Algorithms



http://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

- introduction
- greedy algorithm
- edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- context

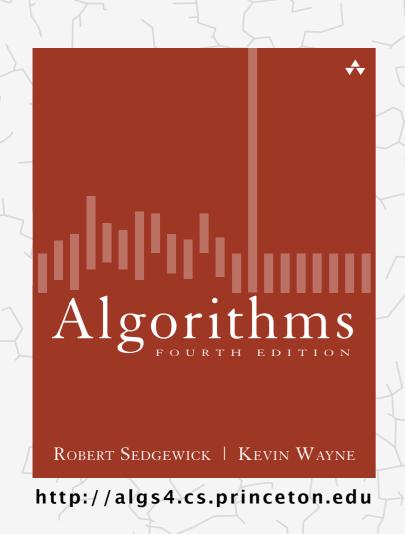
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

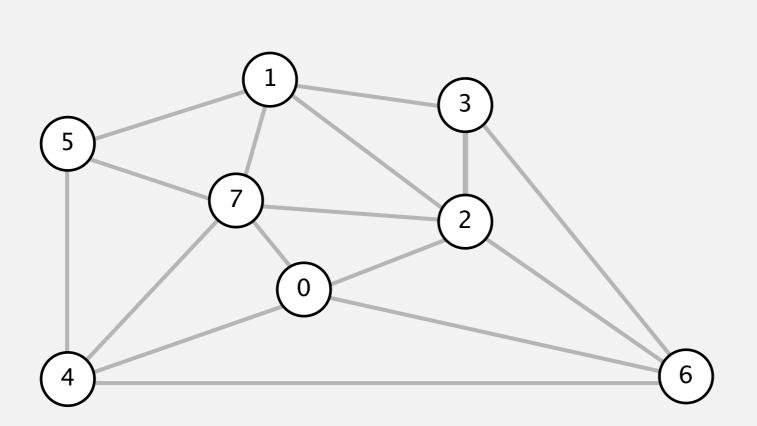
- introduction
- greedy algorithm
- edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
 - context



KRUSKAL'S ALGORITHM DEMO

Consider edges in ascending order of weight.

Add next edge to tree T unless doing so would create a cycle.



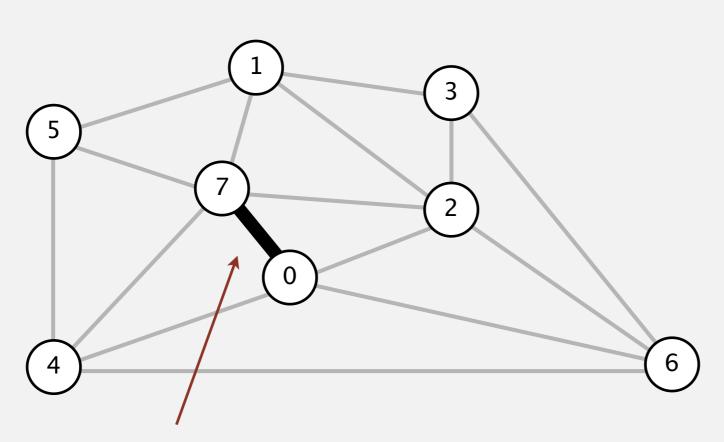
an edge-weighted graph

graph edges sorted by weight 0 - 70.16 0.17 1-7 0.19 0-2 0.26 5-7 0.28 0.29 1-5 0.32 2-7 0.34 4-5 0.35 1-2 0.36 4-7 0.37 0-4 0.38 6-2 0.40 0.52 6-0 0.58

6-4 0.93

Consider edges in ascending order of weight.

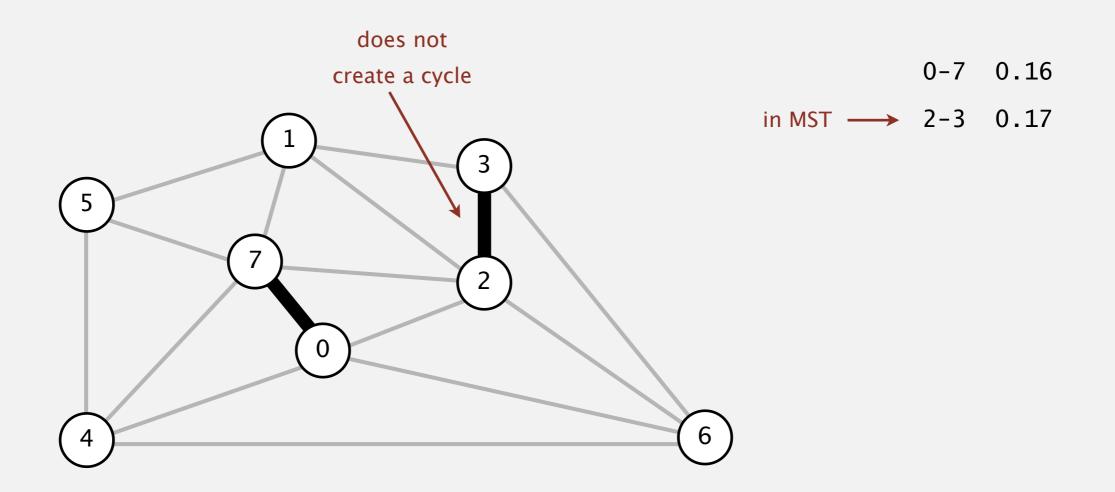
Add next edge to tree T unless doing so would create a cycle.



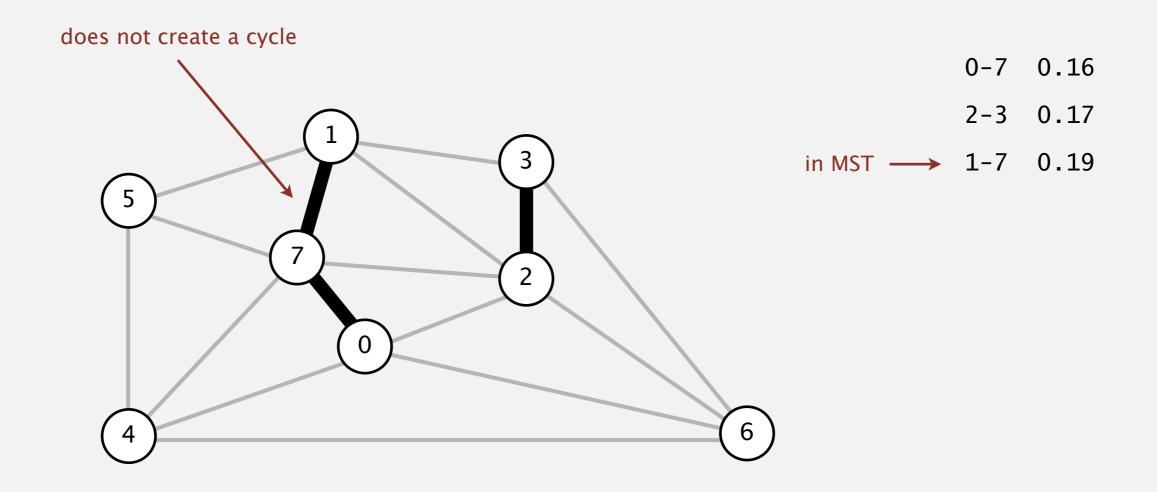
does not create a cycle

in MST \longrightarrow 0-7 0.16

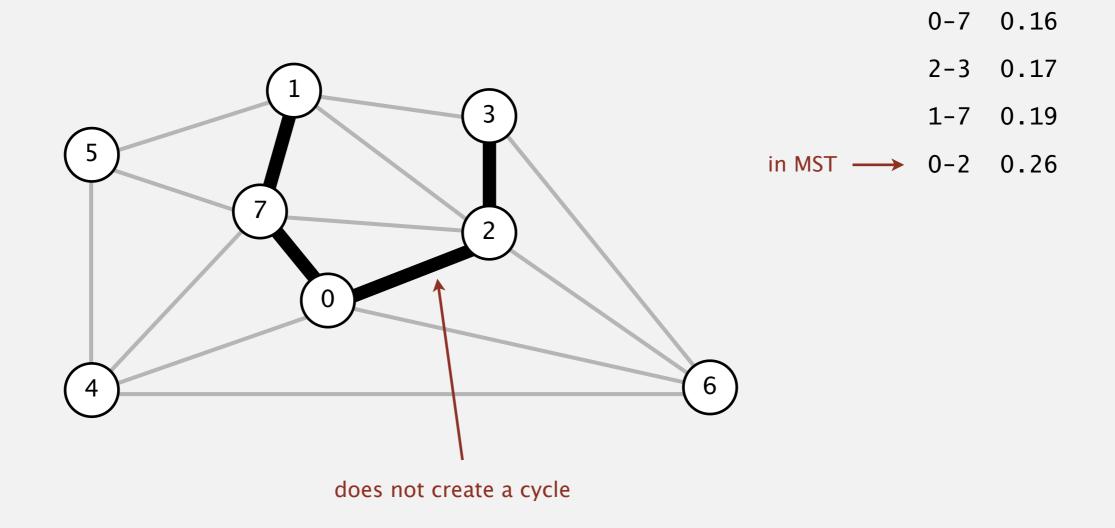
Consider edges in ascending order of weight.



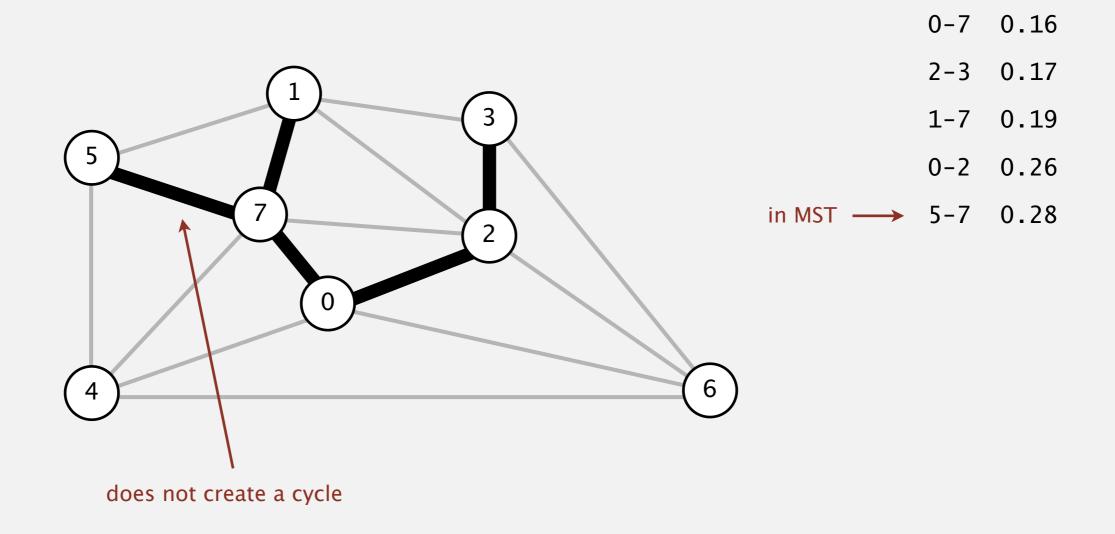
Consider edges in ascending order of weight.



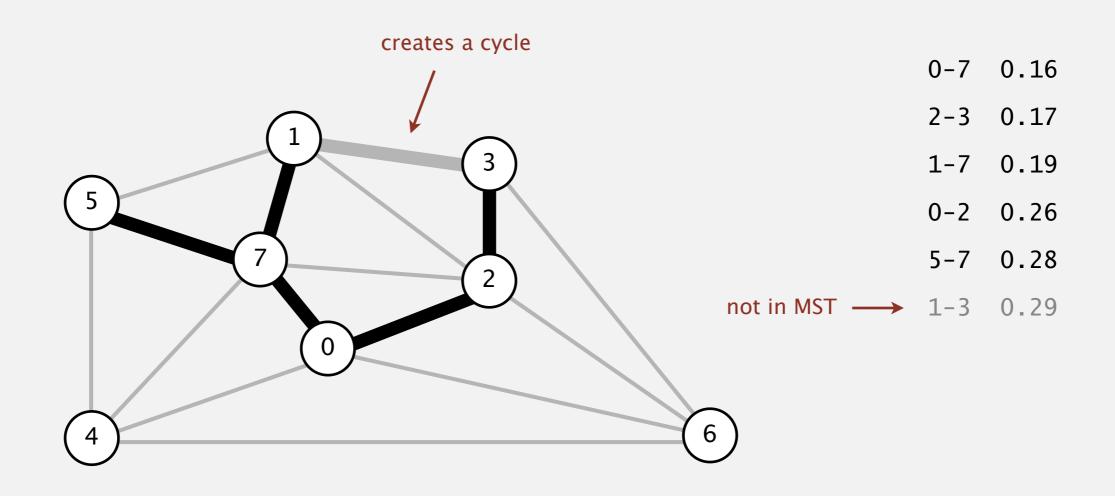
Consider edges in ascending order of weight.



