Hashing

Nishant Mehta
Lectures 16 and 17

Warm-up puzzle

We have a deck of n distinct cards (where n is large) and
repeatedly sample a card uniformly at random, with
replacement. On average, how many cards do we need 1o

draw before we see some card twice (that is, before we have
repeated a card)?

(a) O(n*)
(b) ©(n)

(e (Vi)
(d) ®©(log n)
(e) O(1)

Dictionary

A dictionary is a data structure that contains key-value pairs
o Keys should be unique
« Values can be anything and need not be unique

(£ v)

/ /Q/\/d)de (Q,g./ aN /’mude,)
ey

Dictionary - Operations

SEARCH - Need 1o specify key k

INSERT - Need to specify object x (obtain key via x.key)

DELETE - Need fo specify object x

« We will see lafer why it is befter to take as input x rather
than x.key

Unordered list

Suppose that we use an unordered list
(lef's make it a doubly linked list)

head ——| /| k3 (_)_ K1 (_)_ Ke (_)_ ka | /
Operation Worst-case running time? (for n elements)
SEARCH(S, k) O(n)
INSERT(S, x) O (1)

DELETE(S, x) 0Cl)

Ordered list

If we use an ordered list (in the form of an array), then
searching is fast; other operations are slow

o)

O O &b W DN =

7

ko

K1

K>

K3

K4

Ks

Ke

K7

ko < k1 < ko < ... < ky

SEARCH(S, k) - binary search enables O(log n)

INSERT(S, x) - O(n)

DELETE(S, x) - O(n)

Balanced binary search tree

Another sftrategy is fo use a balanced binary search tree
(e.g., red-black tree, AVL tree)

14 21 @
@ 16 19 23 28
) © s (20) 35) (3

SEARCH(S, k) - O(log n)

INSERT(S, x) - O(log n)

DELETE(S, x) - O(log n)

Direct-address table s space w02

m /5 not d/Wd]J)
[

ymverfe §i€

Suppose the keys are in a universe U ={0,1, ..., m— 1}

In a direct-address table, we create an array T of size m
(initialize all entries to NULL)

Element with key k is stored in T|[k]

Worst-case running time?

SEARCH(S, k): return T[k] 0 (/)
INSERT(S, x): T[x.key|] = x 0 (/)
DELETE(S, x): T[x.key] = NULL 0 (/)

Space complexity? 0 [m)

Direct-address table - Example T

Universe {0, 1, ..., 9}

n = 4, with the 4 keys being: 2, 5, 8, 9

@

O 00 N O OO & W DN -

7~

A

4y |\~ |7

A |7~ |7

H?or ke)’ 7’)

A .
value stored in slot 2

(for

ey)

A ,
value stored in slot 5

value s

fored in slot 8

value s

‘ored in slot 9

Direct-address table - Example 2

Universe {0, 1, ..., 2" — 1} where we have only n keys

\

\

What fraction of space
is being utilized?

Hash tables

What if the universe is massive, but the set of keys that
will actually be used is much smaller? (n < |U])

Then a direct-address fable is really wasteful.
Most entries of T will never be used!

Idea: Although |U| is massive, we'll use a table of size m.
How? We use a hash function h: U — {0,1,...,m—1}

/Wdh{ h << /U/)

;K 2 A . h(k)
. v 2 > {01...m-1)

Hash function and collisions

let h: U — {0,1,..., m — 1} be a hash function.
Given key k, we call h(k) the hash value of key k
(not-so-smart) Example: h(k) = k mod 10 (m=10)

If two keys hash to the same slot, then we have a collision

What if the key is not a natural number?

Suppose the key is a floating point humber

o Easy fo fix by rescaling

f”ﬁ/'oﬂ £ € fa, 2. F/828 .
p[ﬁ) :j_ 1,—/;/_31(. /OVJ € _[0) //”‘/ /01(}, A [/4) 7/\ (QP(L))

How to handle strings?

o Basic idea: interpret as number in given base and convert
to decimal (more on this in a later lecture; stay tuned!)

[ATEY

Handling collisions

How can we handle collisions?

(1) Design a hash function which makes collisions as
unlikely as possible (more on this soon)

Handling collisions

How can we handle collisions?

(1) Design a hash function which makes collisions as
unlikely as possible (more on this soon)

OK... but what if a collision still happens? How can we
handle collisions?

