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The biggest difference between time and space is 
that you can't reuse time. 
—Merrick Furst



Definition of Algorithm

• An Algorithm is a sequence of unambiguous instructions for 
solving a problem for obtaining the desired output for any 
legitimate input in a finite amount of time.

(Levitin, Introduction to the Design & Analysis of Algorithms)
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• It really does have to be unambiguous 

• Care has to be taken in specifying the range of inputs 

• There can be different ways to implement an algorithm 

• The same problem might be solvable by very different algorithms, and 

these algorithms can have very different efficiencies.
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want to compute the product 

A1, A2, …, An
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Example: Matrix-chain multiplication

• Suppose you are given a chain of matrices  and 
want to compute the product 

A1, A2, …, An
A1 A2 ⋯ An

• Is  an algorithm?A1 A2 ⋯ An

• Consider  with the matrices having dimensions:n = 3
 , , and 3 × 500 500 × 2 2 × 2000

• Order of multiplication matters!



Complexity

• Time Complexity: How fast does the algorithm run? 

• Space Complexity: How much (extra) space does the 
algorithm require? 

• Extra space means space in excess of the input 

• Time complexity typically is lower bounded by space 
complexity. Why?



Two Types of Analysis

(1) The Empirical Method: “just run it and see what happens” 

• Complexity measure: number of clock cycles 

• Method: Instrumentation and Profiling 

• Closer to software engineering; covered in SENG 265



Two Types of Analysis

(2) The Theoretical Method: “hypothetically, how many 
primitive operations would this perform if I ran it?” 

• Complexity measure: number of primitive operations 

• Method: Math and Theoretical Computer Science 

• Derive upper and lower bounds on complexity

http://people.csail.mit.edu/costis/
https://en.wikipedia.org/wiki/Shafi_Goldwasser
https://people.eecs.berkeley.edu/~minilek/
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inputs and particular machine

Consider all possible inputs 

Compares algorithms in an 
architecture-agnostic way 

No implementation required
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Time complexity analysis

• Complexity as a function of input size 

• Measured in terms of number of primitive operations 

• Three main kinds: worst-case, best-case, average case 

• Abstracting to asymptotic behavior/order of growth 

• For recursive analysis, use the master theorem (sometimes)



Two wands problem

• Input:  boxes, where boxes  contain pearls,          
and boxes  are empty, for some  

• Output: , where  is the index of the rightmost box 
containing a pearl 

• Model of Computation: At a cost of 1, a wand taps a box and 
reveals if it is empty or not. If empty, the wand disappears. 

Can this problem be solved using two wands with  worst-
case cost?

n 1,…, i
i + 1,…, n i

i i

o(n)



Two wand problem
• What does a solution look like? 

• Need to give an algorithm, along with: 

• Proof of correctness: does it correctly identify  ? 

• Cost analysis. Is the number of boxes tapped  ? 
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Two wand problem
• What does a solution look like? 

• Need to give an algorithm, along with: 

• Proof of correctness: does it correctly identify  ? 

• Cost analysis. Is the number of boxes tapped  ? 

i

o(n)

But what does  mean?o(n)

Patience, Bruce.                  
We must review big-O notation…



Asymptotic notation

• Big-O 

• Big-Omega 

• Big-Theta 

• Less commonly used (but still important!) 

• Little-o 

• Little-omega

O(g(n))

o(g(n))

!(g(n))



Big-O notation

• Let  

• We say that    is            if, for some         and          ,      
for all          , it holds that: 

• “For all    ‘big enough’ and for some    ‘big enough’,              
ff(n) is at most a constant   times       ”

f : N ! R, g : N ! R

f O(g(n)) c > 0 n0 > 0
n � n0

f (n)  cg(n)

n
cf (n) g(n)

c



Examples of Big-O

f (n) = n4 + 7n2 + 3



Examples of Big-O

f (n) = n4 + 7n2 + 3 f (n) = O(n4)



Examples of Big-O

f (n) = n4 + 7n2 + 3 f (n) = O(n4)

f (n) = 2 log n



Examples of Big-O

f (n) = n4 + 7n2 + 3 f (n) = O(n4)

f (n) = 2 log n f (n) = O(log n)



Examples of Big-O

f (n) = n4 + 7n2 + 3 f (n) = O(n4)

f (n) = 2 log n f (n) = O(log n)

f (n) = log(n4)



Examples of Big-O

f (n) = n4 + 7n2 + 3 f (n) = O(n4)

f (n) = 2 log n f (n) = O(log n)

f (n) = O(log n)f (n) = log(n4)



Examples of Big-O

f (n) = n4 + 7n2 + 3 f (n) = O(n4)

f (n) = 2 log n

f (n) = 3000

f (n) = O(log n)

f (n) = O(log n)f (n) = log(n4)



