Selecting the K smallest element

Nishant Mehta
Lecture 13

M. C. Escher (1948): "Drawing Hands"

Selecting Medians and Order Statistics

Fundamental problem:
Select the kth smallest element in an unsorfted sequence

Definition: An element x is the k'h order statistic of a
sequence A If x is the kih smallest element of A

Selection Problem:

« Given an array A of n elements and k € {1, 2, ..., n},

e Return the kth order statistic of A

Example: If n is odd and k = (n+1)/2, we get the median

Selecting Medians and Order Statistics

Fundamental problem:
Select the kth smallest element in an unsorfted sequence

Definition: An element x is the k'h order statistic of a
sequence A If x is the kih smallest element of A

Selection Problem:

« Given an array A of n elements and k € {1, 2, ..., n},

e Return the kth order statistic of A

Example: If n is odd and k = (n+1)/2, we get the median

A naive solution

A sorting-based approach:
1. Sort A in increasing order

2. Output the K element of the sorfed sequence

How long does this take?

Is this the best possible?

A naive solution

A sorting-based approach:
1. Sort A in increasing order

2. Output the K element of the sorfed sequence

How long does this take? O(nlog n)

Is this the best possible?

A naive solution

A sorting-based approach:
1. Sort A in increasing order

2. Output the K element of the sorfed sequence

How long does this take? O(nlog n)

Is this the best possible? No!

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 7, 448—461 (1973)

"ime Bounds for Selection*

MANUEL BLuMm, ROBERT W. FLOYD, VAUGHAN PRATT,
RoNaLD L. Rivest, AND ROBERT E. TARjAN

Department of Computer Science, Stanford University, Stanford, California 94305
Received November 14, 1972

The number of comparisons required to select the i-th smallest of # numbers is shown
to be at most a linear function of z» by analysis of a new selection algorithm—PICK.
Specifically, no more than 5.4305 n comparisons are ever required. This bound 1s
improved for extreme values of 7, and a new lower bound on the requisite number
of comparisons 1s also proved.

O(n) is possible!!

Quickselect: Quicksort with pruning

Goal: Select the 6t smallest element

15 elements

7 elements / \ 7 elements

. . A .
< pivot, pivot, > pivoty,

Quickselect: Quicksort with pruning

Goal: Select the 6t smallest element

15 elements
A
7 elements / """"""""""""""""""" eements
: S : :
< pivot, . pivot, > pivot, E

Quickselect: Quicksort with pruning

Goal: Select the 6t smallest element

15 elements
A
/ elements / -------------------------------------- 7 eIemenTs -------------
) S)
< pivot, . pivoty > pivoty,

8th smallest element and larger

Quickselect: Quicksort with pruning

Goal: Select the 6t smallest element

15 elements

A

< pivot,

/ elements \ - : 7 elements ———"

Prune!

P Y
i pIvot,

8th smallest element and larger

Quickselect: Quicksort with pruning

Goal: Select the 6t smallest element

15 elements
A
Prune!
7 elements / S N S p—

Y, \ """""""""" /

Quickselect with k=6 8th smallest element and larger

Quickselect: Quicksort with pruning

Goal: Select the 6t smallest element

15 elements

A

/ elements \ - 7 elements ———"

. : .Y
< pivot, . pivot,

3 elemenTs/ \ 3 elements

. " \ .
< pivot, pivot, > pivot,

Quickselect: Quicksort with pruning

Goal: Select the 6t smallest element

15 elements
A
7 elements / T NG 7e|eme
< pivot, . pivot, = E
3 elements

< pivot, pivot, : > pivoty

Quickselect: Quicksort with pruning

Goal: Select the 6t smallest element

15 elements

A

/ elements \ - 7 elements ———"

: .Y
< pivot, . pivoty

e
' 3 elements i 3 elements

> pivot,

4th smallest element and smaller

Quickselect: Quicksort with pruning

Goal: Select the 6t smallest element

15 elements
A
7 elements / D U G
S pIVOtO E p|VOtO > E

> pivot,

4th smallest element and smaller

Quickselect: Quicksort with pruning

Goal: Select the 6t smallest element

15 elements
A
7 elements / - N o e
< pivot, . pivot, = E
3 elements
> pivot,

(

4th smallest element and smaller Quickselect with k=(6-4)=2

Quickselect
Quickselect(A, k):

If Alength() == 1

Return A[Q]
p = PickPivot(A) // how fo pick pivot? To be explained later!
(L, G] = Partition(A, p) // 'L for “less than”, ‘G’ for “greater than"

If k < length(L)
Return Quickselect(L, k)
Elself k == (length(L) + 1)
Return p
Else // k > (length(L) + 1)
Return Quickselect(G, k - length(L) - 1)

Quickselect with Arbitrary Pivot - Optimistic analysis (Warm-up)

e Suppose we always fake the pivot to be the first element in the
sequence and are so lucky that it always is the median

o Then PickPivot(A) just returns A[O] and so costs 1

o Quickselect on sequence of length n either:

(a) calls Quickselect on sequence of length at most | n/2]

OR

(b) returns the k order statistic itself

Quickselect with Arbitrary Pivot - Optimistic analysis (Warm-up)

e Suppose we always fake the pivot to be the first element in the
sequence and are so lucky that it always is the median

o Then PickPivot(A) just returns A[O] and so costs 1

o Quickselect on sequence of length n either:

(a) calls Quickselect on sequence of length at most | n/2]

OR

(b) returns the k order statistic itself

So: T(n) < T(n/2)+cn

Quickselect with Arbitrary Pivot - Optimistic analysis (Warm-up)

< T(n/2)+ cn
< T(n/4)+4cn/2+ cn
< T(n/8)+cn/4+ cn/2+ cn

< T(1)+ (cn) 2

= T(1) + 2cn

Quickselect with Arbitrary Pivot - Optimistic analysis (Warm-up)

< T(n/2)+cn
< T(n/4)+cn/2+ cn
< T(n/8)+4+cn/4+cn/2+ cn

< T(1) + (cn) 3 2~
= T(1) + 2cn —
= O(n)

This is great! But we cheated by assuming that taking the
pivot as the first element always gives us the median

Quickselect with Arbitrary Pivot - Worst-case analysis

Goal: Select the 6t smallest element

15 elements

A

14 elements / ! empty!
< pivot, pivot, @

13 elements / empty!

: i /
< pivot; pivot, @

Quickselect with Arbitrary Pivot - Worst-case analysis

T(n)=T(n—1)+cn
=T(n—2)+c(n—1)+cn
=T(n—=3)+c(n—2)+c(n—1)+cn

= T(1)+ch
= 0(1)+ c- (n(n; Y 1>

= Q(n?)

Picking a good pivot

« Median pivots are the best possible choice
« But if we knew how to get the median, we would be donel
« Idea: Try fo find an "approximate median” using less work

« Find the median of a well-chosen subset of the sequence

Picking a good pivot

Definition: Let 3 satisfy 1/2 < 3 < 1. We say that an
element m of sequence A is a p-approximate median of A if:

At most 3n elements of A are less than m

and

At most pn elements of A are greater than m

sorted view
of array
| |

set of all B-approximate medians for f = 3/4

s a B-approximate median a good pivot?

o If the pivot is a 3-approximate median, then calling
Quickselect on a sequence of n points leads to both
L and G that each are of size at most 3n

o If Quickselect always uses a [3-approximate median,
then at level j of Quickselect (i.e. inside the jh recursive call),
both L and G each can have size at most 3/ n

s a B-approximate median a good pivot?

o If the pivot is a 3-approximate median, then calling
Quickselect on a sequence of n points leads to both
L and G that each are of size at most 3n

o If Quickselect always uses a [3-approximate median,
then at level j of Quickselect (i.e. inside the jh recursive call),

both L and G each

T'(n) < T(
T(
T(

IA TN

A
=
Z
I
S
(]
X

can have size at most 3/ n

3n) + cn
32n) + cBn+ cn

3°n) 4+ cB?n+ cPn+cn

chn

— 0(1) A

Quickselect with B-approximate median

So, runtime of Quickselect using a [3-approximate median is

Quickselect with B-approximate median

So, runtime of Quickselect using a Pp-approximate median is

T(n) = 0(1) + y—5 = O(n)

This is great, but we are still cheating...

We need a way to find [3-approximate median AND
must account for the computational cost for doing so

Computing a B-approximate median

« Partition sequence info n/5 segments, each of size 5

o For simplicity, we ignore the fact tThat the last segment
might have size less than 5.

« Find the median of each segment.

« Find the median of the n/5 medians (somehow)

Median of medians

Median of medians

Median of medians

Median of medians

X

AN

median of medians

Median of medians

|
e O °
LK

N

median of medians

Quickselect with median-of-medians pivot

o What does it cost to compute all the medians?

of each segment ot leng n/S such segments

Total cost: O(n)

Sort to get median. Cost: O(1)

« Two oufstanding problems:

(1) Is median of medians a good pivof,
l.e. is it a p-approximate median?

(2) How do you efficiently compute median of medians?

Quickselect with median-of-medians pivot

o Is median of medians a good pivof,
l.e. is it a [p-approximate median?

(median of medians)

Quickselect with median-of-medians pivot

o Is median of medians a good pivof,
l.e. is it a [p-approximate median?

« n/5 medians, of which n/10 of

are less than or equal fo m*

(median of medians)

Quickselect with median-of-medians pivot

o Is median of medians a good pivof,

l.e. is it a [p-approximate median?

(median of medians)

n/5 medians, of which n/10 of
are less than or equal fo m*

For each such median, 2 more
elements are less than m”*

Quickselect with median-of-medians pivot

o Is median of medians a good pivof,
l.e. is it a [p-approximate median?