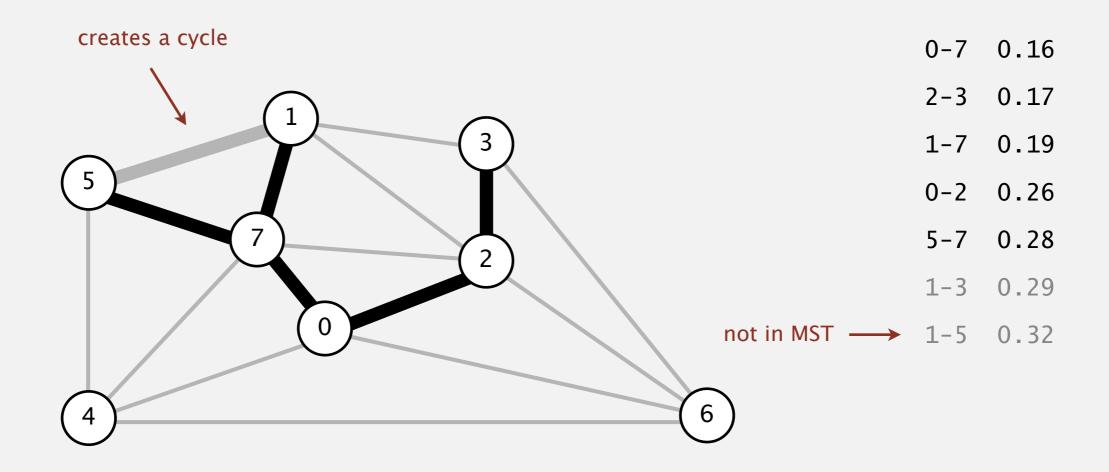
Consider edges in ascending order of weight.



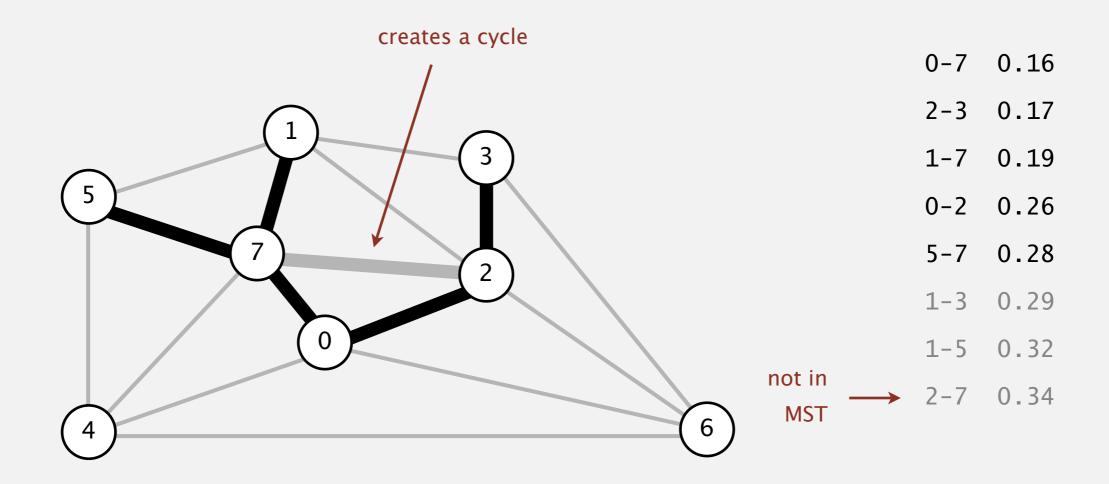
Consider edges in ascending order of weight.



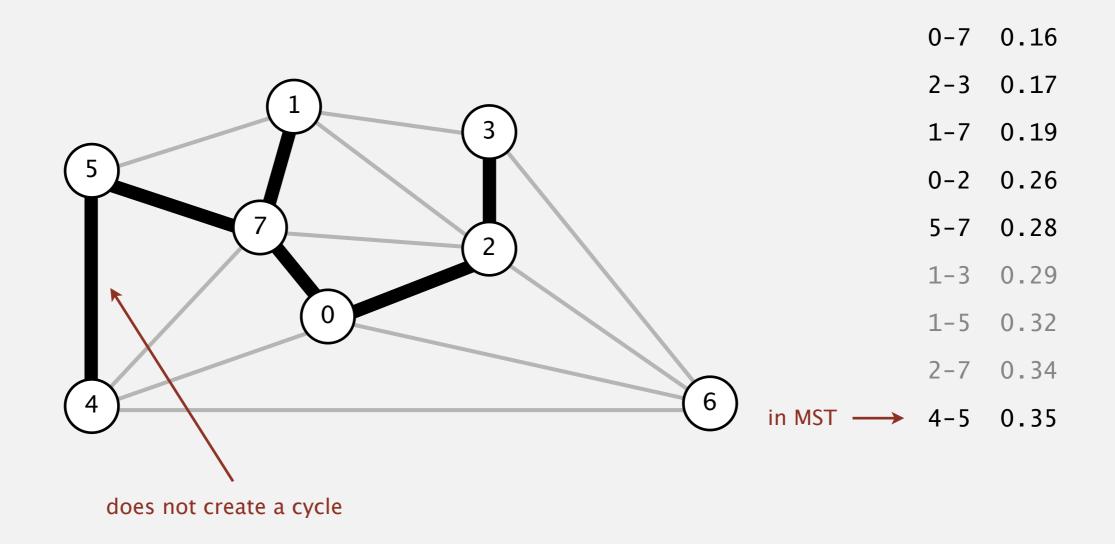
Consider edges in ascending order of weight.



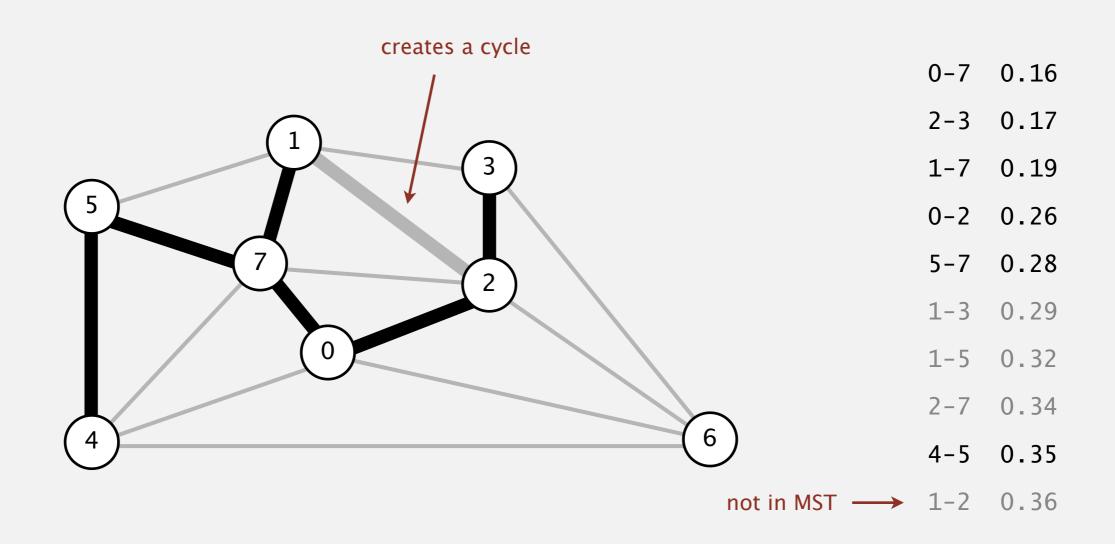
Consider edges in ascending order of weight.



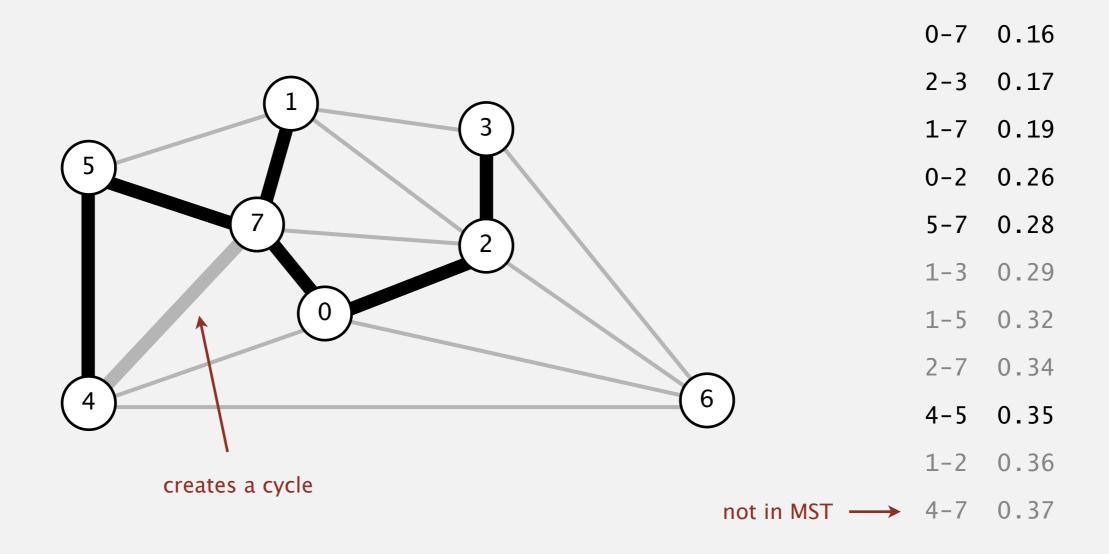
Consider edges in ascending order of weight.



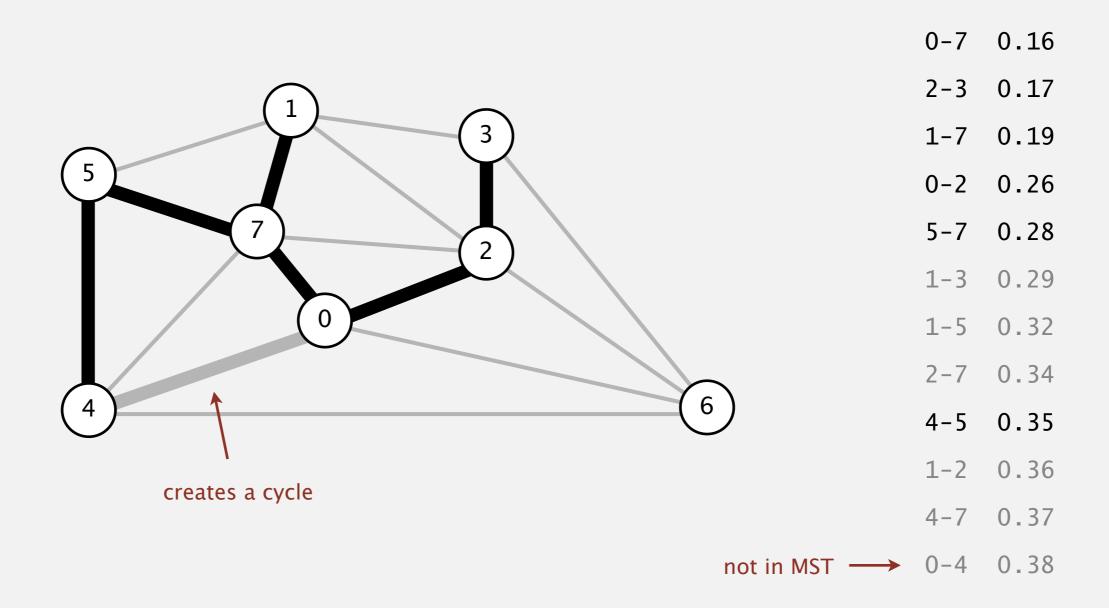
Consider edges in ascending order of weight.



