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KRUSKAL'S ALGORITHM DEMO



Consider edges in ascending order of weight. 

・Add next edge to tree T unless doing so would create a cycle.
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Consider edges in ascending order of weight. 

・Add next edge to tree T unless doing so would create a cycle.

5

Kruskal's algorithm demo

0-7  0.16

5

4

7

1
3

0

2

6

does not create a cycle

in MST



Consider edges in ascending order of weight. 

・Add next edge to tree T unless doing so would create a cycle.
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Consider edges in ascending order of weight. 

・Add next edge to tree T unless doing so would create a cycle.
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Consider edges in ascending order of weight. 

・Add next edge to tree T unless doing so would create a cycle.
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Consider edges in ascending order of weight. 

・Add next edge to tree T unless doing so would create a cycle.
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Consider edges in ascending order of weight. 

・Add next edge to tree T unless doing so would create a cycle.
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Consider edges in ascending order of weight. 

・Add next edge to tree T unless doing so would create a cycle.
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Consider edges in ascending order of weight. 

・Add next edge to tree T unless doing so would create a cycle.
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Consider edges in ascending order of weight. 

・Add next edge to tree T unless doing so would create a cycle.
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Consider edges in ascending order of weight. 

・Add next edge to tree T unless doing so would create a cycle.
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Consider edges in ascending order of weight. 

・Add next edge to tree T unless doing so would create a cycle.
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Consider edges in ascending order of weight. 

・Add next edge to tree T unless doing so would create a cycle.
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Consider edges in ascending order of weight. 

・Add next edge to tree T unless doing so would create a cycle.
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Consider edges in ascending order of weight. 

・Add next edge to tree T unless doing so would create a cycle.
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Kruskal's algorithm:  visualization
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Kruskal's algorithm:  visualization
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・Start with vertex 0 and greedily grow tree T. 

・Add to T the min weight edge with exactly one endpoint in T. 

・Repeat until V - 1 edges.
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・Start with vertex 0 and greedily grow tree T. 

・Add to T the min weight edge with exactly one endpoint in T. 

・Repeat until V - 1 edges. 
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・Start with vertex 0 and greedily grow tree T. 

・Add to T the min weight edge with exactly one endpoint in T. 

・Repeat until V - 1 edges. 
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・Start with vertex 0 and greedily grow tree T. 

・Add to T the min weight edge with exactly one endpoint in T. 

・Repeat until V - 1 edges. 
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・Start with vertex 0 and greedily grow tree T. 

・Add to T the min weight edge with exactly one endpoint in T. 

・Repeat until V - 1 edges. 
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・Start with vertex 0 and greedily grow tree T. 

・Add to T the min weight edge with exactly one endpoint in T. 

・Repeat until V - 1 edges. 
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・Start with vertex 0 and greedily grow tree T. 

・Add to T the min weight edge with exactly one endpoint in T. 

・Repeat until V - 1 edges. 
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・Start with vertex 0 and greedily grow tree T. 

・Add to T the min weight edge with exactly one endpoint in T. 

・Repeat until V - 1 edges. 
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・Start with vertex 0 and greedily grow tree T. 

・Add to T the min weight edge with exactly one endpoint in T. 

・Repeat until V - 1 edges. 
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・Start with vertex 0 and greedily grow tree T. 

・Add to T the min weight edge with exactly one endpoint in T. 

・Repeat until V - 1 edges. 
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・Start with vertex 0 and greedily grow tree T. 

・Add to T the min weight edge with exactly one endpoint in T. 

・Repeat until V - 1 edges. 
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・Start with vertex 0 and greedily grow tree T. 

・Add to T the min weight edge with exactly one endpoint in T. 

・Repeat until V - 1 edges. 
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・Start with vertex 0 and greedily grow tree T. 

・Add to T the min weight edge with exactly one endpoint in T. 

・Repeat until V - 1 edges. 
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・Start with vertex 0 and greedily grow tree T. 

・Add to T the min weight edge with exactly one endpoint in T. 

・Repeat until V - 1 edges. 
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・Start with vertex 0 and greedily grow tree T. 

・Add to T the min weight edge with exactly one endpoint in T. 

・Repeat until V - 1 edges. 
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・Start with vertex 0 and greedily grow tree T. 

・Add to T the min weight edge with exactly one endpoint in T. 

・Repeat until V - 1 edges. 
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Prim’s algorithm:  visualization
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Prim’s algorithm:  visualization
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Challenge.  Find the min weight edge with exactly one endpoint in T. 

How difficult? 

