half of neurons. The reduced activation combined
with lower pre-ACh frequency resulted in a statistical differ-
ence for the MT neurons in het compared to WT in WTf
slices (P < 0.05, Tukey's multiple comparison test).
Although smaller in amplitude the increased frequency in

het slices was sustained during the 1-min application while
tapering off more in WTf slices, so by about 30 s of perfu-
sion frequencies were comparable in all neuron genotypes.
Unexpectedly given the data for 2–4 month slices the
increased frequency of EPSCs in MT and WT neurons in
6–7-month het slices were large and comparable to neurons
in WTf slices so that ACh brought EPSC frequency in
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neurons in het slices to near those of WTf slices (F
(34,612) = 1.652, P ≤ 0.01).
The normalized increases in EPSC frequency are great-

est for MT neurons at both ages due to their lower sponta-
neous pre-ACh frequency and inversely, lower for IPSCs
(at 6–7 months) due to their higher spontaneous frequency
pre-ACh. IPSC frequency increased to the same maximum,
about 10 Hz, with a much more transient response than that
of EPSCs followed by a slight net inhibition at both ages and
cell genotypes (F (34,828) = 2.29, P ≤ 0.001). For 6–7-
month het slices the higher basal (pre-ACh) IPSC frequency
resulted in a proportional increase that was least for the WT
neurons about half that of the WT neurons of WTf slices.
In summary before development of clear motor symptoms
activation of nAChRs has a less stimulatory effect on EPSC
inputs to MT and WT L6 pyramids in het slices, which
seems unaccompanied by increased activation of inhibitory
inputs to these neurons.
Male mice: Layer 5 pyramids

Due to a shortage of Mecp2+/− mice we were only able to
undertake studies of L5 MT versus WT neurons in male
mice. With respect to L5 pyramids in null slices our results
largely replicate Sceniak et al., (2016) with a reduction in
spontaneous EPSC total charge (cells: t(43) = 2.24,



EP
SC

 F
re

q.
  (

H
z)

EP
SC

 C
ha

rg
e 

(p
C

)

C
um

ul
at

iv
e 

Fr
ac

tio
n

EP
SC

  (
pA

)
IP

SC
  (

pA
)

IP
SC

 F
re

q.
  (

H
z)

IP
SC

 C
ha

rg
e 

(p
C

)

C
um

ul
at

iv
e 

Fr
ac

tio
n

Amplitude (pA)Inter Event Interval (ms) Charge (pA*ms)

Amplitude (pA)Inter Event Interval (ms)

EP
SC

/IP
SC

 R
at

io

WT MT WT MT WT MT

WT MT WT MT WT MT

WT MT

10

8

6

4

2

0

20

15

10

0

5

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

5

10

0

10

20

30

0

WT
MT

WT
MT

A

B

0 400 800 1200 6 10 14 18 22 26

800 10 20 300

0 400200

** **

*

16  (7) 29  (6)

14  (3) 18  (3)

5  (3) 11  (3)
0

50

25

0

0

50

100

150

0.1

0.3

0.5
C

400

*

Fig. 6. Spontaneous EPSCs and IPSCs in L5 of mPFC pyramidal neurons in WTm and null (MT) mice. (A) There is a decrease in total excitatory current
inputs to MT neurons (n = 16(7)) compared to WT (n = 29(6)) (p < 0.05; T- test). Cumulative distribution plots for single neurons representative of the
average for amplitude, inter-event interval and charge. (B) Although there is a trend towards increased inhibition the pairwise calculated inhibitory synap-
tic charge was not statistically significantly different (p = 0.08; T-test) by virtue of offsetting differences in frequency (p < 0.01; T-test) and amplitude
(p < 0.01; T-test) of inhibitory synaptic currents in MT (n = 18(3) compared to WT (n = 14(3). (C) Pairwise measurements of E and I charge reveal a sig-
nificant decrease in the E/I charge ratio (n = 11(3). #(#) indicates number of cells and (animals), error bars are +/− SEM.