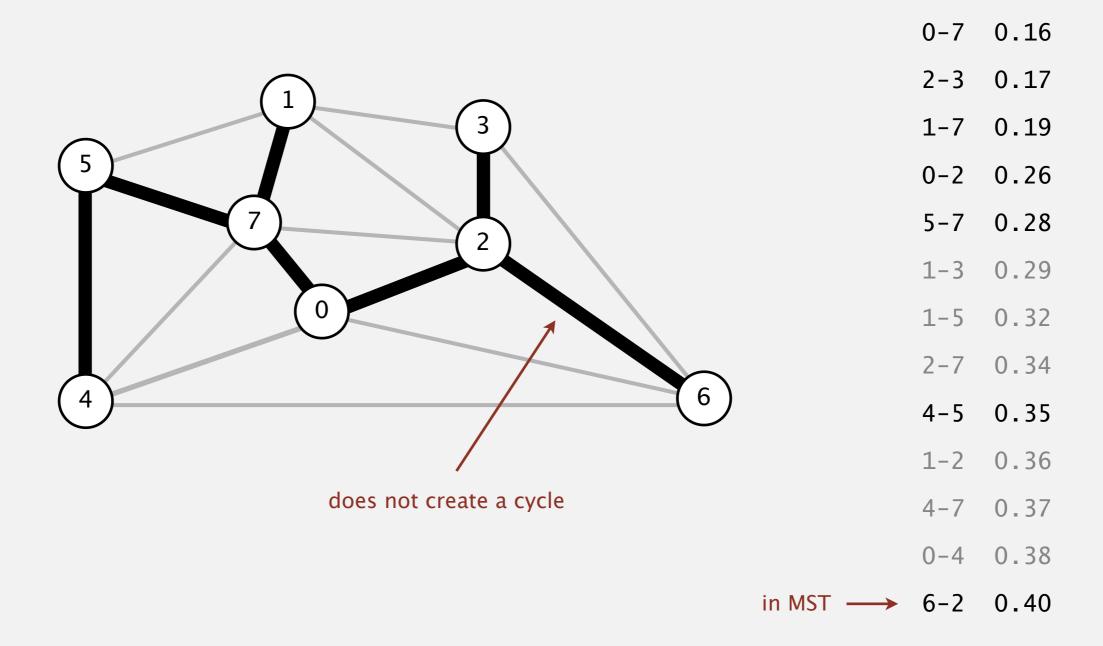
Consider edges in ascending order of weight.



Consider edges in ascending order of weight.

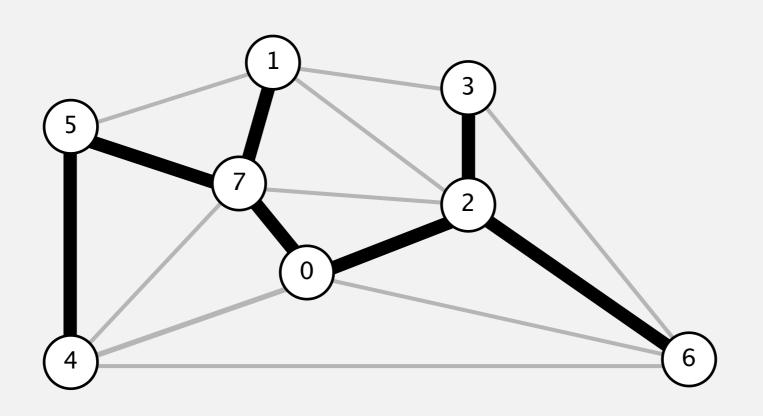


Consider edges in ascending order of weight.



Consider edges in ascending order of weight.

Add next edge to tree T unless doing so would create a cycle.

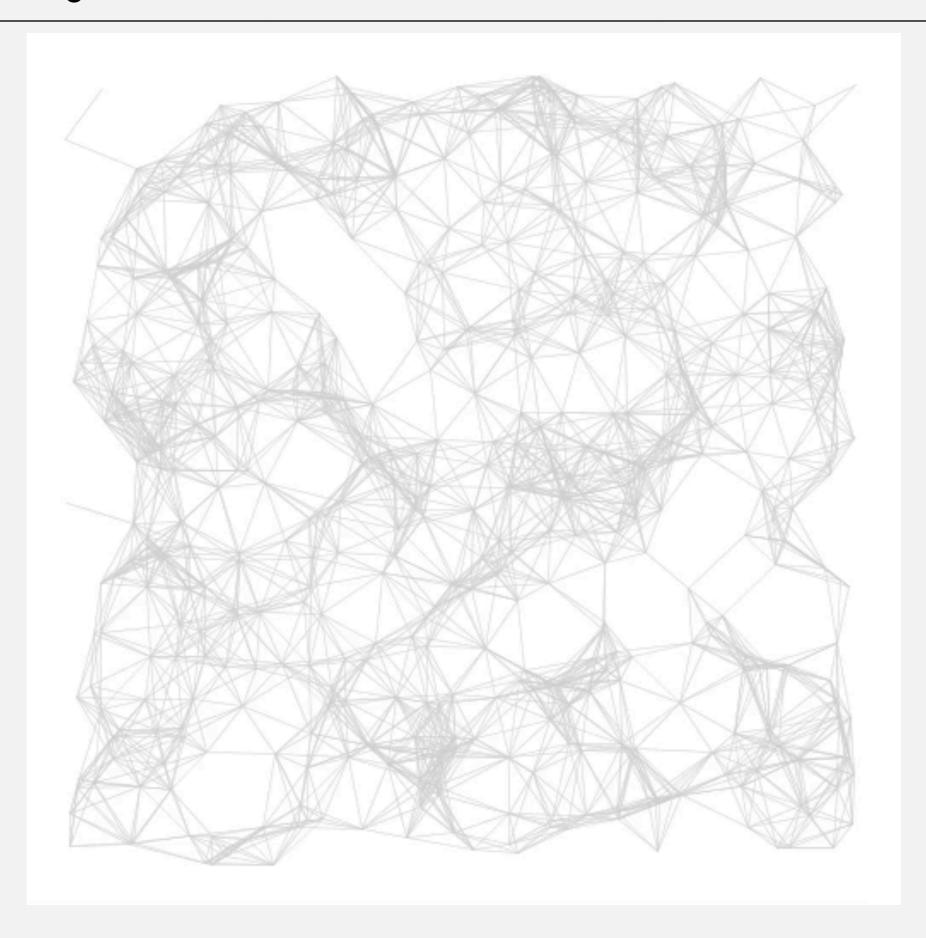


a minimum spanning tree

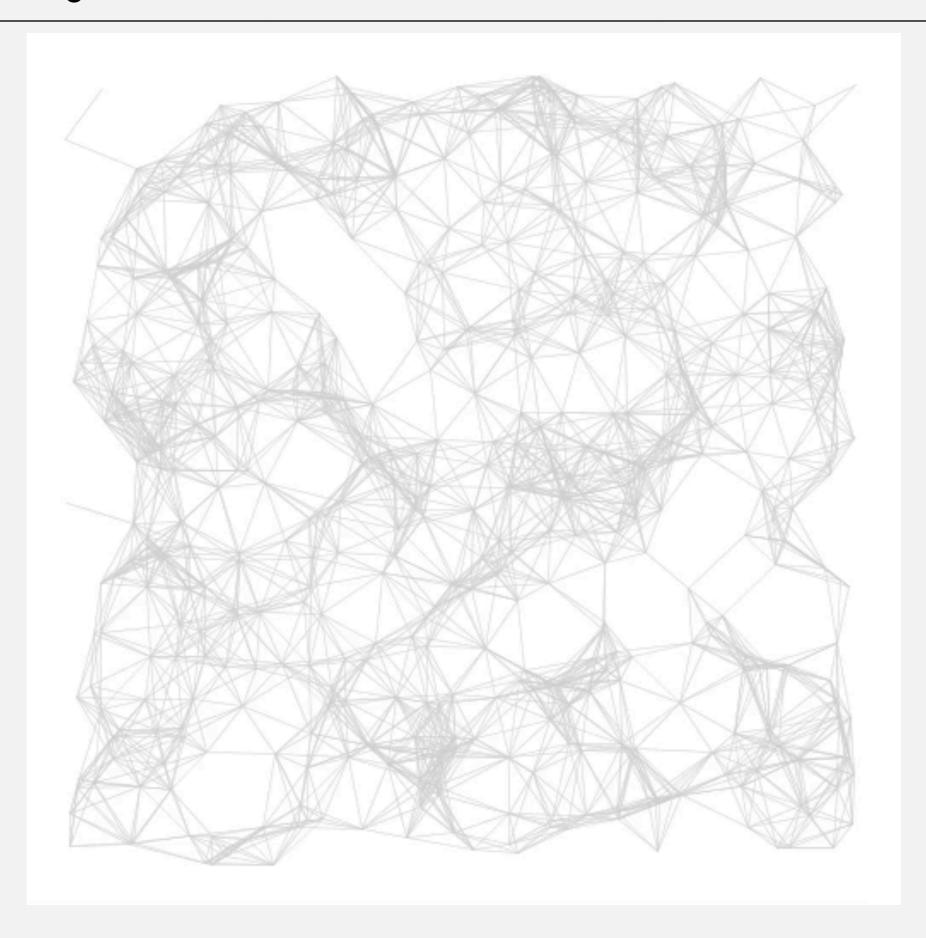
0-7 0.16 2-3 0.17 1-7 0.19 0-2 0.26 5-7 0.28 1-3 0.29 1-5 0.32 2-7 0.34 4-5 0.35 1-2 0.36 4-7 0.37 0-4 0.38

6-2 0.40

Kruskal's algorithm: visualization



Kruskal's algorithm: visualization



Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

- introduction
- greedy algorithm
- edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm

context

Algorithms

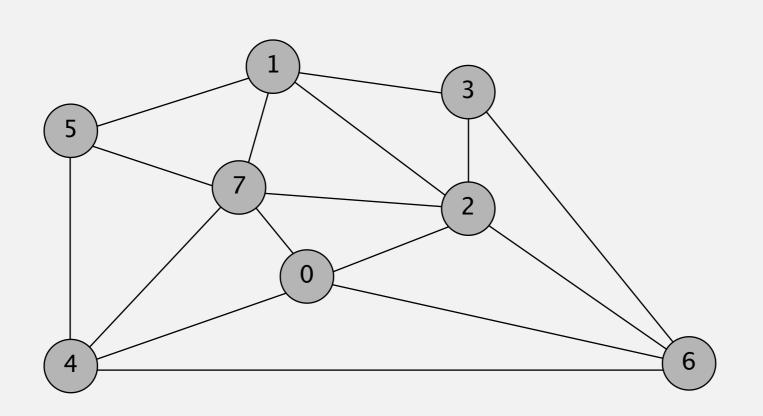
ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

PRIM'S ALGORITHM DEMO

- Prim's algorithm
 - Jazy implementation
 - eager implementation

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V* 1 edges.

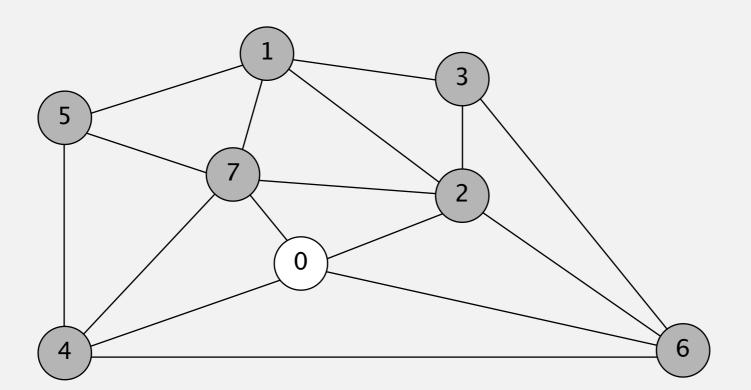


an edge-weighted graph

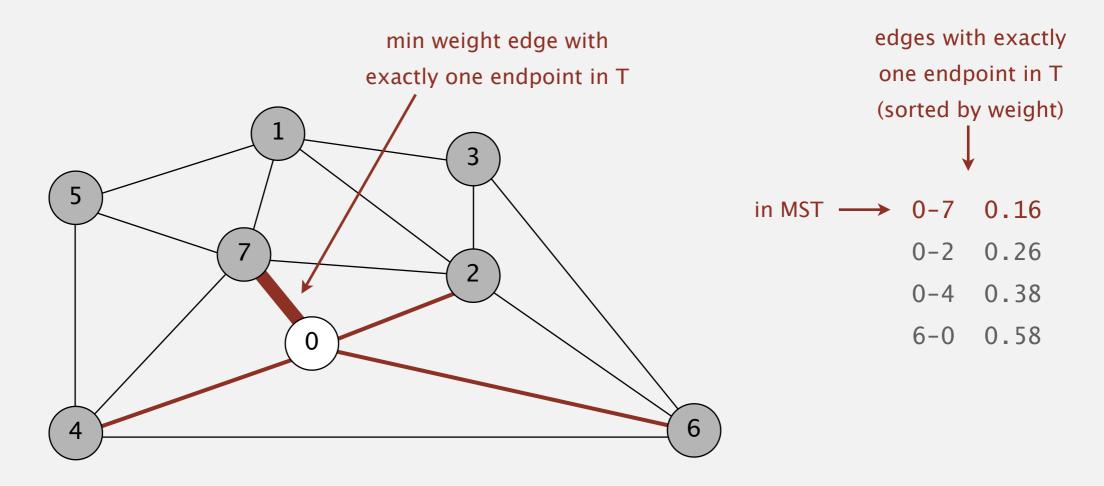
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58

 $6-4 \quad 0.93$

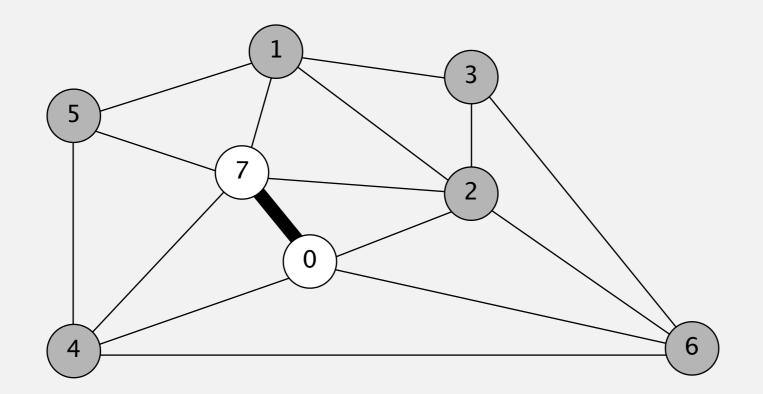
- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V 1 edges.



- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V 1 edges.



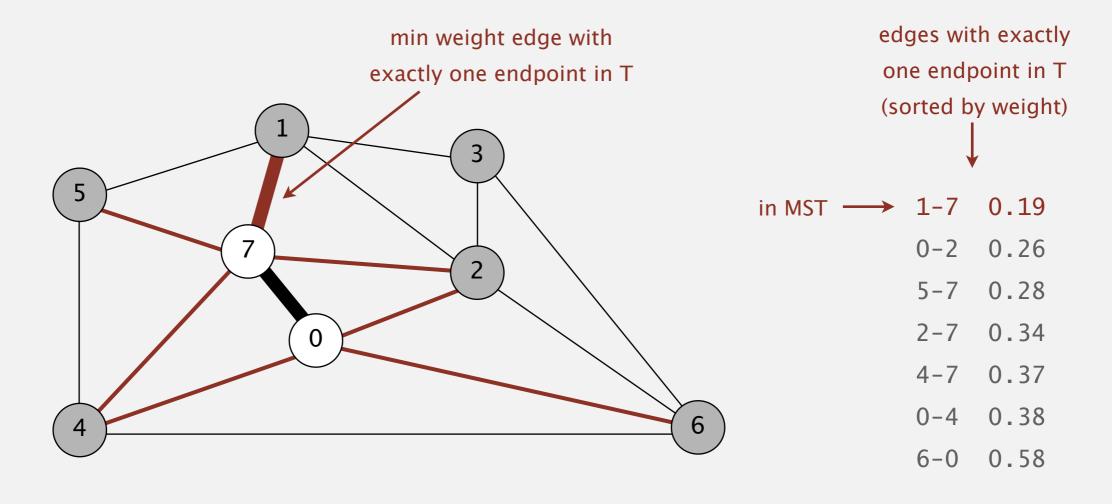
- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V 1 edges.



MST edges

0-7

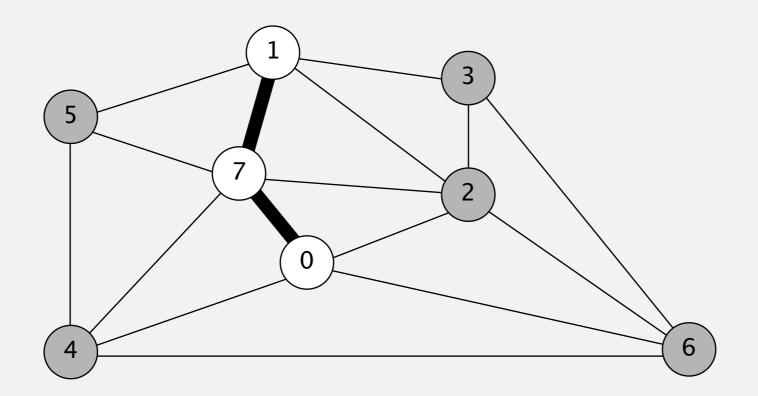
- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V 1 edges.



MST edges

0-7

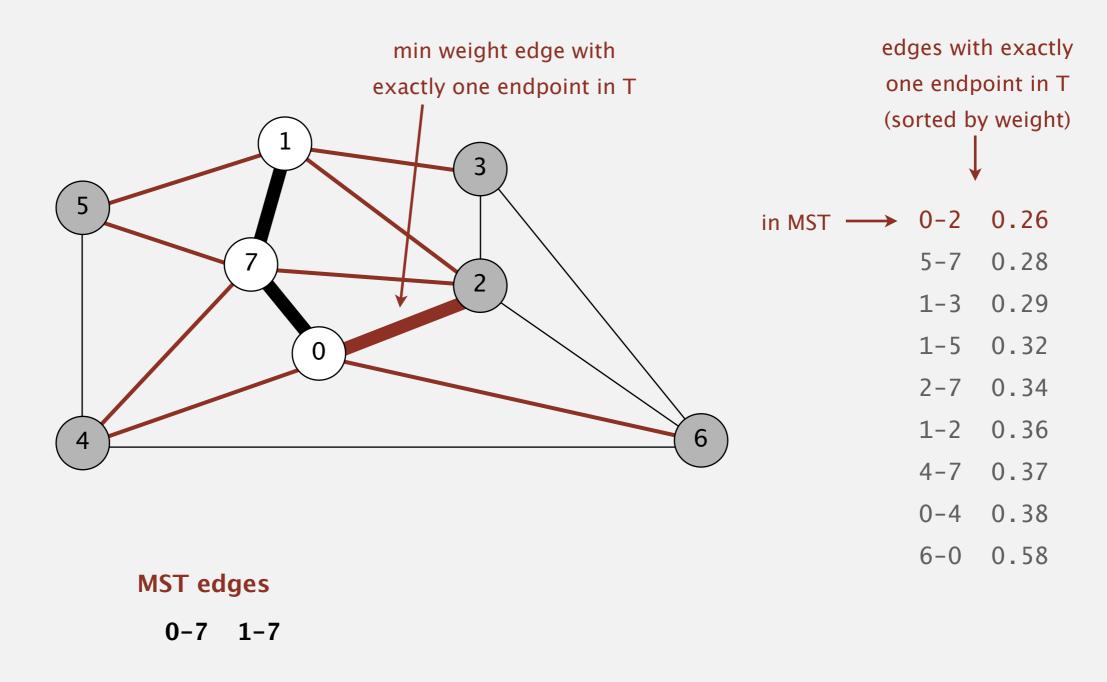
- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V 1 edges.



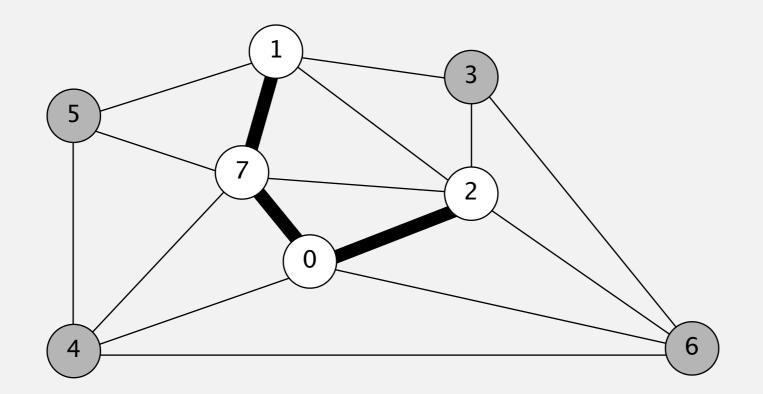
MST edges

0-7 1-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V 1 edges.



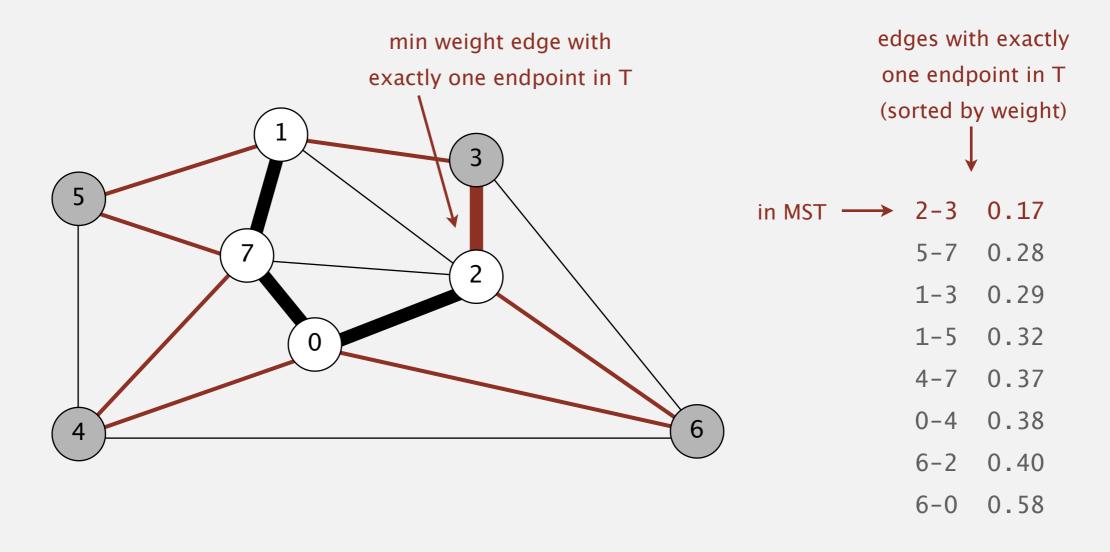
- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V* 1 edges.



MST edges

0-7 1-7 0-2

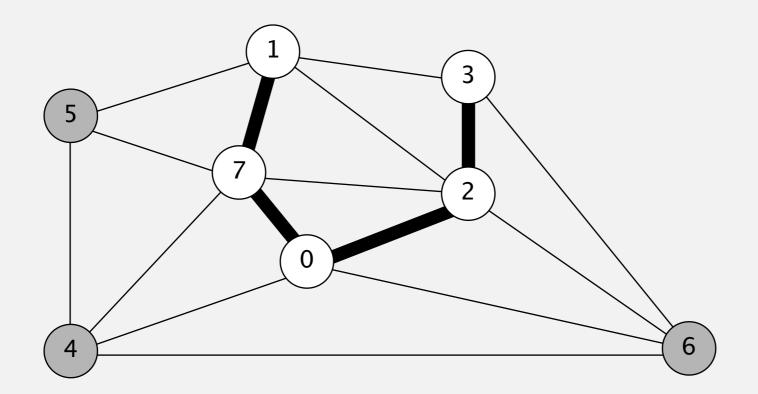
- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V 1 edges.



MST edges

0-7 1-7 0-2

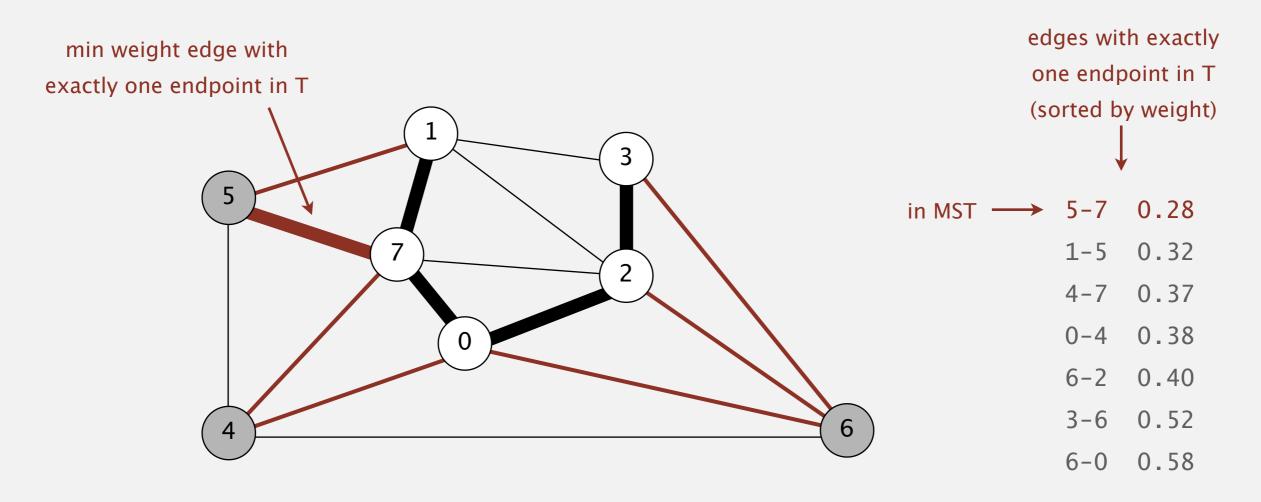
- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V* 1 edges.



