CSC 226
Algorithms & Data Structures 11

Nishant Mehta

Lecture 1

LOGICOMI
-

an Eternal Golden Braid

\ﬁwgﬁ

AN EPIC SEARCH FOR TRUTH

~ ¢
A metapborical fugis oxmindsend mockines APRSTOLAS DOXIADIS, CRRISTAS B, PAPADIMITRIO,
VS ALECOS PAPADATOS, aop ANNIE 91 DONNA

Douglas R.Hofstadter

in the spirit of Lewis Carroll

———

The biggest difference between time and space is
that you can't reuse time.
—Merrick Furst

Detfinition of Algorithm

 An Algorithm is a sequence of unambiguous instructions for
solving a problem for obtaining the desired outfput for any
legitimate inputf in a finife amount of time.

(Levitin, Introduction to the Design & Analysis of Algorithms)

Detfinition of Algorithm

 An Algorithm is a sequence of unambiguous instructions for

solving a problem for obtaining the desired outfput for any
legitimate inputf in a finife amount of time.

(Levitin, Introduction to the Design & Analysis of Algorithms)

It really does have to be uhambiguous
Care has to be taken in specifying the range of inputs
There can be different ways to implement an algorithm

The same problem might be solvable by very different algorithms, and

these algorithms can have very different efficiencies.

Example: Matrix-chain multiplication

« Suppose you are given a chain of matrices A, A,, ..., A, and
want to compute the product A; A, - A

n

e ISA/A, --- A, an algorithm?

Example: Matrix-chain multiplication

« Suppose you are given a chain of matrices A, A,, ..., A, and
want to compute the product A; A, - A

n

e ISA/A, --- A, an algorithm?

e Consider n = 3 with the matrices having dimensions:
3 % 500, 500 x 2, and 2 x 2000

Example: Matrix-chain multiplication

Suppose you are given a chain of matrices A, A,, ..., A, and
want to compute the product A; A, - A

n

IsAA, --- A, an algorithm?

Consider n = 3 with the matrices having dimensions:
3 % 500, 500 x 2, and 2 x 2000

Order of multiplication matters!

Complexity

o Time Complexity: How fast does the algorithm run?

« Space Complexity: How much (extra) space does the
algorithm require?

o EXfra space means space in excess of the inpuf

o Time complexity typically is lower bounded by space
complexity. Why?

Iwo lypes of Analysis

(1) The Empirical Method: “just run it and see what happens”
o Complexity measure: number of clock cycles
« Method: Instrumentation and Profiling

o Closer fo software engineering; covered in SENG 265

<

Two Types of Analysis

(2) The Theoretical Method: “hypothetically, how many
primitive operations would this perform if I ran it?"

o Complexity measure: number of primitive operations

e« Method: Math and Theoretical Computer Science

o Derive upper and lower bounds on complexity

http://people.csail.mit.edu/costis/
https://en.wikipedia.org/wiki/Shafi_Goldwasser
https://people.eecs.berkeley.edu/~minilek/

Good

Bad

Ugly

Iwo lypes of Analysis

Empirical Method

Theoretical Method

More precise comparison for typical
inputs and particular machine

Consider all possible inputs

Compares algorithms in an
architecture-agnostic way

No implementation required

Good

Bad

Ugly

Iwo lypes of Analysis

Empirical Method

Theoretical Method

More precise comparison for typical
inputs and particular machine

Limited by the set of inputs used
Hard to identify good set of inputs

Can only compare algorithms on
the same machine

Requires implementation

Consider all possible inputs

Compares algorithms in an
architecture-agnostic way

No implementation required

May be too pessimistic if one
considers worst-case inputs

Might be hard to analyze algorithms

Good

Bad

Ugly

Iwo lypes of Analysis

Empirical Method

Theoretical Method

More precise comparison for typical
inputs and particular machine

Limited by the set of inputs used
Hard to identify good set of inputs

Can only compare algorithms on
the same machine

Requires implementation

Consider all possible inputs

Compares algorithms in an
architecture-agnostic way

No implementation required

May be too pessimistic if one
considers worst-case inputs

Might be hard to analyze algorithms

https://en.wikipedia.org/wiki/Dollars_Trilogy
https://en.wikipedia.org/wiki/Dollars_Trilogy
https://en.wikipedia.org/wiki/Dollars_Trilogy
https://en.wikipedia.org/wiki/Dollars_Trilogy
https://en.wikipedia.org/wiki/Dollars_Trilogy
https://en.wikipedia.org/wiki/Dollars_Trilogy
https://en.wikipedia.org/wiki/Dollars_Trilogy
https://en.wikipedia.org/wiki/Dollars_Trilogy
https://www.imdb.com/title/tt0060196/
https://www.imdb.com/title/tt0060196/
https://www.imdb.com/title/tt0060196/
https://www.imdb.com/title/tt0060196/
https://www.imdb.com/title/tt0060196/
https://www.imdb.com/title/tt0060196/
https://www.imdb.com/title/tt0060196/
https://www.imdb.com/title/tt0060196/
https://www.imdb.com/title/tt0060196/

Iwo lypes of Analysis

Empirical Method Theoretical Method

Consider all possible inputs

More precise comparison for typical Compares algorithms in an
Good inputs and particular machine architecture-agnostic way
No implementation required
Limited by the set of inputs used May be too pessimistic if one
Hard to identify good set of inputs considers worsf-case inputs
Bad Can only compare algorithms on average-case analysis!
the same machine Might be hard to analyze algorithms
ReqUireS implemeﬂTGTiOH this course can he'pl

Ugly

Iwo lypes of Analysis

Empirical Method Theoretical Method

Consider all possible inputs

More precise comparison for typical Compares algorithms in an
Good inputs and particular machine architecture-agnostic way
No implementation required
Limited by the set of inputs used May be too pessimistic if one
Hard to identify good set of inputs considers worsf-case inputs
Bad Can only compare algorithms on average-case analysis!
the same machine Might be hard to analyze algorithms
ReqUireS implemeﬂTGTiOH this course can he'pl

Ugly

https://en.wikipedia.org/wiki/Dollars_Trilogy
https://en.wikipedia.org/wiki/Dollars_Trilogy
https://en.wikipedia.org/wiki/Dollars_Trilogy
https://en.wikipedia.org/wiki/Dollars_Trilogy
https://en.wikipedia.org/wiki/Dollars_Trilogy
https://en.wikipedia.org/wiki/Dollars_Trilogy
https://en.wikipedia.org/wiki/Dollars_Trilogy
https://en.wikipedia.org/wiki/Dollars_Trilogy
https://www.imdb.com/title/tt0060196/
https://www.imdb.com/title/tt0060196/
https://www.imdb.com/title/tt0060196/
https://www.imdb.com/title/tt0060196/
https://www.imdb.com/title/tt0060196/
https://www.imdb.com/title/tt0060196/
https://www.imdb.com/title/tt0060196/
https://www.imdb.com/title/tt0060196/
https://www.imdb.com/title/tt0060196/

Time complexity analysis

Complexity as a function of input size

Measured in ferms of number of primitive operations
Three main kinds: worst-case, besft-case, average case
Abstracting to asymptotic behavior/order of growth

For recursive analysis, use the master theorem (sometimes)

Two wands problem

t,ﬁé /\,ﬁg f\'ﬁ;‘ t,ﬁé /\,ﬁg f\'ﬁ;‘ t,ﬁé

e Input: n boxes, where boxes 1,...,1 confain pearls,
and boxes i + 1,...,n are empty, for some i

e Output: 1, where 1 is the index of the rightmost box
contfaining a pear!l

 Model of Computation: At a cost of 1, a wand taps a box and
reveals if it is empty or not. If empty, the wand disappears.

Can this problem be solved using two wands with o(n) worst-
case cost?

Iwo wand problem

« What does a solution look like?
« Need to give an algorithm, along with:
e Proof of correctness: does it correctly identify 1 ?

« Cost analysis. Is the number of boxes tapped o(n) ?

Iwo wand problem

« What does a solution look like?
« Need to give an algorithm, along with:
e Proof of correctness: does it correctly identify 1 ?

« Cost analysis. Is the number of boxes tapped o(n) ?

But what does o(n) meD

Two wand problem

« What does a solution look like?
« Need to give an algorithm, along with:
e Proof of correctness: does it correctly identify 1 7

« Cost analysis. Is the number of boxes tapped o(n) ?

But what does o(n) meaD
Patience, Bruce.
We must review big-O notation...

Asymptotic notation

- Big-O O(g(n))

« Big-Omega Q(g(n))

« Big-Theta ©(g(n))

o Less commonly used (but still important!)

o Litfle-o o(g(n))

o Litfle-omega w(g(n))

Big-O notation

e let f:N—-R,g:N—-R

« We say that f is O(g(n)) if, for some ¢ > 0 and ng > 0,
for all n > ng, it holds that:

f(n) < cg(n)

« "For all n 'big enough’ and for some ¢ ‘'big enough’,
f(n)is at most a constant c times g(n)”

Examples of Big-O

f(n) = n* 4+ 7n* 4+ 3

Examples of Big-O

f(n) = n* 4+ 7n* 4+ 3 f(n) = O(n")

Examples of Big-O

f(n) = n* 4+ 7n* 4+ 3 f(n) = O(n")

f(n) =2logn

Examples of Big-O

f(n) = n* 4+ 7n* 4+ 3 f(n) = O(n")

f(n) =2logn f(n) = O(log n)

Examples of Big-O

f(n)=n"+7n"+3 f(n) = O(n*)
f(n) =2logn f(n) = O(log n)

f(n) = log(n")

Examples of Big-O

f(n)=n"+7n"+3 f(n) = O(n*)
f(n) =2logn f(n) = O(log n)

f(n) = log(n*) f(n) = O(log n)

Examples of Big-O

f(n)=n"+7n"+3 f(n) = O(n*)
f(n) =2logn f(n) = O(log n)
f(n) = log(n*) f(n) = O(log n)

f(n) = 3000

Examples of Big-O

f(n) = n* 4+ 7n* 4+ 3

f(n) =2logn
f(n) = log(n*)
f(n) = 3000

f(n) = O(n%)
f(n) = O(log n)
f(n) = O(log n)

f(n) = O(1)

Examples of Big-O

f(n) = n* 4+ 7n* 4+ 3

f(n) =2logn
f(n) = log(n*)
f(n) = 3000

f(n)=4/n

f(n) = O(n%)
f(n) = O(log n)
f(n) = O(log n)

f(n) = O(1)

Examples of Big-O

f(n) = n* 4+ 7n* 4+ 3

f(n) =2logn
f(n) = log(n®)
f(n) = 3000
f(n)=4/n

f(n) = O(n")
f(n) = O(log n)
f(n) = O(log n)
f(n) = 0O(1)
f(n) = O(1/n)

Examples of Big-O

f(n) = n* 4+ 7n* 4+ 3 f(n) = O(n")

f(n) = O(log n)
f(n) = O(log n)
f(n) = O(1)

f(n) = O(1/n)

f(n) =logn+ loglogn f(n)

Examples of Big-O

f(n)=n"+7n"+3 f(n) = O(n*)
f(n) = O(log n)
f(n) = O(log n)
f(n) = O(1)
f(n) = O(1/n)

O(log n)

Examples of Big-O

f(n) = n*+7n* 43 f(n) = O(n")
f(n) = O(log n)
f(n) = O(log n)
f(n) = O(1)
f(n) = O(1/n)
n) = log n + log log n f(n) = O(log n)

Examples of Big-O

f(n) = n*+7n* 43 f(n) = O(n")
f(n) = O(log n)
f(n) = O(log n)
f(n) = O(1)
f(n) = O(1/n)
n) = log n + log log n f(n) = O(log n)

f(n) = n(nlog n+ 3log n) f(n) = O(n?log n)

Examples of Big-O

f(n) = O(n%)
f(n) = O(log n)
f(n) = O(log n)

f(n) = O(1)
f(n) = O(1/n)
f(n) = O(log n)

f(n) = O(n*log n)

Examples of Big-O

f(n) = O(n%)
f(n) = O(log n)
f(n) = O(log n)

f(n) = 0O(1)

f(n) = O(1/n)
f(n) = O(log n)
f(n) = O(n*log n)
f(n) = O(n)

Properties of Big-O

e SUM

Suppose that f(n) = O(a(n)) and g(n) = O(b(n))
Then f(n) + g(n) = O(a(n) + b(n))

e Product

Suppose that f(n) = O(a(n)) and g(n) = O(b(n))
Then f(n) - g(n) = O(a(n) - b(n))

o Multiplication by a constant

Suppose that f(n) = O(a(n))
Then, for any ¢ >0, c-f(n) = O(a(n))

o Transitivity

Suppose that f(n) = O(g(n)) and g(n) = O(h(n))
Then f(n) = O(h(n))

Properties of Big-O

« Max degree

Suppose that f(n) = ap+ ain+ ...+ agn®

Then f(n) = O(n%)

o Polynomial is subexponential
Let d > 0 be arbitrary.

Then n? = O(a") for all a > 1

o Polylogarithmic is subpolynomial
Let d > 0 be arbitrary.

Then (logn)? = O(n") for all r > 0

Proof that polylogarithmic is subpolynomial

To be shown: Is there some ¢ > O such that for all large
enough n, we have:

77

(log n)? < cn’
11

Iogn< C

0

&
log n < bn* for b= c'/? and k = r/d

1/d r/d

And we are done! By choosing ¢ large enough, we can make
b large enough such that the last inequality holds (since log(n)
is O(g(n)) for any polynomial g(n), including g(n) = n*)

Common Examples of Big-O

O(1/n)
O(1)

Accessing min in a min-heap

Search in a balanced binary tree

(i) Median. (ii) Range-limited Radix sort

Merge sort

Insertion sort

Brute force sorting

O(
O(

og log n)
og n)

0(v/7)
O(n)
O(nlog n)
O(n?)
O(2")

O(n!) or O(n") v

0(2%)

ALIX2|dW 0D BUISD2JDUl

Big-Omega notation

Llet f: N—- R, g: N— R

We say that f is Q(g(n)) if for some ¢ > 0and ny > 0,
for all n > ng, it holds that:

f(n) > cg(n)

"For all n 'big enough’ and for some ¢ ‘small enough’,
f(n)is at least a constant ¢ fimes g(n)”

Equivalently, f is Q(g(n)) if and only if g is O(f(n))

BIg- I heta notation

e let f:N—-R,g:N—-R
« We say that fis ©(g(n)) if f = 0(g(n)) and f = Q(g(n))

« 'For all n 'big enough’, f and g grow at the same rate,
l.e., There are constants ¢y, co > 0 such that:

cg(n) < f(n) < cg(n)

Little-o and little-omega

Asymptotic dominance

Less common in undergrad-level computer science, but they
do come up in stfatistics, optimization, machine learning

We say that f is o(g(n)) if, for all € > 0, there is some ng > 0
such that, for all n > ng, it holds that:

f(n) < eg(n)

fis w(g(n)) if and only if g is o(f(n))

Little-o and little-omega

If g is non-zero for large enough n, then we can use shorter,
calculus-based definitions:

f(n) is o(g(n)) if lim ; EZ; — 0

f(n)is w(g(n)) if nli_)moo ;Eg = 00

ittfle-0: "the growth of f is nothing compared to the growth of g”

ittle-omega: "the growth of f strictly dominates the growth of g”

Typical model of computation: RAM model

 Primitive operations (can be done in 1 time step):

« Addition, Subfraction, Multiplication, Division, Exponentiation™,
Boolean operations, Assignment, Array indexing, Function calls
when each operand fits in one word of storage

« When using this model, we will implicifly assume that a word
contains ®(log n) bits, for input size n. Why?

Typical model of computation: RAM model

 Primitive operations (can be done in 1 time step):

« Addition, Subfraction, Multiplication, Division, Exponentiation™,
Boolean operations, Assignment, Array indexing, Function calls
when each operand fits in one word of storage

« When using this model, we will implicifly assume that a word
contains ®(log n) bits, for input size n. Why?

e Does the code below run in polynomial time with respect to input n?

X <« 2

fori=11ton

.X<—X2

Mean(x, n):
sum <« 0
Forj=0ton—1
sum <« sum + x| j]

mean <« sum/n

return mean

Example

1A
(n+1)-A+(n+1)-C+n-S

h-(I+S+A)

1-(A + D)

A: Assighment

C: Comparison
S: Subtraction

D: Division

I. array Indexing

Mean(x, n):
sum <« 0
Forj=0ton—1
sum <« sum + x| j]

mean <« sum/n

return mean

Example

1A
(n+1) -A+(nh+1):-C+n-S

h-(I+S+A)

1-(A + D)

A: Assighment

C: Comparison
S: Subtraction

D: Division

I. array Indexing

Complexity: (A +2S +C +I) -n+ (3A+C+D)-1

= O(n)

A: Assighment
Examp‘e C: Comparison
S: Subfraction
. D: Division
Mean(x, n); I: array Indexing
sum « () 1A
Forjzo.'.on_l (n+1) -A+(nh+1):-C+n-S

sum < sum +x[j] N T+S+A)

mean < sum/n 1-(A+D)

retfurn mean
Ignore! O(1)

/
Complexity: (2A +2S + C +1I) - n + (BQ+ D) D

= O(n)

Back to the two wands problem

e Input: n boxes, where boxes 1,...,1 confain pearls,
and boxes i + 1,...,n are empty, for some i

e Output: 1, where 1 is the index of the rightmost box
contfaining a pear!l

 Model of Computation: At a cost of 1, a wand taps a box and
reveals if it is empty or not. If empty, the wand disappears.

Can this problem be solved using two wands with o(n) worst-
case cost?

Some friends to remember From CSC 225

o Pseudocode, counting number of operations

o Recursion

o Proof by induction: review this ASAP if you need to
o Big-0 analysis: review This ASAP if you need to

« Merge sort, Quicksort, Priority queues (heaps)

« Lower bounds for sorting

o Trees, Binary Search Trees, Balanced Binary Search Trees
(e.g. red-black trees, 2-3 trees, AVL trees)

o Graph theory fopics from CSC 225
o« BFS, DFS, strong connectivity

Graph Algorithms
& Graph Theory

Course Outline

Minimum Spanning Trees
Infroductory Graph Theory
Shortest Path Algorithms

Network Flow
Randomized Randomized Quickselect and Quicksort
Algorithms Hashing
String Search Algorithms
More Greedy Algorithms
Algorithms Data Compression

Dynamic Programming

Administrivia

Instructor: Nishant Mehta
Email: nmehfa@uvic.ca
Office: ECS 608

Office hours (tentative):

Mondays 11:30am-12:30pm, Wednesdays 4pm-5pm

TAs: Ali Mortazavi, Chuan Zhang

Course webpage: http://web.uvic.ca/~nmehta/csc226_fall2025

http://web.uvic.ca/~nmehta/csc226_fall2025

Administrivia
Lectures, ECS 125
Mondays and Thursdays, 10am - 11:20am

Labs, ECS 258, Instructed by Ali and Chuan

Tuesdays 12:30pm - 1:20pm (BO1)
Wednesdays 2:30pm - 3:20pm (B02)
Thursdays 12:30pm - 1:20pm (B03)

1:30pm - 2:20pm (B04)

First lab will be Sep 16th-18th (in two weeks)

Please register for labs as soon as possible

Course webpage: http://web.uvic.ca/~nmehta/csc226_fall2025

http://web.uvic.ca/~nmehta/csc226_fall2025

Administrivia

« When emailing: always start your subject line with [CSC226]

o Any student who has registered in CSC 226 and does not
have the required prerequisites and no waiver must drop the
class. Otherwise: the student will be dropped and a
prerequisite drop will be recorded on the student’s record.

o Jaking the course more than fwice:

« According to university rules, you must request (in writing)
permission from the Chair of the Department and the
Dean of the Faculty fo be allowed fo stay registered in the
course. The letter should be submifted to Irene Statham,
the CSC Undergraduate Advisor

Evaluation

o Points breakdown:
« 5 Problem Sets - 6% each (total 30%)
o Miaterm - 25%
e Final - 40%
 Participation (via attending labs) - 5%

o« Even though the final only counts for 40%,
you must pass the final to pass the course!!

e The midferm exam will be in-class and is scheduled to take
place on October 9th. The final exam will be 3 hours and
scheduled by the registrar. For both exams, you cannot use
any devices or material (no books or notes)

Problem Sets

e There will be 5 problem sets, each with about 3 problems

e Late submissions won't be accepted: With a valid excuse, the
weight of the ofther problem sefs will be increased

o Collaborating:

o YOU may discuss problem setfs at a high level

(you can discuss mqjor ideas but not detailed solutions),
but your solutions must be written individually, from scratch,

and all programming must be done individually (you can't
share written code)

e Cheating

o First fime offense: zero on the entire problem set or exam

« Second fime offense: you fail the course

Policy on using LLMs / Generative Al

It’s strictly prohibited to use generative Al (such as ChatGPT, Claude,
Gemini, etc.) for any part of graded work (problem sets, labs, exams).

To be clear, it’s prohibited to use Al-based tools for translation,
formatting, typesetting, or as a brainstorming tool for any graded
component of the course.

It's prohibited to provide problem set materials (such as questions
from the problem sets) in any form to a generative Al tool.

What about as a study aid? We strongly discourage the use of
generative Al tools as a study tool for this course. Generative Al can
often produce meaningless or contradictory information. As a result,
when learning new information, you may be unable to verify the
correctness of material generated by generative Al.

Textbooks

(1) Introduction to Algorithms, 4th edition
| (Cormen, Leiserson, Rivest Stein)
Required
It's OK to use the 3rd edition instead

(library online version of 3rd edition)

(2) Algorithm Design, 1st edition
(Kleinberg and Tardos)

L. RIVEST
CLIFFORD

TTTTTTTTTTTTTT

ALGORITHMS

\ :
[\ JON KLEINBERG - EVA TARDOS

https://ebookcentral.proquest.com/lib/uvic/detail.action?docID=3339142&pq-origsite=summon