Azam Asgarihafshejani et al. / Neuroscience 414 (2019) 141–153 149
P < 0.05; animals t(11) = 2.34, P < 0.05) and an increase
in inhibitory charge at the margin of statistical significance
(Fig. 6B cells: t(30) =1.80, P = 0.08). The opposing direc-
tion of changes in E and I charge for WT and MT neurons
results in a 55% reduction of the average E charge divided
by the average I charge for the entire population of cells
sampled (Fig. 6 WT = 0.32, MT = 0.14). For the subset of
5 WT and 11 MT cells in which both E and I charges were
measured the E/I charge ratio was significantly reduced in
MT neurons (t(14) = 2.59, P < 0.05) by an amount equal
to the average change in all cells (WT = 0.32, MT = 0.18,
p ≤ 0.05). Unfortunately the small sample size precluded a
statistical comparison with reasonable power at the level
of animals (t(4) = 2.33, P = 0.08). ACh evokes only small
direct currents in L5 pyramids since they express few
α4*nAChRs (Poorthuis et al., 2013a) and α7 receptors are
not well activated by puff or continuous ACh in slices due
to rapid desensitization. ACh application does however acti-
vate many E and I synaptic inputs (F (17,506) = 1.74, P =
0.03 and F (17,648) = 2.85, P ≤ 0.001) (Fig. 7A, B), which
are thought mainly to arise from generation of action poten-
tial dependent release from α4 expressing thalamic term-
inals (Heath et al., 2010). Unexpectedly ACh perfusion
reliably increased IPSC and EPSC frequency more in MT
versus WT neurons (F (17,648) = 2.85, P < 0.001) (Fig.
7B). The increased synaptic activity also persisted longer
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than normal, most strikingly for IPSCs, which usually return
to baseline rates within 20–30 s in WT L5 neurons but
remained elevated during and for many seconds after
washout.
DISCUSSION

Previous studies have indicated that primary sensory and
motor neocortical circuits in MeCP2-null (male) mutant
mouse models of RTT appear to be hypofunctional due to
a shift in excitatory/inhibitory (E/I) synaptic balance (Dani
et al., 2005; Dani and Nelson, 2009; Sceniak et al., 2016;
Xu and Pozzo-Miller, 2017). Our findings show a loss of
spontaneous excitatory tone and conserved or increased
inhibitory input to mPFC pyramidal neurons lacking func-
tional MeCP2 in male L5 and L6 and in L6 of het females.
In het mPFC the reduction is specific to MT neurons and
since WT neurons in the mosaic brain of het mice were in
general similar to WT neurons in WTf mice the effect of lack
of MeCP2 is definably cell autonomous to the deficient neu-
ron and becomes evident before the appearance of overt
motor systems suggesting an opportunity to intervene to
address this developing imbalance before it increases
and/or affects circuit development.
The specific reasons for E/I imbalance are not clear but

reduction of glutamatergic excitatory drive, increased inhibi-
tory connectivity, or a combination has been suggested
(Dani et al., 2005; Dani and Nelson, 2009). Lee et al.,
(2008) proposed a relative immaturity in NMDA receptor
subunit composition and function in Mecp2 mutants in
mPFC, consistent with a study that showed excitatory
synaptic responses exhibited a reduction in ratio of NMDA/
AMPA currents and reduced levels of NMDA receptor
expression associated with altered network activity
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(Sceniak et al., 2016). Our measurements did not discrimi-
nate between AMPA and NMDA but since EPCS were
recorded at −75 mV holding potential they are unlikely to
have much of an NMDAR-dependent component.
Rapid cholinergic signaling in the mPFC is essential for

attention and is reduced in an attention deficit mouse model
(Parikh et al., 2007; Sarter et al., 2009; Tian et al., 2014).
Basal forebrain, cholinergic neuron lesions suggest a speci-
fic impact of ACh in attention, especially cholinergic projec-
tions to the prefrontal cortex (Pang et al., 1993; Voytko et
al., 1994; Dalley et al., 2004; Newman and McGaughy,
2008). nAChRs impact mPFC through direct actions on
neurons within the cortex and by modulating excitability
and release from thalamic afferents. L6 pyramidal neurons
and thalamic afferents to L5 express primarily α4*nAChRs.
mPFC L6 is one of the few cortical regions and the only
layer expressing the α5 nicotinic subunit (Wada et al.,
1990; Marks et al., 1992; Salas et al., 2003; Heath et al.,
2010). Inclusion of the α5 subunit alters several parameters
of α4β2 nicotinic receptors including an increase in Ca+2

conductance (Brown et al., 2007; Tapia et al., 2007),
increased sensitivity to nicotine and reduced desensitiza-
tion to persistent nicotine application (Ramirez-Latorre et
al., 1996). ACh-evoked currents in mPFC L6 pyramids were
reduced by up to 50% in α5 KO mice (Tian et al., 2014). The
reduced ACh-evoked current in MT L6 neurons (in null and
het) might therefore arise from either fewer α4*nAChRs in
general and/or a reduction in α4*α5nAChRs. The observa-
tion that reduced nAChR sensitivity and activation of excita-
tory inputs to L6 pyramids are developed as early as 2–
4 months (although not as pronounced as at 6–7 months)
suggests they are not a secondary cause of other changes
related to the development of respiratory, seizure or motor
symptoms. Thus this deficit, which is specific to MT L6 neu-
rons, seems to differ from the reduction of D2 autoreceptors
in substantia nigra, which is not seen until after symptoms
are well-developed (Gantz et al., 2011).
Although the directly activated nAChR-evoked current in