MST edges

0-7 1-7 0-2 2-3

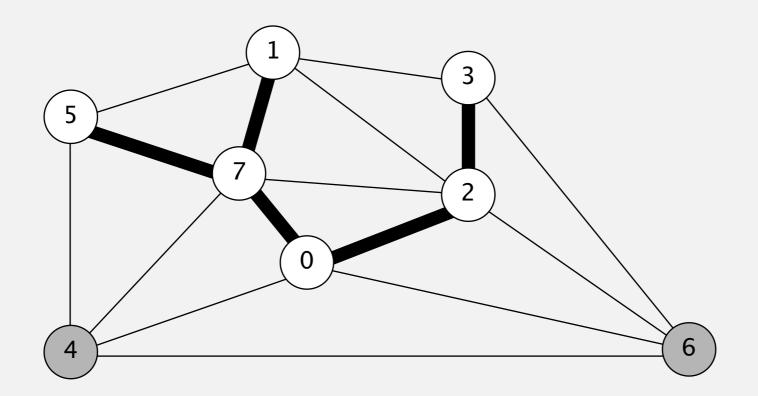
- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V 1 edges.



MST edges

0-7 1-7 0-2 2-3

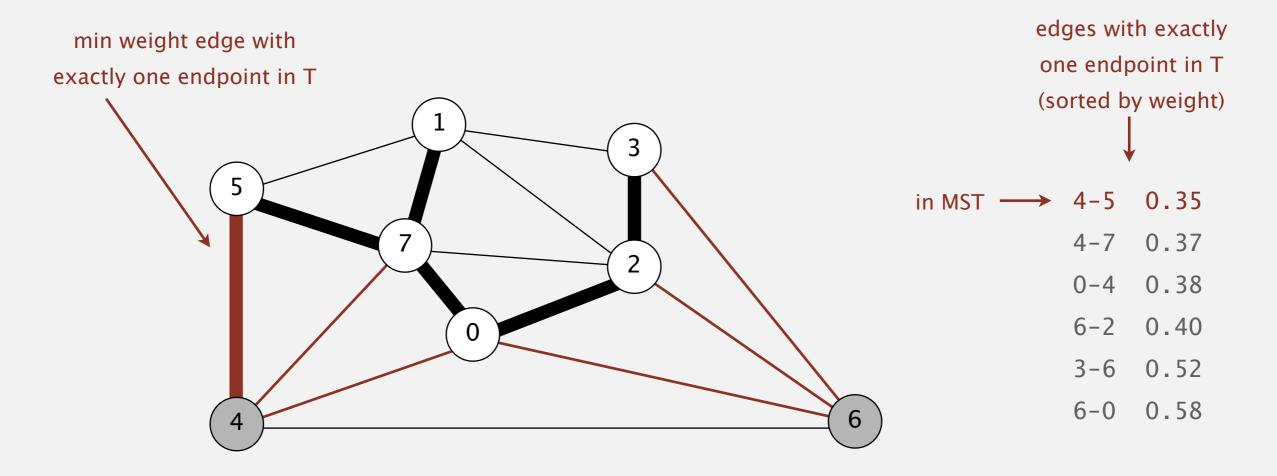
- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V* 1 edges.



MST edges

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V 1 edges.

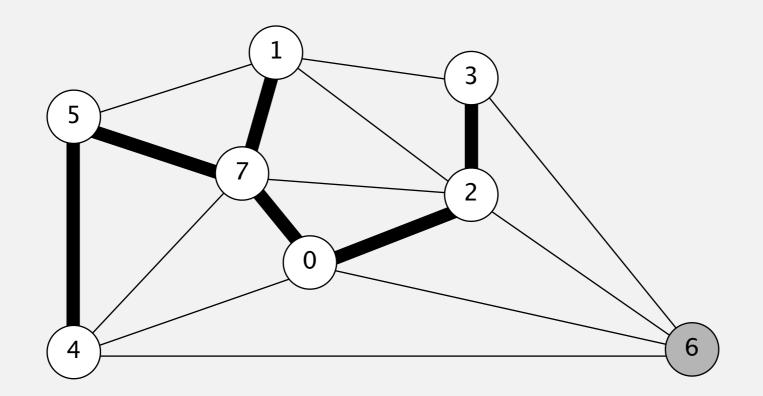


MST edges

0-7 1-7 0-2 2-3 5-7

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V* 1 edges.

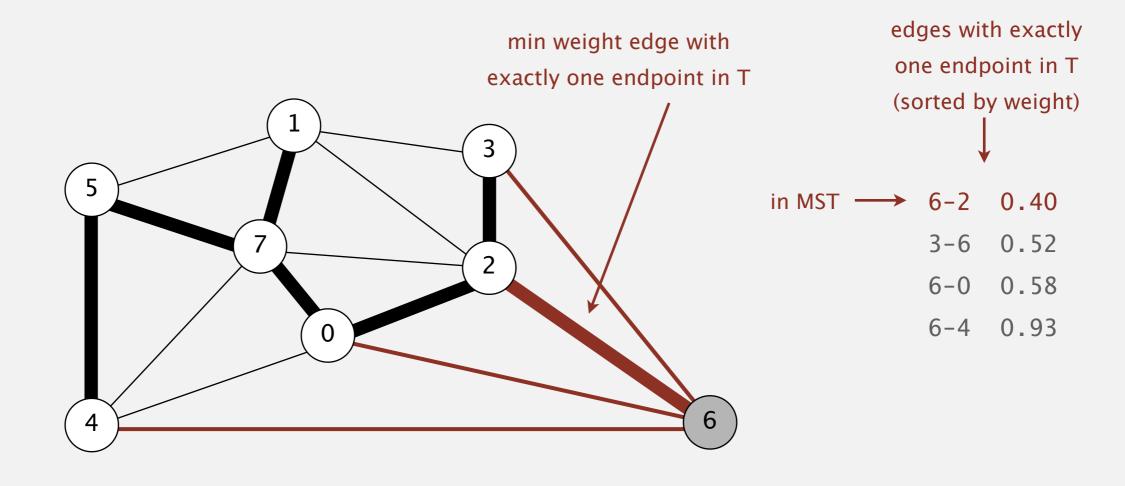


MST edges

0-7 1-7 0-2 2-3 5-7 4-5

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V 1 edges.

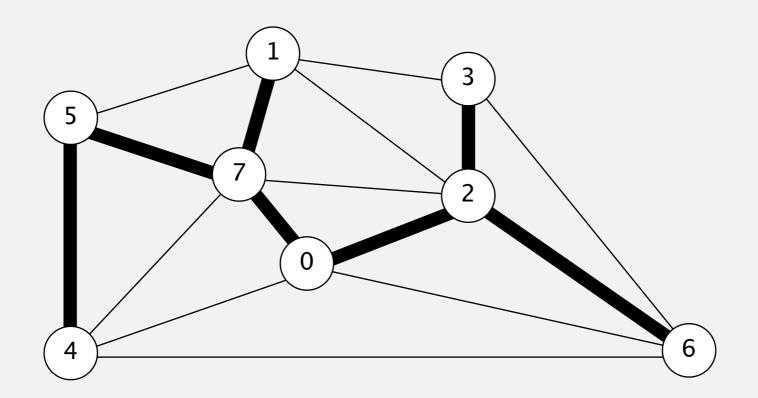


MST edges

0-7 1-7 0-2 2-3 5-7 4-5

Prim's algorithm demo

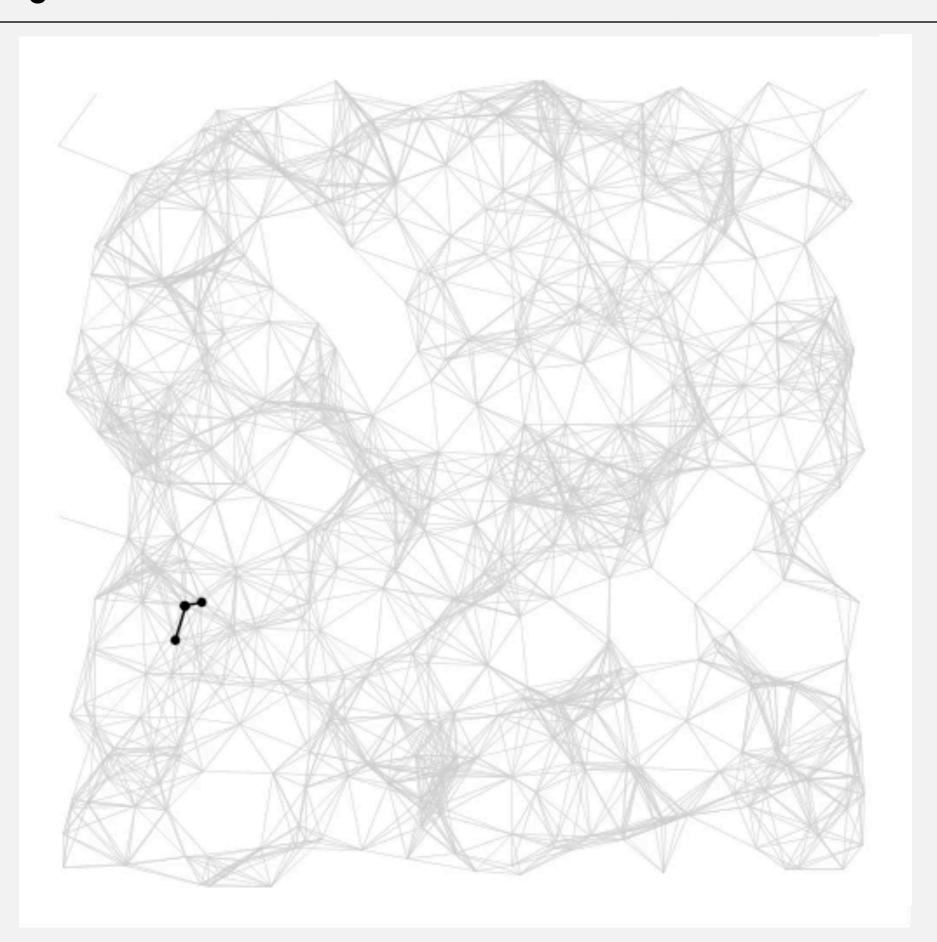
- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V* 1 edges.



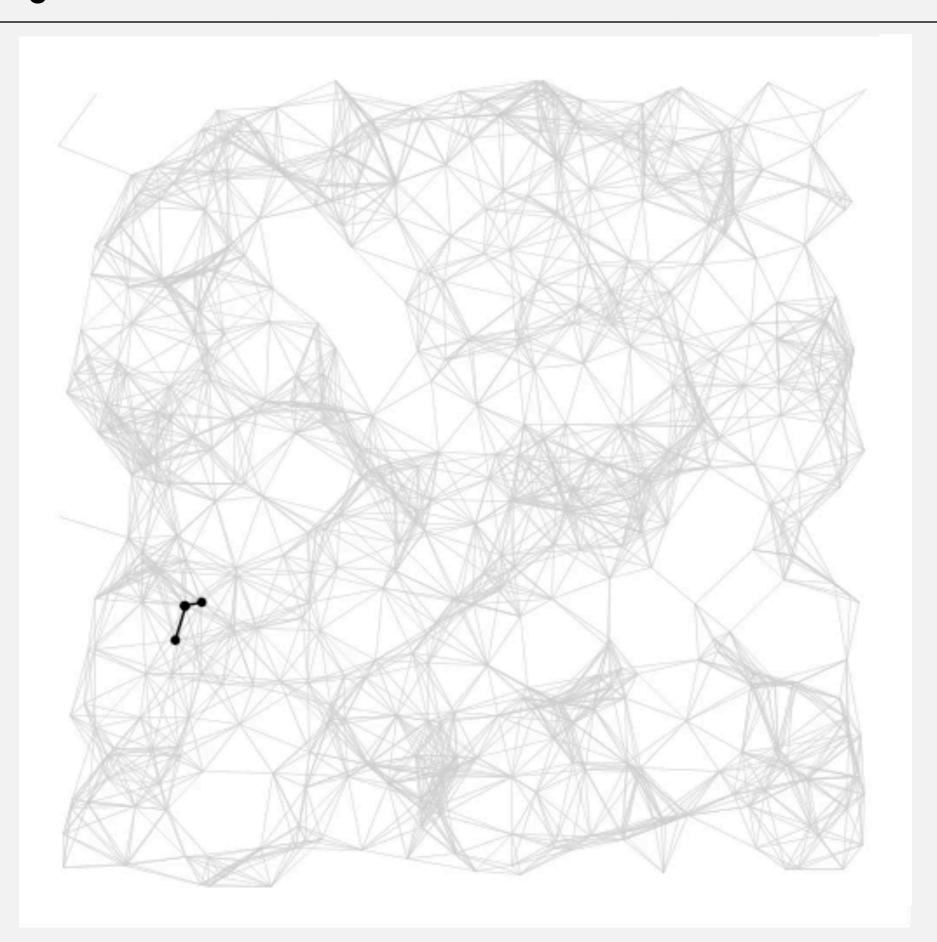
MST edges

0-7 1-7 0-2 2-3 5-7 4-5 6-2

Prim's algorithm: visualization



Prim's algorithm: visualization



Prim's algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in *T*.