・ E

・ V

・ log E

・ log* E

・ l

Prim's algorithm:  implementation challenge

1-7 0.19 
0-2 0.26 
5-7 0.28 
2-7 0.34 
4-7 0.37 
0-4 0.38 
6-0 0.58 

priority queue
of crossing edges

1-7 is min weight edge with
exactly one endpoint in T
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Challenge.  Find the min weight edge with exactly one endpoint in T. 

How difficult? 

・ E

・ V

・ log E

・ log* E

・ l

Prim's algorithm:  implementation challenge

try all edges

use a priority queue!

1-7 0.19 
0-2 0.26 
5-7 0.28 
2-7 0.34 
4-7 0.37 
0-4 0.38 
6-0 0.58 

priority queue
of crossing edges

1-7 is min weight edge with
exactly one endpoint in T
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Challenge.  Find the min weight edge with exactly one endpoint in T.  

Prim's algorithm:  lazy implementation
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Challenge.  Find the min weight edge with exactly one endpoint in T.  

Lazy solution.  Maintain a PQ of edges with (at least) one endpoint in T.

・Key = edge; priority = weight of edge.

・Delete-min to determine next edge e = v–w to add to T.

Prim's algorithm:  lazy implementation
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Challenge.  Find the min weight edge with exactly one endpoint in T.  

Lazy solution.  Maintain a PQ of edges with (at least) one endpoint in T.

・Key = edge; priority = weight of edge.

・Delete-min to determine next edge e = v–w to add to T.

・Disregard if both endpoints v and w are marked (both in T).
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41

Challenge.  Find the min weight edge with exactly one endpoint in T.  

Lazy solution.  Maintain a PQ of edges with (at least) one endpoint in T.

・Key = edge; priority = weight of edge.

・Delete-min to determine next edge e = v–w to add to T.

・Disregard if both endpoints v and w are marked (both in T).

・Otherwise, let w be the unmarked vertex (not in T ):
– add to PQ any edge incident to w (assuming other endpoint not in T)
– add e to T and mark w 

Prim's algorithm:  lazy implementation

1-7 0.19 
0-2 0.26 
5-7 0.28 
2-7 0.34 
4-7 0.37 
0-4 0.38 
6-0 0.58 

priority queue
of crossing edges

1-7 is min weight edge with
exactly one endpoint in T



Lazy implementation of Prim’s algorithm

42

Visit(vertex u)

color u black

for all edges (u,v)

if v is grey
PQ.insert((u,v), w(u, v))

Prim(graph G)

PQ = empty priority queue of edges

color all vertices grey

Visit(0)

while(|A| < n - 1)

(u,v) = PQ.DeleteMin()
if u or v is grey

A = A → {(u, v)}
if u is grey

Visit(u)
else // v is grey

Visit(v)
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Proposition.  Lazy Prim's algorithm computes the MST in time proportional  
to E log E and extra space proportional to E (in the worst case).  

Lazy Prim's algorithm:  running time
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Proposition.  Lazy Prim's algorithm computes the MST in time proportional  
to E log E and extra space proportional to E (in the worst case).  

Pf.

Lazy Prim's algorithm:  running time

operation frequency binary heap

delete min E log E

insert E log E
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Challenge.  Find min weight edge with exactly one endpoint in T.

Prim's algorithm:  eager implementation
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Challenge.  Find min weight edge with exactly one endpoint in T.
 
Observation.  For each vertex v, need only min weight edge connecting v to T.
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Challenge.  Find min weight edge with exactly one endpoint in T.
 
Observation.  For each vertex v, need only min weight edge connecting v to T.

・MST includes at most one edge connecting v to T. Why?
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44

Challenge.  Find min weight edge with exactly one endpoint in T.
 
Observation.  For each vertex v, need only min weight edge connecting v to T.

・MST includes at most one edge connecting v to T. Why?

・If MST includes such an edge, it can take cheapest such edge. Why?

Prim's algorithm:  eager implementation
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Challenge.  Find min weight edge with exactly one endpoint in T.

Prim's algorithm:  eager implementation
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Challenge.  Find min weight edge with exactly one endpoint in T.
 
 
Eager solution.  Maintain a PQ of vertices connected by an edge to T,  
where priority of vertex v = weight of min weight edge connecting v to T.

Prim's algorithm:  eager implementation

0
1 1-7 0.19 
2 0-2 0.26 
3 1-3 0.29
4 0-4 0.38
5 5-7 0.28
6 6-0 0.58
7 0-7 0.16 

black:  on MST

red:  on PQ

pq has at most one entry per vertex
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Challenge.  Find min weight edge with exactly one endpoint in T.
 