(2) Chaining - let each hash table slot store a linked list

(3) Open addressing - if the desired entry is already full,
then try some other slofs (using some fixed order:;
more on this next class)

Chaining

In chaining, we sftore all elements that hash fo the
same slot j within a linked list T |/]

Example:
h(k) = k mod 10 (again, not good hash function!)
Insert these keys in this order: 17, 4, 7, 34, 1, 41, 21, 31

| dk e S pre Gey. va/«C> it /en(
nel ()

_,f/

ad NE2N=7 N T

O 00 NN O O & W DN — O

Operations Assome 0 ¢ bnents in heth bk

Worst-case
running time?

SEARCH(S, k): Search list at T[h(k)] 0 (/g,,,#. A e chun o€ TCH [/)])

INSERT(S, X): Insert x at the head of list T[h(x.key)] O (/)

DELETE(S, X): Delete x from list T[h(x.key)] D (1)
y - \
\ k1 “ K3 < — Ky \

delete

. oad factor

Let T be a hash table of size m that stores n elements

The load factor a of T is the average length of a chain. This
Is simply the ratio of number of elements stored to humber
of slots. Therefore, «x = n/m

If we have a good hash function, the load is balanced (most
chains have length a). In this case, the cost of each Search

operation is close o a.

It can be challenging To find a good hash function which

deferministically keeps most chains at length a. Instead, we
will consider situations where a hash function is randomly

selected such that, on average, any chain T |j| has length a.

An 1deal but useful assumption

Assumption: Simple uniform hashing

For any key k, its hash value h(k) is drawn uniformly
at random from {0, 1, ..., m—1}

Let nj be the length of the chain T |}

Suppose we insert n elements and the simple uniform
hashing assumption holds. For any j in {0,1,..., m— 1},
o whatis E[n]? A Ley noerted

cank

[ed \(Z 1[“* 5] % 26
} % /) ~ % ?(}\u‘»,)f;
A e

A:() /'VL:d\
Toon

AN

EXxpected time for unsuccessful search
expectl (ine = E@mﬁ

Proposition: The average-case cost of an unsuccessful
search is 1+ «.

(Cost model- hash costs one, examining an element costs 1)

hok: Semosc W sesed hea bty b Cohed 5 nt o byl T)
df }\dJ/in,

(‘) CoILL/,\r Com/wﬁ A[,&) < cof'éf /

(L) Co)f n[’hqwrﬁi\j Cl(dl."/' ’E [h““] -~ /[Z[hJ-] = N
(LH) = [\[/t))

Tosrd(/l;fw!f[)) — /+bk

Expected time for successtul search

Proposition: The average-case cost when searching for the

i inserted key (affer all n keys have been inserted) is:

2In I§2+a
m

AM [ﬂf(’r/?é/ l‘(7

Prast - :
/L_+ pu X = 1[}‘[}‘4) :/‘”j)] f,‘;relsu
¢ V. (j

J = Al N
= (A’A)' ™

f o
e i et)4/41 Eleot) il o} comptn MCE) =

| erl'(‘
\‘E (ﬁ 6[01\0\{\' inf) 0 J (ki o} orgcst q‘er«»\ | CL.,“
‘\"\d{- kds‘\e‘ '(“ S,b{ ‘\(\"‘) : QE”?"H‘\ ._t 9'4{‘;}\

n //-)
! g €T = £ (A=)
'E [Z X,«','AJ - JeAl)71 4]

—=

Expected time for successtul search

Proposition: The average-case cost when searching for the

i inserted key (affer all n keys have been inserted) is:

2In I§2—|—oc

L/i/
/S - ,t’
Corollary: The average-case cost when searching for an i5

inserted key (also chosen uniformly at random from the set drawn

of n inserted keys) is: U\’d:("ﬁm
n —]_ X rdr\({l}"‘

2 I (2m) S 2_|_ 5 N -) ‘ n-! -

N [AUy Pl o

" \ n-4 _ ‘LZ 9 = (2/+ nmoi=! =0
7w\ \2+=7) 71+ C | .
A N\ ,{(ﬂ-[? _ n A'L"Q’,-

How

In so
migh

™~

can we design a good hash function?

me situations, simple uniform hashing assumption
" be plausible

Q

Vppolt Qd([“-37’ i 04‘01'/‘"! U""Jé\”"[/ 1 run/m 7[:‘01‘-\ oniverse

Otherwise, if we want to commit a single function, there are

Some

heuristics which tend to work well in practice

- Division method (“modular hashing”)