L6 pyramids is reduced at 2–4 and 6–7 months, the
increased frequency of ACh-evoked EPSCs shows age/
symptom level dependent differences. Increased basal
activity in mPFC has been shown to have beneficial effects
in MeCP2-deficient mice (Howell et al., 2017). Before the
development of prominent motor symptoms bath application
of ACh has reduced efficacy in both MT and WT neurons in
het mice compared to WTf. Thus at least for L6 pyramids
nAChR activation in het slices increases the ratio of E to I
inputs to MT and WT neurons equally, likely because the
presynaptic population comprises a mixture of MT and WT
neurons and as such increases mPFC activity in a relatively
balanced way. At 6–7 months the absolute increase in
EPSC frequency of MT and WT neurons in het slices is
greater than in 2–4 month slices, and similar to neurons in
WT slices. Although MT neurons have low levels of sponta-
neous EPSCs inputs, during ACh application the frequency
of inputs is essentially the same for MT and WT neurons
and similar to neurons in WTf slices. The proportionately
greater increase of EPSCs into MT neurons, combined with
mostly similar effects on IPSCs helps to normalize the ratio
of E to I activity during ACh application. This suggests that
nAChRs may be a target to relieve mPFC hypofunction
without creating additional imbalance in het brains.
In Leung et al., (2017) pre- and post-symptomatic females

showed no difference in α4 mRNA expression in midbrain
plus thalamus and only in 9–12 month, strongly sympto-
matic females, was α4 mRNA increased in cortical tissue.
In this respect symptomatic females were similar to sympto-
matic males. Thus there is a mismatch between overall cor-
tical α4mRNA expression and L6 neuron responses since
direct ACh-evoked currents are reduced in MT neurons
from pre- and postsymptomatic mice at ages when there is
apparently either no change, or an increase in cortical α4
mRNA expression.
ACh evokes only a small direct nAChR current in L5 pyr-

amids since they express few α4*nAChRs and the α7-type
they do express is not efficiently activated by puff or contin-
uous ACh in brain slices due to rapid desensitization. L5
receives thalamic inputs that are strongly modulated by
α4*nAChRs (Lambe et al., 2003; Poorthuis et al., 2013b)
but thalamic neurons do not express α5 subunits (Marks
et al., 1992; Heath et al., 2010) so an increase in α4α5*
receptors on thalamocortical terminals in male MeCP2-null
mPFC is not likely to account for the increased and pro-
longed ACh-evoked EPSC and IPSCs. In symptomatic
male nulls α4 (and α6) mRNA expression was reduced by
>50% in the thalamus and midbrain but was increased by
50% in cortex (Leung et al., 2017). Thus the ACh-evoked
responses in MT mPFC pyramids are opposite to α4 mRNA
levels assessed at the level of brain regions: reduced direct
currents in the L6 pyramidal neurons that express
α4*nAChRs and increased activation of synaptic inputs to
L5 pyramids, which are largely mediated by α4*nAChR
bearing thalamocortical projections (Lambe et al., 2003)
from midbrain where mRNA expression is apparently
reduced. The increased nAChR sensitivity of inputs to L5
may reflect compensatory responses to reduced cholinergic
tone and/or reduced activity in thalamocortical neurons.
Since qRT-PCR was performed on the entire cortical tissue
(see Leung et al., 2017), that study could not determine
whether the 50% increase in α4 (and α6) mRNA expression
in het females was limited to specific cortical layers or neu-
ronal subtypes. Furthermore, mRNA expression may not
directly correlate to protein expression. Therefore, knowl-
edge of cell specific nAChR subunit protein expression dif-
ferences would be potentially more informative of the
mechanisms of the electrophysiological changes in MT
cells.
In this respect the sustained increased IPSC frequency in

L5 neurons in null slices during ACh application, compared
to the transient response in WTm, warrants further study (in
nulls and hets). It may reflect an alteration in the efficacy of
frequency dependent disynaptic inhibition between L5 neu-
rons (Naka and Adesnik, 2016; Obermayer et al., 2018),
which is revealed when ACh activates mPFC circuits. Alter-
natively it may reflect reduced efficacy of ACh to activate
vasoactive intestinal peptide expressing GABA neurons,
which normally have an inhibitory effect on somatostatin
and parvalbumin expressing GABA neurons that provide
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inhibitory input to L5 pyramids (Bell et al., 2015; Wood et al.,
2017; Morello et al., 2018).
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