<> ©®
« n/5 medians, of which n/10 of
. ; ¢« - are less than or equal fo m*
e « For each such median, 2 more
2 O elements are less than m*
o N .
NG « Afleast (3n/10) — 1 elements less
than m™

(median of medians)

Quickselect with median-of-medians pivot

o Is median of medians a good pivof,
l.e. is it a [p-approximate median?

<o Ol
« n/5 medians, of which n/10 of
: ; R are less than or equal fo m*
L o For each such median, 2 more
2 O elements are less than m*
C—Y L :
N o Afleast (3n/10) — 1 elements less
than m™

(median of medians)
Hence, at most 7n/10 elements

are greater than m*

Quickselect with median-of-medians pivot

o Is median of medians a good pivof,
l.e. is it a [p-approximate median?

S > ® |
« n/5 medians, of which n/10 of
- ; I are less than or equal fo m*
e o For each such median, 2 more
2 ©, elements are less than m*
F— N :
AN o Afleast (3n/10) — 1 elements less
than m”*

(median of medians)
« Hence, at most 7n/10 elements

are greater than m*

« By symmetry, at most 7n/10
elements are less than m™

Quickselect with median-of-medians pivot

o Is median of medians a good pivof,
l.e. is it a [p-approximate median?

<o O
« n/5 medians, of which n/10 of
; R are less than or equal fo m*
= © - « For each such median, 2 more
2 ©, elements are less than m*
F— W :
N o Afleast (3n/10) — 1 elements less
than m”*

(median of medians)
« Hence, at most 7n/10 elements

are greater than m*

m™*is a 3-approximate median ¢ . By symmetry, at most 7n/10
(for 3 =7/10) elements are less than m*

Quickselect with median-of-medians pivot

« How to compute median of medians?
« Ideal Recursively call Quickselect(medians, (n/5)/2)
o Can this really work?

e Original sequence was of length n

e Sequence of medians is of length only n/5

« Seems like a divide-and-conquer strategy

Run-time Analysis

T(n)=T(n/5)+ T(7n/10) + cn

We could use substitfution method fo analyze complexity

Instead, let's use “stack of bricks” view of the recursion tree

Set x =1/5 and f =7/10

Run-time Analysis

T(n)=T(n/5)+ T(7n/10) + cn

We could use substitfution method fo analyze complexity

Instead, let's use “stack of bricks” view of the recursion tree

Set x =1/5 and f =7/10

chn

Run-time Analysis

T(n)=T(n/5)+ T(7n/10) + cn

We could use substitfution method fo analyze complexity

Instead, let's use “stack of bricks” view of the recursion tree

Set x =1/5 and f =7/10

chn

con cPn «—sum: c(ax+ P)n

Run-time Analysis

T(n)=T(n/5)+ T(7n/10) + cn

We could use substitfution method fo analyze complexity

Instead, let's use “stack of bricks” view of the recursion tree

Set x =1/5 and f =7/10

cn
con cPn «— sum: c(o +
(| capn|cxpn cB?n sum: c(x +

Run-time Analysis

T(n)=T(n/5)+ T(7n/10) + cn

We could use substitution method to analyze complexity

Instead, let's use “stack of bricks” view of the recursion free

Set x =1/5 and f =7/10

cn
con cPn «— sum: c(oc+ 3)n
R cofpn|cafpn cB?n « sum: c(oc + B)%n
\
con .
T(n) < O(1)+cny (a+BY = —— (fx”+ 5y = 10cn = 0(n)

Upper bound on runtime of Quickselect with
median of medians pivot

Theorem
Quickselect(A, k) using the median of medians pivot
returns the k'™ order statistic in time at most O(n).

A lower bound

Suppose Bob tells Alice he has an algorithm that can select
the Kkt order stfatistic in sublinear fime.

Alice is dubious that Bob's algorithm is correct, because a
sublinear algorithm cannot look at all n elements.

Alice cooks up a length-n sequence of n distinct infegers
and observes which value Bob's algorithm does not look at.

She then changes that value so that it becomes the kth
order statistic, rendering Bob's algorithm wrong on this
adjusted input.

Selecting the kth order statistic takes time ((n)

A lower bound

« Example: nt order statistic (the maximum).

« Alice observes that on her current input, Bob's algorithm
does not look at the first element.

o« Alice adjusts A via A[O] = 1 + max{A[1], A[2], ..., Aln]}

Optimality of Quickselect with median of medians

Worst-case runtime for selecting the kth order statistic

Quickselect with the median of medians pivot has
worst-case runtime of O(n)

The worst-case lower bound for any algorithm is Q(n)

Quickselect with the median of medians pivot has
worst-case runtime ©(n), and this is optimal

Asymptotic optimality isn’t everything

o Quickselect with median of medians pivots is clever and
asymptotically optimal in the worst-case

« BUT: In practice, Quickselect with a random pivot can be
much faster. Why?

o Quickselect spends a lot of time computing its pivot

« The constants hidden by the O(n) actually matter.