Examples of Big-O

f (n) = n4 + 7n2 + 3 f (n) = O(n4)

f (n) = 2 log n

f (n) = 3000

f (n) = O(log n)

f (n) = O(log n)f (n) = log(n4)

f (n) = O(1)



Examples of Big-O

f (n) = n4 + 7n2 + 3 f (n) = O(n4)

f (n) = 2 log n

f (n) = 3000

f (n) = O(log n)

f (n) = O(log n)

f (n) = 4/n

f (n) = log(n4)

f (n) = O(1)



Examples of Big-O

f (n) = n4 + 7n2 + 3 f (n) = O(n4)

f (n) = 2 log n

f (n) = 3000

f (n) = O(log n)

f (n) = O(log n)

f (n) = O(1/n)f (n) = 4/n

f (n) = log(n4)

f (n) = O(1)



Examples of Big-O

f (n) = n4 + 7n2 + 3 f (n) = O(n4)

f (n) = 2 log n

f (n) = 3000

f (n) = log n + log log n

f (n) = O(log n)

f (n) = O(log n)

f (n) = O(1/n)f (n) = 4/n

f (n) = log(n4)

f (n) = O(1)



Examples of Big-O

f (n) = n4 + 7n2 + 3 f (n) = O(n4)

f (n) = 2 log n

f (n) = 3000

f (n) = log n + log log n

f (n) = O(log n)

f (n) = O(log n)

f (n) = O(1/n)

f (n) = O(log n)

f (n) = 4/n

f (n) = log(n4)

f (n) = O(1)



Examples of Big-O

f (n) = n4 + 7n2 + 3 f (n) = O(n4)

f (n) = 2 log n

f (n) = 3000

f (n) = log n + log log n

f (n) = n(n log n + 3 log n)

f (n) = O(log n)

f (n) = O(log n)

f (n) = O(1/n)

f (n) = O(log n)

f (n) = 4/n

f (n) = log(n4)

f (n) = O(1)



Examples of Big-O

f (n) = n4 + 7n2 + 3 f (n) = O(n4)

f (n) = 2 log n

f (n) = 3000

f (n) = log n + log log n

f (n) = n(n log n + 3 log n)

f (n) = O(log n)

f (n) = O(log n)

f (n) = O(1/n)

f (n) = O(log n)

f (n) = 4/n

f (n) = O(n2 log n)

f (n) = log(n4)

f (n) = O(1)



Examples of Big-O

f (n) = n4 + 7n2 + 3 f (n) = O(n4)

f (n) = 2 log n

f (n) = 3000

f (n) = log n + log log n

f (n) = n(n log n + 3 log n)

f (n) = 2log2 n

f (n) = O(log n)

f (n) = O(log n)

f (n) = O(1/n)

f (n) = O(log n)

f (n) = 4/n

f (n) = O(n2 log n)

f (n) = log(n4)

f (n) = O(1)



Examples of Big-O

f (n) = n4 + 7n2 + 3 f (n) = O(n4)

f (n) = 2 log n

f (n) = 3000

f (n) = log n + log log n

f (n) = n(n log n + 3 log n)

f (n) = 2log2 n

f (n) = O(log n)

f (n) = O(log n)

f (n) = O(1/n)

f (n) = O(log n)

f (n) = 4/n

f (n) = O(n2 log n)

f (n) = O(n)

f (n) = log(n4)

f (n) = O(1)



• Sum 

• Product 

• Multiplication by a constant 

• Transitivity

Properties of Big-O

Suppose that  

Then f (n) + g(n) = O(a(n) + b(n))

f (n) = O(a(n)) and g(n) = O(b(n))

Suppose that  

Then 

f (n) = O(a(n)) and g(n) = O(b(n))

f (n) · g(n) = O(a(n) · b(n))

Suppose that  

Then, for any        ,

f (n) = O(a(n))

c · f (n) = O(a(n))c > 0

Suppose that                      and  

Then

f (n) = O(g(n)) g(n) = O(h(n))

f (n) = O(h(n))



• Max degree 

• Polynomial is subexponential 

• Polylogarithmic is subpolynomial 

Properties of Big-O

Suppose that  

Then 

f (n) = a0 + a1n + . . .+ adn
d

f (n) = O(nd)

Let         be arbitrary. 

Then                for all

d > 0

n
d = O(an) a > 1

Let         be arbitrary. 