 
Eager solution.  Maintain a PQ of vertices connected by an edge to T,  
where priority of vertex v = weight of min weight edge connecting v to T.

・Delete min vertex v and add its associated edge e = v–w to T.

Prim's algorithm:  eager implementation
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6 6-0 0.58
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pq has at most one entry per vertex



45

Challenge.  Find min weight edge with exactly one endpoint in T.
 
 
Eager solution.  Maintain a PQ of vertices connected by an edge to T,  
where priority of vertex v = weight of min weight edge connecting v to T.

・Delete min vertex v and add its associated edge e = v–w to T.

・Update PQ by considering all edges e = v–x  incident to v
– ignore if x is already in T
– add x to PQ if not already on it
– decrease priority of x if v–x becomes min weight edge connecting x 

to T

Prim's algorithm:  eager implementation

0
1 1-7 0.19 
2 0-2 0.26 
3 1-3 0.29
4 0-4 0.38
5 5-7 0.28
6 6-0 0.58
7 0-7 0.16 

black:  on MST

red:  on PQ

pq has at most one entry per vertex



Eager implementation of Prim’s algorithm

46

Visit(vertex u)

color u black

for all edges (u,v)

if v is grey
color v red
PQ.insert(v, w(u,v))
cost[v] = w(u,v)
edge[v] = (u,v)

elseif (v is red) and (w(u,v) < cost[v])
PQ.DecreaseKey(v, w(u,v))
cost[v] = w(u,v)
edge[v] = (u,v)

Prim(graph G)

PQ = empty priority queue of vertices

cost = array of size n

edge = array of size n

color all vertices grey

Visit(0)

while(PQ not empty)

u = PQ.DeleteMin()
A = A → {edge[u]}
Visit(u)
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Depends on PQ implementation:  V insert, V delete-min, E decrease-key.

Prim's algorithm:  which priority queue?
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Depends on PQ implementation:  V insert, V delete-min, E decrease-key.

 
 
 
 
 
 
 
 
 
Bottom line.

・Array implementation optimal for dense graphs.

Prim's algorithm:  which priority queue?

PQ implementation insert delete-min decrease-key total

unordered array 1 V 1 V 2
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Depends on PQ implementation:  V insert, V delete-min, E decrease-key.

 
 
 
 
 
 
 
 
 
Bottom line.

・Array implementation optimal for dense graphs.

・Binary heap much faster for sparse graphs.

・4-way heap worth the trouble in performance-critical situations.
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PQ implementation insert delete-min decrease-key total
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47

Depends on PQ implementation:  V insert, V delete-min, E decrease-key.

 
 
 
 
 
 
 
 
 
Bottom line.

・Array implementation optimal for dense graphs.

・Binary heap much faster for sparse graphs.

・4-way heap worth the trouble in performance-critical situations.

・Fibonacci heap best in theory, but not worth implementing.

Prim's algorithm:  which priority queue?

† amortized

PQ implementation insert delete-min decrease-key total

unordered array 1 V 1 V 2

binary heap log V log V log V E log V

d-way heap logd V d logd V logd V E logE/V V

Fibonacci heap 1 † log V † 1 † E + V log V



Challenge.  Would adding edge v–w to tree T create a cycle? If not, add it. 

How difficult? 

・ E + V

・ V

・ log V

・ log* V

・ 1

48

Kruskal's algorithm:  implementation challenge

adding edge to tree
would create a cycle

add edge to tree
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48

Kruskal's algorithm:  implementation challenge

run DFS from v, check if w is reachable  
(T has at most V – 1 edges)

use the union-find data structure !

adding edge to tree
would create a cycle

add edge to tree
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Challenge.  Would adding edge v–w to tree T create a cycle? If not, add it.  

Efficient solution.  Use the union-find data structure.
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・If v and w are in same set, then adding v–w would create a cycle.
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Case 1: adding v–w creates a cycle

v w
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build priority queue 
(or sort)
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Kruskal's algorithm:  Java implementation

public class KruskalMST 
{ 
   private Queue<Edge> mst = new Queue<Edge>(); 

   public KruskalMST(EdgeWeightedGraph G) 
   { 
      MinPQ<Edge> pq = new MinPQ<Edge>(G.edges()); 

      UF uf = new UF(G.V()); 
      while (!pq.isEmpty() && mst.size() < G.V()-1) 
      { 
         Edge e = pq.delMin(); 
         int v = e.either(), w = e.other(v);  
         if (!uf.connected(v, w)) 
         {   
            uf.union(v, w); 
            mst.enqueue(e); 
         } 
      } 
   } 

   public Iterable<Edge> edges() 
   {  return mst;  } 
}

greedily add edges to MST

edge v–w does not create cycle

merge sets
add edge to MST
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Proposition.  Kruskal's algorithm computes MST in time proportional to  
E log E  (in the worst case).

Kruskal's algorithm:  running time
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E log E  (in the worst case).
 
Pf.

Kruskal's algorithm:  running time

†  amortized bound using weighted quick union with path compression

operation frequency time per op

build pq 1 E

delete-min E log E

union V log* V †

connected E log* V †
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Proposition.  Kruskal's algorithm computes MST in time proportional to  
E log E  (in the worst case).
 
Pf.
 
 
 
 
 
 
 
 
 
 
 
Remark.  If edges are already sorted, order of growth is E log* V.

Kruskal's algorithm:  running time

recall:  log* V  ≤  5 in this universe

†  amortized bound using weighted quick union with path compression

operation frequency time per op

build pq 1 E

delete-min E log E

union V log* V †

connected E log* V †
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Algorithms

‣ introduction
‣ greedy algorithm
‣ edge-weighted graph API
‣ Kruskal's algorithm
‣ Prim's algorithm
‣ context
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20xx E ???



Remark.  Linear-time randomized MST algorithm (Karger-Klein-Tarjan 1995).
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deterministic compare-based MST algorithms

Does a linear-time MST algorithm exist?

year worst case discovered by

1975 E log log V Yao

1976 E log log V Cheriton-Tarjan

1984 E log* V,  E + V log V Fredman-Tarjan

1986 E log (log* V) Gabow-Galil-Spencer-Tarjan

1997 E α(V) log α(V) Chazelle

2000 E α(V) Chazelle

2002 optimal Pettie-Ramachandran

20xx E ???



Given N points in the plane, find MST connecting them, where the distances
between point pairs are their Euclidean distances.

54

Euclidean MST



Given N points in the plane, find MST connecting them, where the distances
between point pairs are their Euclidean distances.
 
 
 
 
 
 
 
 
 
 
 
 
Brute force.  Compute ~ N 

2 / 2 distances and run Prim's algorithm.
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Given N points in the plane, find MST connecting them, where the distances
between point pairs are their Euclidean distances.
 
 
 
 
 
 
 
 
 
 
 
 
Brute force.  Compute ~ N 

2 / 2 distances and run Prim's algorithm.
Ingenuity.  Exploit geometry and do it in ~ c N log N.

54

Euclidean MST
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k-clustering.  Divide a set of objects classify into k coherent groups.
Distance function.  Numeric value specifying "closeness" of two objects.
 
Goal.  Divide into clusters so that objects in different clusters are far apart.

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Scientific application:  clustering
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k-clustering.  Divide a set of objects classify into k coherent groups.
Distance function.  Numeric value specifying "closeness" of two objects.
 
Goal.  Divide into clusters so that objects in different clusters are far apart.
 
 
 
 
 
 
 
Applications.  

・Routing in mobile ad hoc networks. 

・Document categorization for web search. 

・Similarity searching in medical image databases. 

・Skycat: cluster 109 sky objects into stars, quasars, galaxies.

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Scientific application:  clustering



k-clustering.  Divide a set of objects classify into k coherent groups. 
Distance function.  Numeric value specifying "closeness" of two objects. 

Single link.  Distance between two clusters equals the distance  
between the two closest objects (one in each cluster). 

Single-link clustering.  Given an integer k, find a k-clustering that 
maximizes the distance between two closest clusters.

56

Single-link clustering

distance between 
two closest clusters

4-clustering

distance between two clusters
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“Well-known” algorithm in science literature for single-link clustering: 

・Form V clusters of one object each. 

・Find the closest pair of objects such that each object is in a different 
cluster, and merge the two clusters. 

・Repeat until there are exactly k clusters.

Single-link clustering algorithm
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“Well-known” algorithm in science literature for single-link clustering: 

・Form V clusters of one object each. 

・Find the closest pair of objects such that each object is in a different 
cluster, and merge the two clusters. 

・Repeat until there are exactly k clusters.
 
Observation.  This is Kruskal's algorithm.  
(stopping when k connected components)
 
 
 
 
 
 
 
Alternate solution.  Run Prim; then delete k  – 1 max weight edges.

Single-link clustering algorithm
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Tumors in similar tissues cluster together.

Reference:  Botstein & Brown group

gene 1

gene n

gene expressed
gene not expressed

Dendrogram of cancers in human