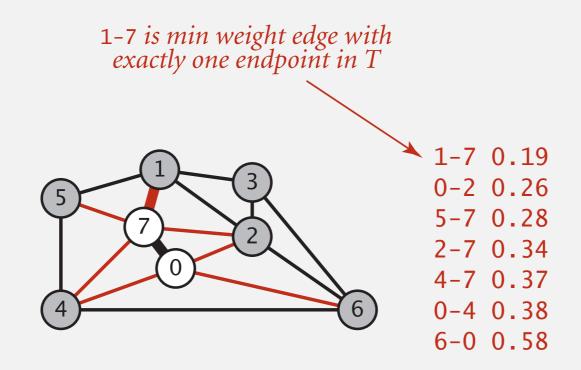
- E
- V
- $\log E$
- $\log^* E$
-]



Prim's algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in *T*.

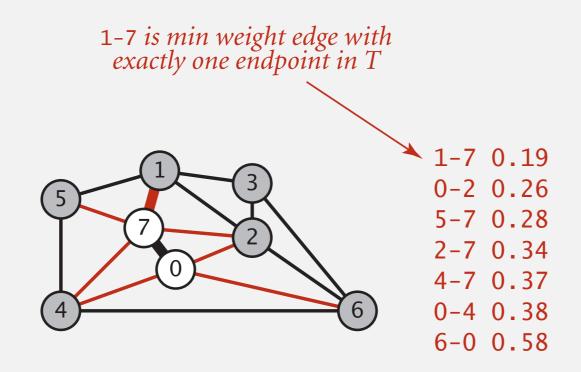
- V
- $\log E$
- $\log^* E$
- 1



Prim's algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in *T*.

- E try all edges
- V
- $\log E$ use a priority queue!
- $\log^* E$
- 1

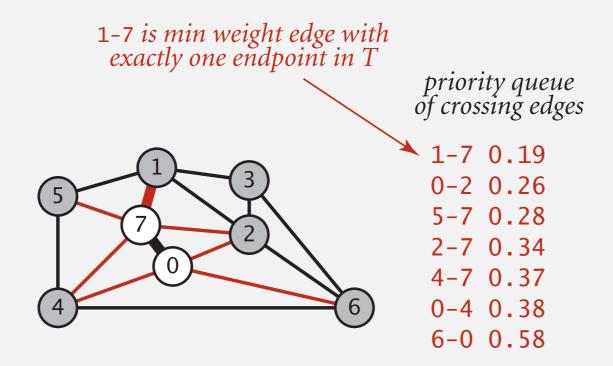


Challenge. Find the min weight edge with exactly one endpoint in *T*.

Challenge. Find the min weight edge with exactly one endpoint in *T*.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in *T*.

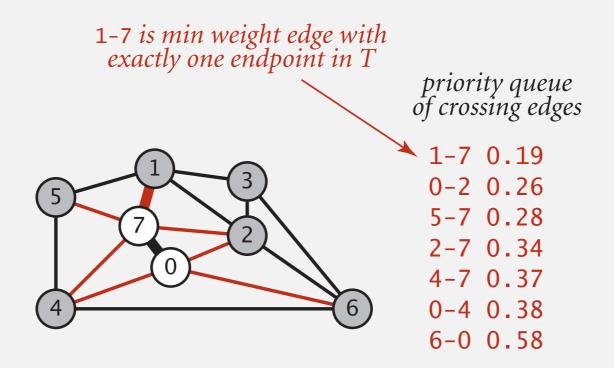
- Key = edge; priority = weight of edge.
- Delete-min to determine next edge e = v w to add to T.



Challenge. Find the min weight edge with exactly one endpoint in *T*.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

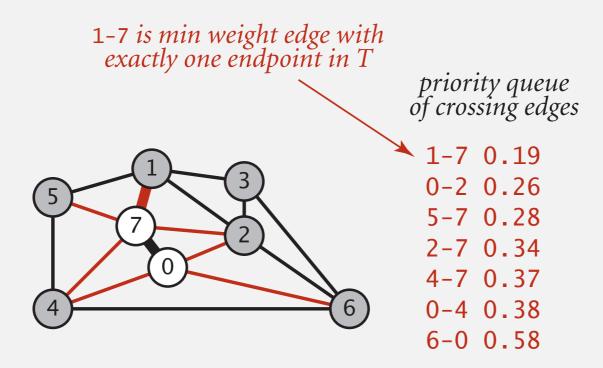
- Key = edge; priority = weight of edge.
- Delete-min to determine next edge e = v w to add to T.
- Disregard if both endpoints v and w are marked (both in T).



Challenge. Find the min weight edge with exactly one endpoint in *T*.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

- Key = edge; priority = weight of edge.
- Delete-min to determine next edge e = v w to add to T.
- Disregard if both endpoints v and w are marked (both in T).
- Otherwise, let w be the unmarked vertex (not in T):
 - add to PQ any edge incident to w (assuming other endpoint not in T)
 - add e to T and mark w



Lazy implementation of Prim's algorithm

Prim(graph G)

```
PQ = empty priority queue of edges
color all vertices grey
Visit(0)
while (|A| < n - 1)
     (u,v) = PQ.DeleteMin()
     if u or v is grey
         A = A \cup \{(u, v)\}
     if u is grey
         Visit(u)
     else // v is grey
          Visit(v)
```

Visit(vertex u)

```
color u black

for all edges (u,v)

if v is grey

PQ.insert((u,v), w(u, v))
```

Lazy Prim's algorithm: running time

Proposition. Lazy Prim's algorithm computes the MST in time proportional to E log E and extra space proportional to E (in the worst case).

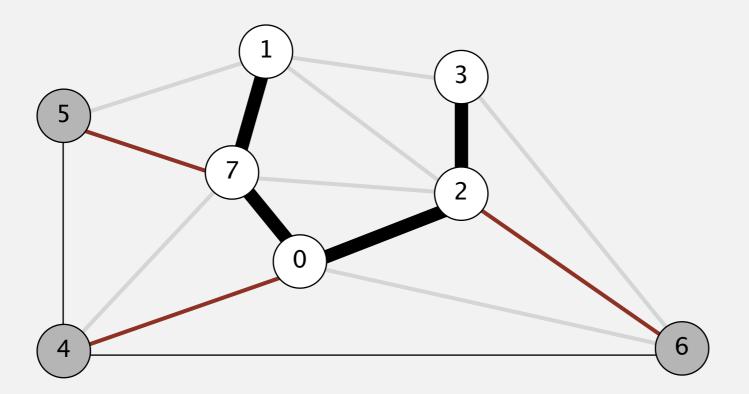
Lazy Prim's algorithm: running time

Proposition. Lazy Prim's algorithm computes the MST in time proportional to E log E and extra space proportional to E (in the worst case).

Pf.

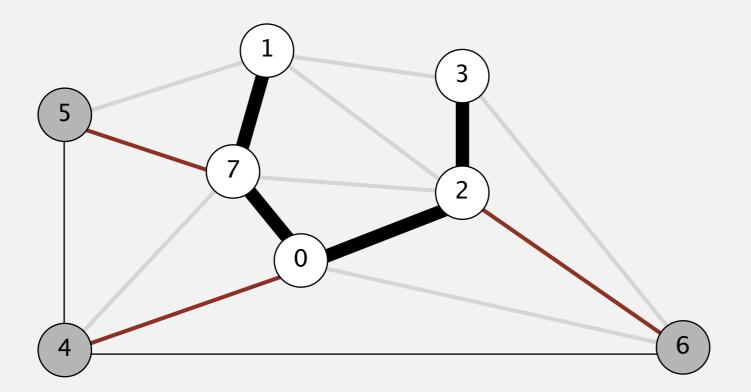
operation	frequency	binary heap	
delete min	E	$\log E$	
insert	E	$\log E$	

Challenge. Find min weight edge with exactly one endpoint in T.



Challenge. Find min weight edge with exactly one endpoint in *T*.

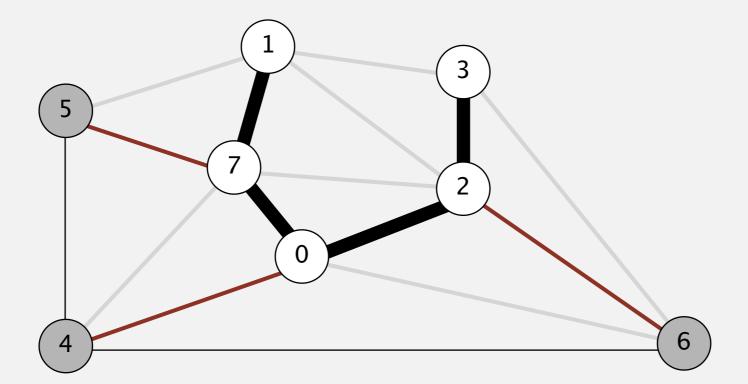
Observation. For each vertex v, need only min weight edge connecting v to T.



Challenge. Find min weight edge with exactly one endpoint in *T*.

Observation. For each vertex v, need only min weight edge connecting v to T.

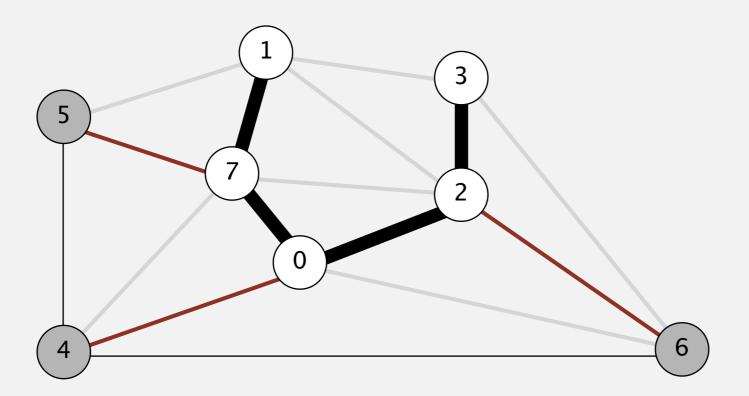
MST includes at most one edge connecting v to T. Why?



Challenge. Find min weight edge with exactly one endpoint in *T*.

Observation. For each vertex v, need only min weight edge connecting v to T.

- MST includes at most one edge connecting v to T. Why?
- If MST includes such an edge, it can take cheapest such edge. Why?

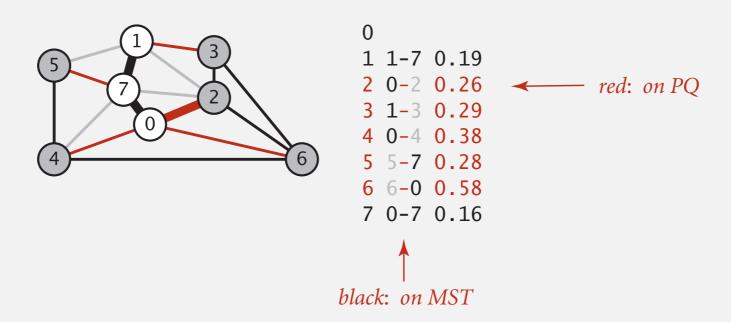


Challenge. Find min weight edge with exactly one endpoint in *T*.

Challenge. Find min weight edge with exactly one endpoint in *T*.

```
pq has at most one entry per vertex
```

Eager solution. Maintain a PQ of vertices connected by an edge to T, where priority of vertex v = weight of min weight edge connecting v to T.

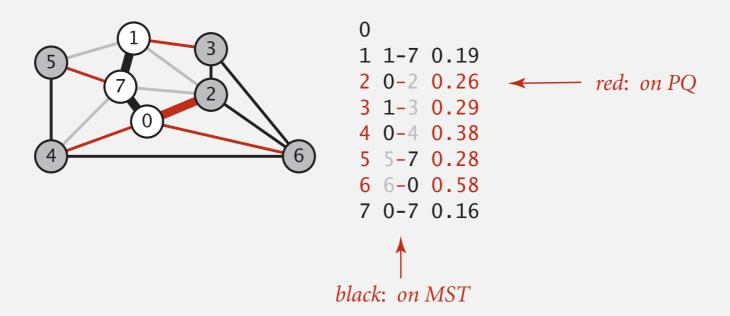


Challenge. Find min weight edge with exactly one endpoint in *T*.

```
pq has at most one entry per vertex
```

Eager solution. Maintain a PQ of vertices connected by an edge to T, where priority of vertex v = weight of min weight edge connecting v to T.

• Delete min vertex v and add its associated edge e = v - w to T.

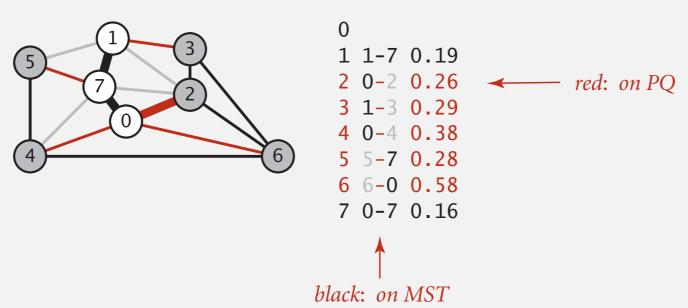


Challenge. Find min weight edge with exactly one endpoint in *T*.

```
pq has at most one entry per vertex
```

Eager solution. Maintain a PQ of vertices connected by an edge to T, where priority of vertex v = weight of min weight edge connecting v to T.

- Delete min vertex v and add its associated edge e = v w to T.
- Update PQ by considering all edges e = v-x incident to v
 - ignore if x is already in T
 - add x to PQ if not already on it
 - decrease priority of x if v-x becomes min weight edge connecting x
 to T



Eager implementation of Prim's algorithm

Prim(graph G)

```
PQ = empty priority queue of vertices
cost = array of size n
edge = array of size n
color all vertices grey
Visit(0)
while(PQ not empty)
     u = PQ.DeleteMin()
     A = A \cup \{edge[u]\}
     Visit(u)
```

Visit(vertex u)

```
color u black
for all edges (u,v)
     if v is grey
         color v red
         PQ.insert(v, w(u,v))
         cost[v] = w(u,v)
         edge[v] = (u,v)
     elseif (v is red) and (w(u,v) < cost[v])
         PQ.DecreaseKey(v, w(u,v))
         cost[v] = w(u,v)
         edge[v] = (u,v)
```

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

Depends on PQ implementation: *V* insert, *V* delete-min, *E* decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
unordered array	1	V	1	V^2

Bottom line.

• Array implementation optimal for dense graphs.

Depends on PQ implementation: *V* insert, *V* delete-min, *E* decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
unordered array	1	V	1	V^2
binary heap	$\log V$	$\log V$	$\log V$	$E \log V$

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
unordered array	1	V	1	V^2
binary heap	$\log V$	$\log V$	$\log V$	$E \log V$
d-way heap	$\log_d V$	$d\log_d V$	$\log_d V$	$E \log_{E/V} V$

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
unordered array	1	V	1	V^2
binary heap	$\log V$	$\log V$	$\log V$	$E \log V$
d-way heap	$\log_d V$	$d\log_d V$	$\log_d V$	$E \log_{E/V} V$
Fibonacci heap	1 †	$\log V^\dagger$	1 †	$E + V \log V$

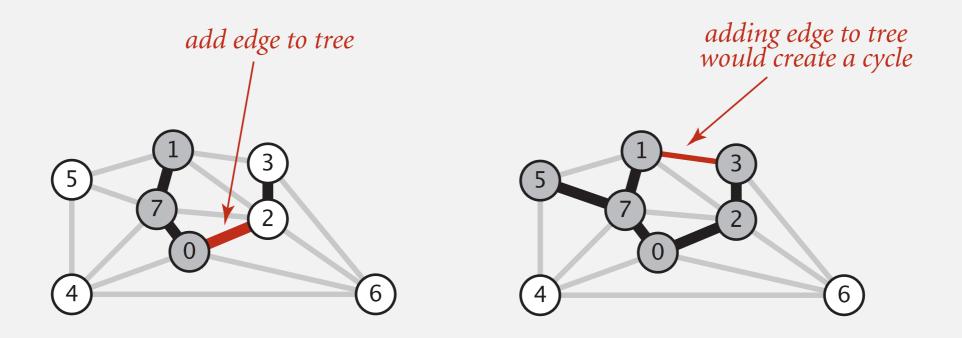
† amortized

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

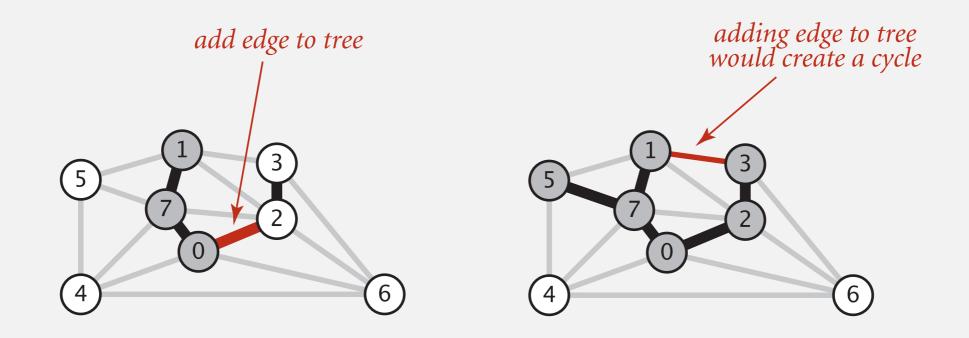
Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

- E + V
- V
- log *V*
- log* *V*
-]



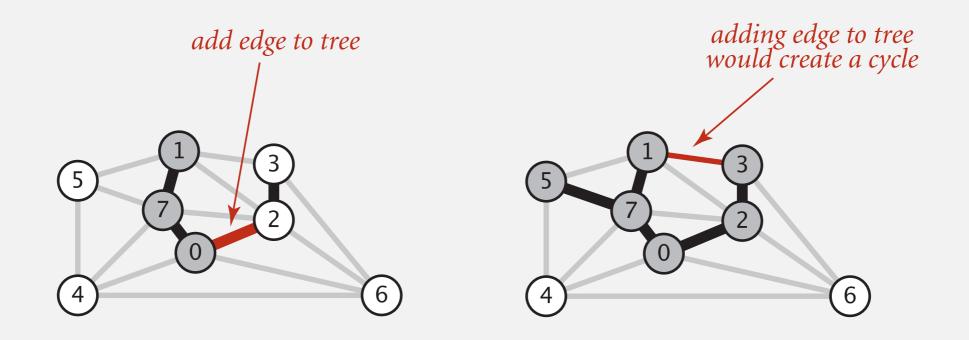
Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

- E + V
- V run DFS from v, check if w is reachable (T has at most V 1 edges)
- $\log V$
- log* *V*
- 1



Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

- E + V
- V run DFS from v, check if w is reachable (T has at most V 1 edges)
- log *V*
- $log* V \leftarrow$ use the union-find data structure!
- 1



Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

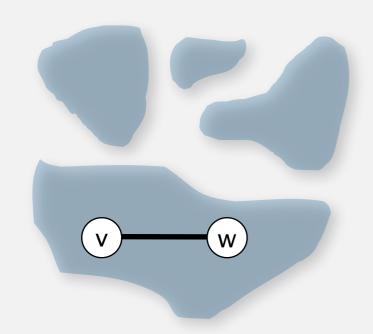
Efficient solution. Use the union-find data structure.

Maintain a set for each connected component in T.

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T.
- If v and w are in same set, then adding v-w would create a cycle.



Case 1: adding v-w creates a cycle

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T.
- If v and w are in same set, then adding v-w would create a cycle.
- To add v-w to T, merge sets containing v and w.

Case 1: adding v-w creates a cycle

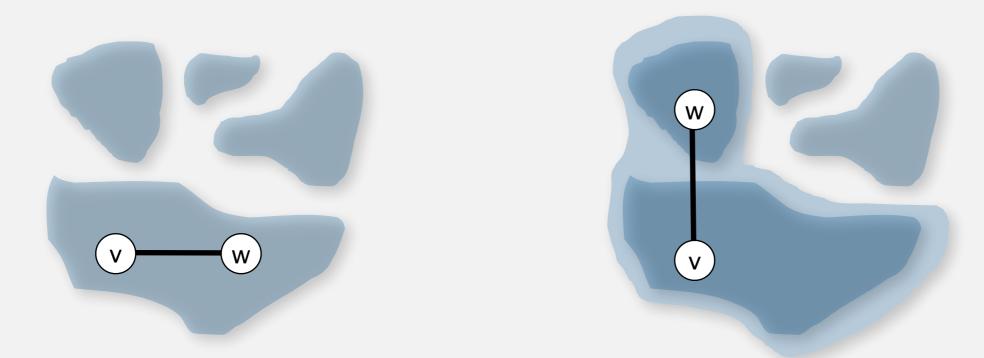
Case 2: add v-w to T and merge sets containing v and w

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T.
- If v and w are in same set, then adding v-w would create a cycle.
- To add v-w to T, merge sets containing v and w.



Case 1: adding v-w creates a cycle

Case 2: add v-w to T and merge sets containing v and w

Kruskal's algorithm: Java implementation

```
public class KruskalMST
   private Queue<Edge> mst = new Queue<Edge>();
   public KruskalMST(EdgeWeightedGraph G)
                                                                   build priority queue
                                                                   (or sort)
      MinPQ<Edge> pq = new MinPQ<Edge>(G.edges());
      UF uf = new UF(G.V());
      while (!pq.isEmpty() && mst.size() < G.V()-1)
         Edge e = pq.delMin();
                                                                   greedily add edges to MST
         int v = e.either(), w = e.other(v);
         if (!uf.connected(v, w))
                                                                   edge v-w does not create cycle
            uf.union(v, w);
                                                                   merge sets
            mst.enqueue(e);
                                                                   add edge to MST
   public Iterable<Edge> edges()
      return mst; }
}
```

Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to $E \log E$ (in the worst case).

Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to $E \log E$ (in the worst case).

Pf.

operation	frequency	time per op
build pq	1	E
delete-min	E	$\log E$
union	V	log∗ V†
connected	E	log* V [†]

[†] amortized bound using weighted quick union with path compression

Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to $E \log E$ (in the worst case).

Pf.

operation	frequency	time per op
build pq	1	E
delete-min	E	$\log E$
union	V	log* V†
connected	E	log* V†

[†] amortized bound using weighted quick union with path compression

recall: log* V ≤ 5 in this universe

Remark. If edges are already sorted, order of growth is *E* log* *V*.

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

- introduction
- greedy algorithm
- edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- context

year worst case	discovered by
-----------------	---------------

year	worst case	discovered by
1975	$E \log \log V$	Yao

year	worst case	discovered by
1975	$E \log \log V$	Yao
1976	$E \log \log V$	Cheriton-Tarjan

year	worst case	discovered by
1975	$E \log \log V$	Yao
1976	$E \log \log V$	Cheriton-Tarjan
1984	$E \log^* V$, $E + V \log V$	Fredman-Tarjan

year	worst case	discovered by
1975	$E \log \log V$	Yao
1976	$E \log \log V$	Cheriton-Tarjan
1984	$E \log^* V$, $E + V \log V$	Fredman- <mark>Tarjan</mark>
1986	$E \log (\log^* V)$	Gabow-Galil-Spencer-Tarjan

year	worst case	discovered by
1975	$E \log \log V$	Yao
1976	$E \log \log V$	Cheriton-Tarjan
1984	$E \log^* V$, $E + V \log V$	Fredman- <mark>Tarjan</mark>
1986	$E \log (\log^* V)$	Gabow-Galil-Spencer-Tarjan
1997	$E \alpha(V) \log \alpha(V)$	Chazelle

year	worst case	discovered by
1975	$E \log \log V$	Yao
1976	$E \log \log V$	Cheriton-Tarjan
1984	$E \log^* V$, $E + V \log V$	Fredman-Tarjan
1986	$E \log (\log^* V)$	Gabow-Galil-Spencer-Tarjan
1997	$E \alpha(V) \log \alpha(V)$	Chazelle
2000	$E \alpha(V)$	Chazelle

year	worst case	discovered by
1975	$E \log \log V$	Yao
1976	$E \log \log V$	Cheriton-Tarjan
1984	$E \log^* V$, $E + V \log V$	Fredman- <mark>Tarjan</mark>
1986	$E \log (\log^* V)$	Gabow-Galil-Spencer-Tarjan
1997	$E \alpha(V) \log \alpha(V)$	Chazelle
2000	$E \alpha(V)$	Chazelle
2002	optimal	Pettie-Ramachandran

year	worst case	discovered by
1975	$E \log \log V$	Yao
1976	$E \log \log V$	Cheriton-Tarjan
1984	$E \log^* V$, $E + V \log V$	Fredman-Tarjan
1986	$E \log (\log^* V)$	Gabow-Galil-Spencer-Tarjan
1997	$E \alpha(V) \log \alpha(V)$	Chazelle
2000	$E \alpha(V)$	Chazelle
2002	optimal	Pettie-Ramachandran
20xx	E	???

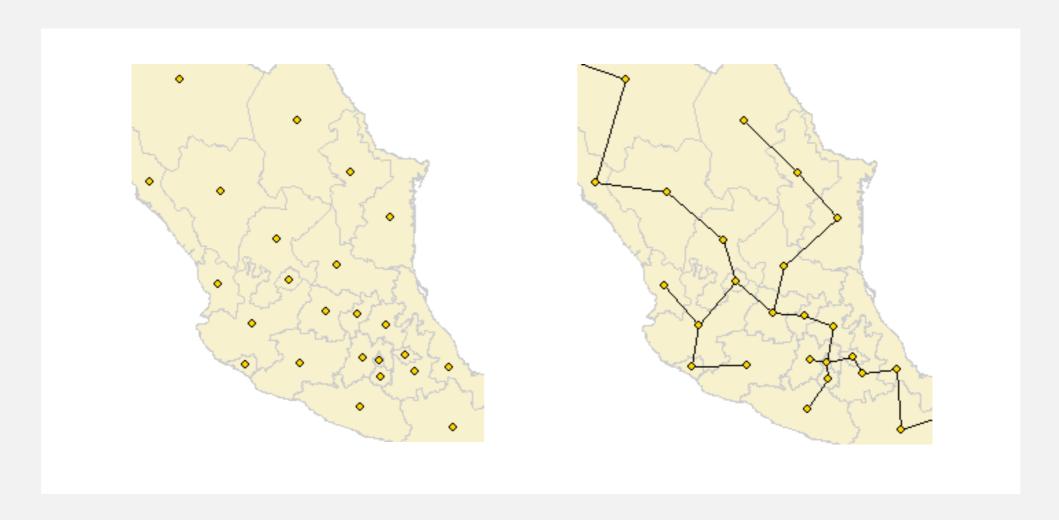
deterministic compare-based MST algorithms

year	worst case	discovered by
1975	$E \log \log V$	Yao
1976	$E \log \log V$	Cheriton-Tarjan
1984	$E \log^* V$, $E + V \log V$	Fredman-Tarjan
1986	$E \log (\log^* V)$	Gabow-Galil-Spencer-Tarjan
1997	$E \alpha(V) \log \alpha(V)$	Chazelle
2000	$E \alpha(V)$	Chazelle
2002	optimal	Pettie-Ramachandran
20xx	E	???

Remark. Linear-time randomized MST algorithm (Karger-Klein-Tarjan 1995).

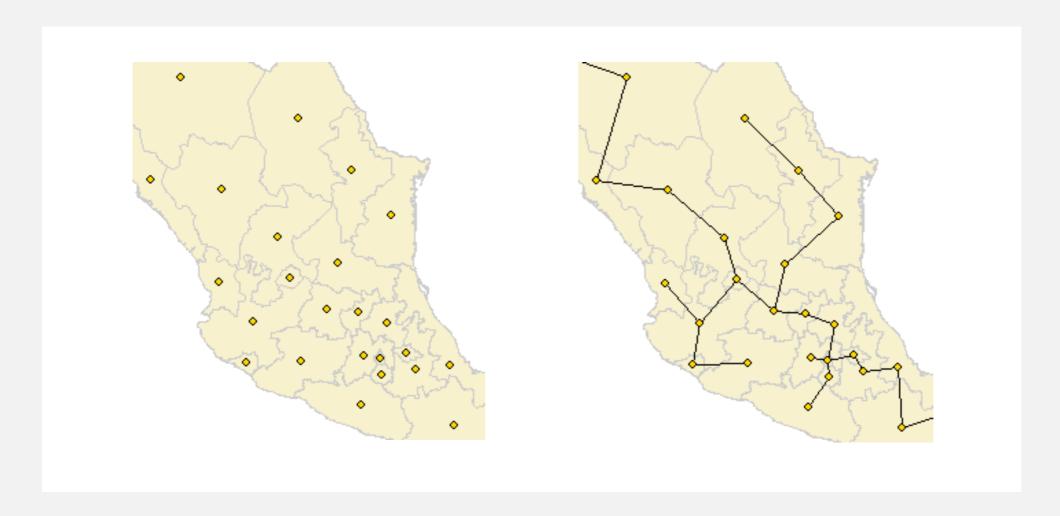
Euclidean MST

Given *N* points in the plane, find MST connecting them, where the distances between point pairs are their Euclidean distances.



Euclidean MST

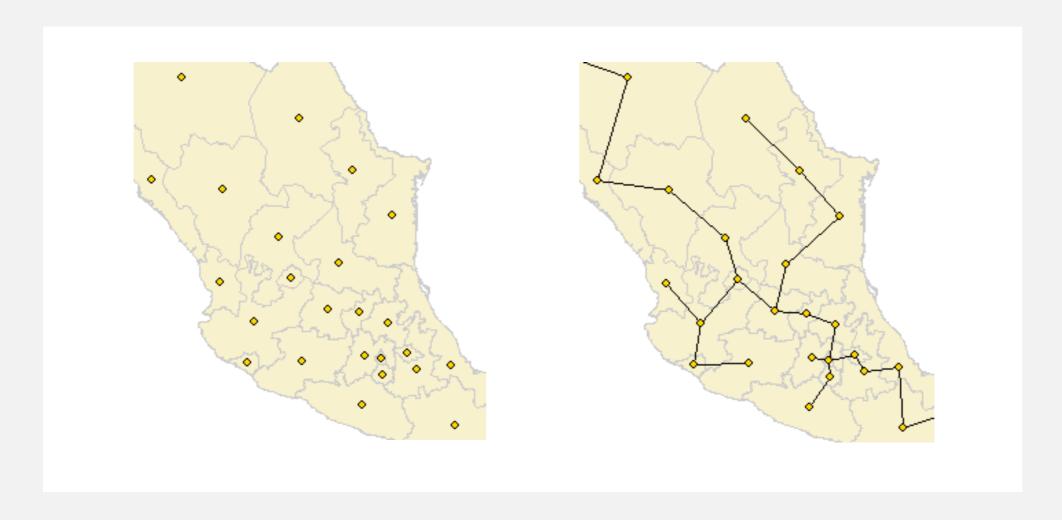
Given N points in the plane, find MST connecting them, where the distances between point pairs are their Euclidean distances.



Brute force. Compute $\sim N^2$ / 2 distances and run Prim's algorithm.

Euclidean MST

Given N points in the plane, find MST connecting them, where the distances between point pairs are their Euclidean distances.

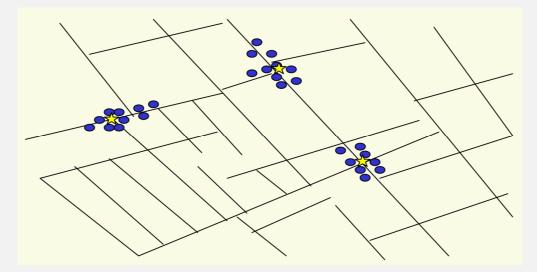


Brute force. Compute $\sim N^2$ / 2 distances and run Prim's algorithm. Ingenuity. Exploit geometry and do it in $\sim c$ N log N.

Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups. Distance function. Numeric value specifying "closeness" of two objects.

Goal. Divide into clusters so that objects in different clusters are far apart.

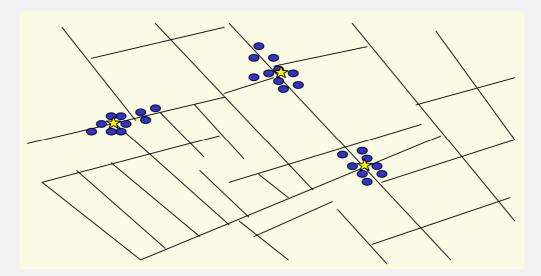


outbreak of cholera deaths in London in 1850s (Nina Mishra)

Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups. Distance function. Numeric value specifying "closeness" of two objects.

Goal. Divide into clusters so that objects in different clusters are far apart.



outbreak of cholera deaths in London in 1850s (Nina Mishra)

Applications.

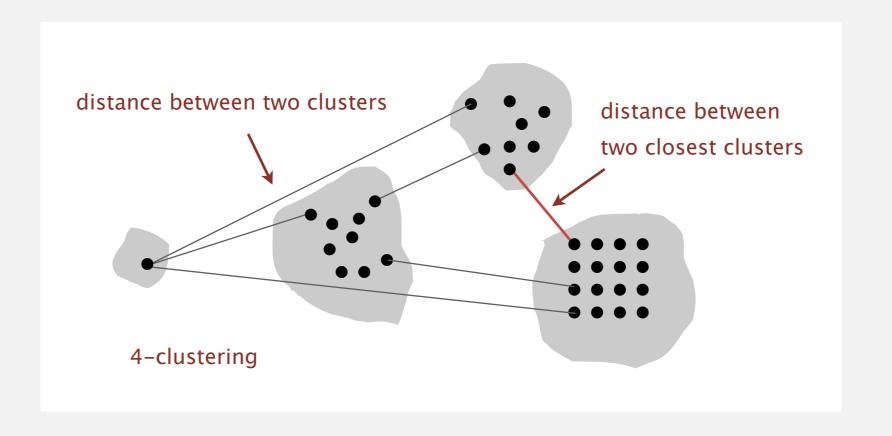
- Routing in mobile ad hoc networks.
- Document categorization for web search.
- Similarity searching in medical image databases.
- Skycat: cluster 109 sky objects into stars, quasars, galaxies.

Single-link clustering

k-clustering. Divide a set of objects classify into k coherent groups. Distance function. Numeric value specifying "closeness" of two objects.

Single link. Distance between two clusters equals the distance between the two closest objects (one in each cluster).

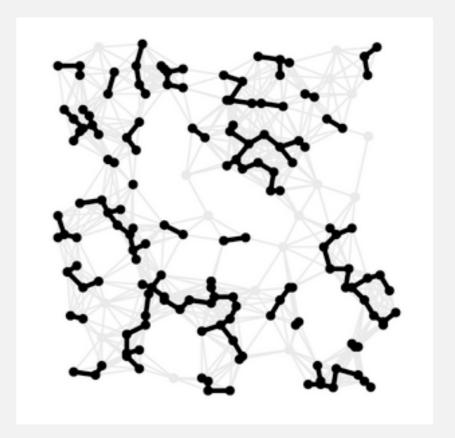
Single-link clustering. Given an integer k, find a k-clustering that maximizes the distance between two closest clusters.



Single-link clustering algorithm

"Well-known" algorithm in science literature for single-link clustering:

- Form *V* clusters of one object each.
- Find the closest pair of objects such that each object is in a different cluster, and merge the two clusters.
- Repeat until there are exactly k clusters.

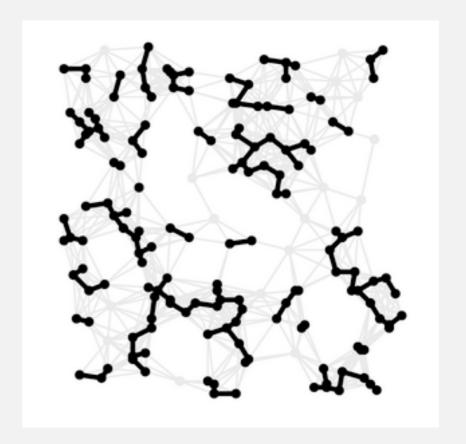


Single-link clustering algorithm

"Well-known" algorithm in science literature for single-link clustering:

- Form V clusters of one object each.
- Find the closest pair of objects such that each object is in a different cluster, and merge the two clusters.
- Repeat until there are exactly k clusters.

Observation. This is Kruskal's algorithm. (stopping when *k* connected components)

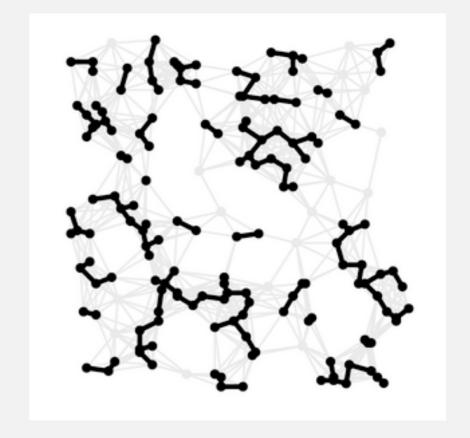


Single-link clustering algorithm

"Well-known" algorithm in science literature for single-link clustering:

- Form V clusters of one object each.
- Find the closest pair of objects such that each object is in a different cluster, and merge the two clusters.
- Repeat until there are exactly k clusters.

Observation. This is Kruskal's algorithm. (stopping when *k* connected components)



Alternate solution. Run Prim; then delete k-1 max weight edges.

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