Then                      for all

d > 0

(log n)d = O(nr ) r > 0



And we are done! By choosing c large enough, we can make    
b large enough such that the last inequality holds (since log(n) 
is            for any polynomial       , including              )   g(n) = nkg(n)O(g(n))

To be shown: Is there some c > 0 such that for all large 
enough n, we have:

Proof that polylogarithmic is subpolynomial

(log n)d
??
 cnr

m

log n
??
 c1/dnr/d

m

log n
??
 bnk for b = c1/d and k = r/d



Common Examples of Big-O 
increasing com

plexity

Accessing min in a min-heap

Search in a balanced binary tree

(i) Median. (ii) Range-limited Radix sort

Merge sort

Insertion sort

Brute force sorting



Big-Omega notation

• Let 

• We say that   is             if, for some         and          ,      
for all          , it holds that: 

• “For all    ‘big enough’ and for some    ‘small enough’,       
f(n)  is at least a constant    times       ” 

• Equivalently,   is             if and only if    is

f : N ! R, g : N ! R

f ⌦(g(n)) c > 0 n0 > 0
n � n0

f (n) � cg(n)

n
cf (n) g(n)

c

f ⌦(g(n)) O(f (n))g



Big-Theta notation

• Let 

• We say that   is              if                   and 

• “For all    ‘big enough’,    and    grow at the same rate,      
i.e., there are constants               such that:

f : N ! R, g : N ! R

f = O(g(n)) f = ⌦(g(n))

n f g
c1, c2 > 0

c1g(n)  f (n)  c2g(n)

f ⇥(g(n))



Little-o and little-omega

• Asymptotic dominance 

• Less common in undergrad-level computer science, but they 
do come up in statistics, optimization, machine learning 

• We say that   is            if, for all        , there is some               
such that, for all          , it holds that: 

•   is             if and only if    is

f o(g(n)) " > 0 n0 > 0
n � n0

f (n)  "g(n)

!(g(n)) o(f (n))f g



Little-o and little-omega

• If    is non-zero for large enough   , then we can use shorter, 
calculus-based definitions: 

      is            if 

      is             if 

• little-o: “the growth of   is nothing compared to the growth of   ”   

• little-omega: “the growth of   strictly dominates the growth of   ”

g n

f (n) o(g(n)) lim
n!1

f (n)

g(n)
= 0

lim
n!1

f (n)

g(n)
= 1!(g(n))f (n)

f g

f g



Typical model of computation: RAM model

• Primitive operations (can be done in 1 time step): 

• Addition, Subtraction, Multiplication, Division, Exponentiation*, 
Boolean operations, Assignment, Array indexing, Function calls 
when each operand fits in one word of storage

• When using this model, we will implicitly assume that a word 
contains  bits, for input size . Why?Θ(log n) n



Typical model of computation: RAM model

• Primitive operations (can be done in 1 time step): 

• Addition, Subtraction, Multiplication, Division, Exponentiation*, 
Boolean operations, Assignment, Array indexing, Function calls 
when each operand fits in one word of storage

• When using this model, we will implicitly assume that a word 
contains  bits, for input size . Why?Θ(log n) n

• Does the code below run in polynomial time with respect to input ? 

 

for  to  

n

x ← 2

i = 1 n
x ← x2



Example

Mean( , ): 

 

For  to  

 

 

return mean 

x n

sum ← 0

j = 0 n − 1

sum ← sum + x[ j]

mean ← sum / n

n ∙ (I + S + A)

1 ∙ (A + D)

(n + 1) ∙ A + (n + 1) ∙ C + n ∙ S

1 A

A: Assignment 
C: Comparison 
S: Subtraction 
D: Division 
I: array Indexing
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x n
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j = 0 n − 1

sum ← sum + x[ j]

mean ← sum / n

n ∙ (I + S + A)

1 ∙ (A + D)

(n + 1) ∙ A + (n + 1) ∙ C + n ∙ S

1 A
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C: Comparison 
S: Subtraction 
D: Division 
I: array Indexing



Example

Mean( , ): 

 

For  to  

 

 

return mean 

x n

sum ← 0

j = 0 n − 1

sum ← sum + x[ j]

mean ← sum / n

n ∙ (I + S + A)

1 ∙ (A + D)

(n + 1) ∙ A + (n + 1) ∙ C + n ∙ S

1 A

Complexity: (2A + 2S + C + I) ∙ n + (3A + C + D) ∙ 1  
                = O(n)

Ignore! O(1)

A: Assignment 
C: Comparison 
S: Subtraction 
D: Division 
I: array Indexing



Back to the two wands problem

• Input:  boxes, where boxes  contain pearls,          
and boxes  are empty, for some  

• Output: , where  is the index of the rightmost box 
containing a pearl 

• Model of Computation: At a cost of 1, a wand taps a box and 
reveals if it is empty or not. If empty, the wand disappears. 

Can this problem be solved using two wands with  worst-
case cost?

n 1,…, i
i + 1,…, n i

i i

o(n)



Some friends to remember From CSC 225

• Pseudocode, counting number of operations 

• Recursion 

• Proof by induction: review this ASAP if you need to 

• Big-O analysis: review this ASAP if you need to 

• Merge sort, Quicksort, Priority queues (heaps) 

• Lower bounds for sorting 

• Trees, Binary Search Trees, Balanced Binary Search Trees 
(e.g. red-black trees, 2-3 trees, AVL trees) 

• Graph theory topics from CSC 225 

• BFS, DFS, strong connectivity



Course Outline

Minimum Spanning Trees 

Introductory Graph Theory 

Shortest Path Algorithms 

Network Flow 

Randomized Quickselect and Quicksort 

Hashing 

String Search Algorithms 

Greedy Algorithms 

Data Compression 

Dynamic Programming

Graph Algorithms  
& Graph Theory

Randomized 
Algorithms

More 
Algorithms



Administrivia

Instructor:  Nishant Mehta 

Email:  n|m|e|h|t|a|@uvic.ca 

Office:  ECS 608 

Office hours (tentative): 

Mondays 11:30am-12:30pm, Wednesdays 4pm–5pm 

TAs:  Ali Mortazavi, Chuan Zhang

Course webpage: http://web.uvic.ca/~nmehta/csc226_fall2025

http://web.uvic.ca/~nmehta/csc226_fall2025


Administrivia
Lectures, ECS 125 

Mondays and Thursdays, 10am - 11:20am 

Labs, ECS 258, Instructed by Ali and Chuan 

First lab will be Sep 16th–18th (in two weeks) 

Please register for labs as soon as possible

12:30pm - 1:20pm (B01)
2:30pm - 3:20pm (B02)
12:30pm - 1:20pm (B03)
1:30pm - 2:20pm (B04)

Tuesdays

Thursdays

Wednesdays

Course webpage: http://web.uvic.ca/~nmehta/csc226_fall2025

http://web.uvic.ca/~nmehta/csc226_fall2025


Administrivia

• When emailing: always start your subject line with [CSC226] 

• Any student who has registered in CSC 226 and does not 
have the required prerequisites and no waiver must drop the 
class. Otherwise: the student will be dropped and a 
prerequisite drop will be recorded on the student’s record. 

• Taking the course more than twice: 

• According to university rules, you must request (in writing) 
permission from the Chair of the Department and the 
Dean of the Faculty to be allowed to stay registered in the 
course. The letter should be submitted to Irene Statham, 
the CSC Undergraduate Advisor



Evaluation

• Points breakdown: 

• 5 Problem Sets - 6% each (total 30%) 

• Midterm - 25% 

• Final - 40% 

• Participation (via attending labs) - 5% 

• Even though the final only counts for 40%,                   
you must pass the final to pass the course!! 

• The midterm exam will be in-class and is scheduled to take 
place on October 9th. The final exam will be 3 hours and 
scheduled by the registrar. For both exams, you cannot use 
any devices or material (no books or notes)



Problem Sets
• There will be 5 problem sets, each with about 3 problems 

• Late submissions won’t be accepted: With a valid excuse, the 
weight of the other problem sets will be increased 

• Collaborating: 

• You may discuss problem sets at a high level                
(you can discuss major ideas but not detailed solutions),    
but your solutions must be written individually, from scratch, 
and all programming must be done individually  (you can’t 
share written code) 

• Cheating 

• First time offense: zero on the entire problem set or exam 

• Second time offense: you fail the course



Policy on using LLMs / Generative AI

• It’s strictly prohibited to use generative AI (such as ChatGPT, Claude, 
Gemini, etc.) for any part of graded work (problem sets, labs, exams). 

• To be clear, it’s prohibited to use AI-based tools for translation, 
formatting, typesetting, or as a brainstorming tool for any graded 
component of the course. 

• It’s prohibited to provide problem set materials (such as questions 
from the problem sets) in any form to a generative AI tool. 

• What about as a study aid? We strongly discourage the use of 
generative AI tools as a study tool for this course. Generative AI can 
often produce meaningless or contradictory information. As a result, 
when learning new information, you may be unable to verify the 
correctness of material generated by generative AI.



Textbooks

(1) Introduction to Algorithms, 4th edition 

     (Cormen, Leiserson, Rivest, Stein) 

    It’s OK to use the 3rd edition instead 

    (library online version of 3rd edition) 

(2) Algorithm Design, 1st edition 

    (Kleinberg and Tardos)

Required

https://ebookcentral.proquest.com/lib/uvic/detail.action?docID=3339142&pq-origsite=summon