- Multiplication method

Division method

In the division method, we simply divide by m and take the
remainder:

h(k) = k mod m
P
Avm‘o/ &evf‘m, m = pow 07[7 (L)
(ih ln’r\ur\/)
= ([00(0[0100
L
"‘ You\ ol\/«, TREd ‘“U{ J;,é[

mo L

fon\tﬂiv\; Leﬂer /e'P M Lr. }drgz prime mmlcf

(;'\ pam‘ica /ar/ ot oo Cﬁf{ '/D ["’W‘r)
L2

Multiplication methoad

Multiplication Method:
(1) Select a constant A such that 0 < A < 1
(2) Take fractional part of kK A
(3) Multiply by m and truncate

h(k) = | m(kA mod 1)]

OL (p M (¥ a I,owcr cfp 2

Multiplication methoad

Multiplication Method:
(1) Select a constant A such that 0 < A < 1
(2) Take fractional part of kK A
(3) Multiply by m and truncate

h(k) = | m(kA mod 1)]

How fo choose A?
A=1/¢p =0.61803398875... tfends to work well

(distributes nearby integers roughly uniformly in [0, 1])

Universal hashing

The previous methods might work well in practice, but we do
not have rigorous guarantees for them

Instead, we consider an idea called universal hashing

A universal hash family is a collection H of hash functions
h:U—{0,1,..., m — 1} such that, for any pair of keys J, k,
at most |H|/m hash functions h € ‘H satisfy h(j) = h(k)

How can we use this?

If we select h uniformly at random from H, then for each
pair of keys J, k, we have:

Pr(h(j) = h(k)) <1/m

Average-case analysis for universal hashing

Proposition: Let h be drawn uniformly at random from a
universal family of hash functions. Consider an arbitrary key k.

(i) If key k is not in the table, then the expected length of the
list T[h(k)] is at most «.

(ii) Otherwise, the expected length of the list is af most 1 + «.
Jome °Her‘);e;’

o o
P"r/m’“; ﬂ'm)mﬁ)]

Lot X[
| Qo) = £ 57w
- Z F \ (k) = = m ™
E [Z%TXM] ST T !

Constructing a universal family of hash functions

Let p be prime number such that all keys k are in {0,1,..., p—1}.
For each a in {1,2,..., p—1} and b in{0,1,..., p—1},
define a hash function:

h, (k) = ((ak + b) mod p) mod m

Then H={h,p:1<a<p—-1,0<b<p-—1} isa universal
family of hash functions.

Proot sketch

Open addressing

Open addressing is another method for handling collisions.
Unlike chaining, each slot stores at most one key.

If we try fo store a key in a slot but find that it is already
occupied, we instead try some other slotf, and if that slot is
full, we try yet another slot, and so on.

This sequence of slots that we fry when we are probing for
an unoccupied slot is called a probe sequence.

A first probe sequence:

(k). (k) + 1, h(k) +2,.... h(k) + (m = 1)

all mod m
Linear probing uses this probe sequence

Linear probing

Using the hash function h(k) = k mod 10,

insert: 33, 21, 16, 45, 31, 8
S [({ 5§ 1 &
How to do SEARCH? Use probe sequence and stop when we have

either found the key or arrived at an unoccupied slot.

DELETE can cause frouble for Search. Why?
Solution: Upon deletion, mark slot with special value DELETED

O 00NN O O & W DN — O

Linear probing

« Doesnt work well in practice

o Suffers from primary clustering problem

« Limited number of probe sequences (only m of them)

Quadratic probing

In quadratic probing, we use a somewhat more
sophisticated probe sequence. For carefully selected
positive constants ¢; and ¢, the probe sequence is

(h(k)—l—c1i+c2i2) modm for i=0,1,... m—1

Advantages: Avoids primary clustering problem

Disadvantages: Experiences secondary clustering problem
Still only m probe sequences

Double hashing

Let hy and hy be auxiliary hash functions

Double hashing uses the probe sequence:

h(k, i) = (hy(k) + i - ho(k)) mod m

N

General way of specifying elements in probe sequence

no common factors

Ih2(/<) must be relatively prime to m in order for the whole
table to be searched. How can this be achieved?

Joppele w05« Powero(\ 3

Lt L Le odd

Average-case analysis of open addressing

Can we provide average-case guarantees for open addressing?

e Yes! Under a certain assumption

Assumption of uniform hashing - for each key, the probe
sequence h(k, i) is chosen uniformly at random from the set
of all possible permutations of (0,1,..., m—1)

(this is not realistic, but we might approximate it in practice
using, e.g., double hashing)

Proposition: Given a hash table with load factor «c = n/m < 1,
under uniform hashing the expected number of probes in an
unsuccessful search is at most 1/(1 — «).

Average-case analysis of open addressing

Proposition: Given a hash table with load factor «c = n/m < 1,
under uniform hashing the expected number of probes in an

unsuccessful search is at most 1/(1 — «).

Proof:

