Shortest Paths

Nishant Mehta

Lectures 5-6

FInding the Fastest Way to Travel
between Two Intersections in Vancouver

Granville St Homer St
and 4 3 4 aqd
W Hastings St m W Hastings St
e 1 5
2 3 2 1
6 4 5
ol el o
2 3 2
1 2 5 1
Granville St ©<\ ; ><> Homer St
and 1 1 and

W Pender St W Pender St

Shortest Paths in Weighted Graphs

Find fastest way o fravel across the country using directed
graph representing roads, with edge weights representing:

e distfances

« fravel fimes between cities
(might account for speed limits, traffic, efc.)

Find a fastest way using flights
o Flight distances between airports.

« Might also allow for warps in space-time continuum.
Negative fravel time

Single-Source Shortest Paths

o If graph is unweighted:

e Breadth-First Search is a solution (more on this soon)

o If graph is weighted:

o Every edge is associated with a humber:

integers, rational numbers, real numbers (might be negative!)

« An edge weight can represent:
distance, connection cost, affinity

Single-Source Shortest Paths Problem

e Input: A weighted directed graph G = (V, E)
and a source vertex s

o Output: All single-source shortest paths for s in G, i.e, for
all other vertices v in G, a shortest path from s fo v.

e A path p= (vg,v1,...,v,) from s = vy to v = v
is shortest if its length w(p) = Z?Zl w(vi—1,v;)
is the minimum possible among all s—v paths

Optimal substructure

Optimal substructure - an optimal solution fo a problem
contains with It optimal solufions fo subproblems

Example:
« Problem: Find shortest path from vertex v, fo vertex v,

« Subproblem: Find shortest path from intermediate vertex V; fo v,

-
e " s

-

4

Subpaths of shortest paths are shortest paths

Lemma

Let Py, = (v, Vs, ..., V) be a shortest path from v, fo v, .
Take some arbitrary i, j satisfying 1 <i <j <k, and let
P;= v,V ..., v;) be the subpath of Py, from v; to v;.
Then Pl-j Is a shortest path from v, fo Vi

Relax: The most important function for today’s lecture

ReELAX(U, V)

If d[u] + w(u, v) < d[v]

dlv] < d[u] + w(u, v)

mtlv] <« u

Single-source shortest paths for weighted

DAGS

« Suppose we have a weighted directed acyclic graph (DAG)

o An easy way fo solve single-source shortest paths problem:

(1) Use topological sort to obtain topological ordering
(basically, use DFS + a slight amount of extra work)

(2) For each vertex u in topological order
For all vertices v adjacent to u

RELAX(U, V)

e Runtime?

https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html

Single-source shortest paths for weighted

DAGS

« Suppose we have a weighted directed acyclic graph (DAG)

o An easy way fo solve single-source shortest paths problem:

(1) Use topological sort to obtain topological ordering
(basically, use DFS + a slight amount of extra work)

(2) For each vertex u in topological order
For all vertices v adjacent to u

RELAX(U, V)

e« Runtime? O(V + E)

https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html

Single-source shortest paths for weighted

DAGS

« Suppose we have a weighted directed acyclic graph (DAG)

o An easy way fo solve single-source shortest paths problem:

(1) Use topological sort to obtain topological ordering
(basically, use DFS + a slight amount of extra work)

(2) For each vertex u in topological order
For all vertices v adjacent to u

RELAX(U, V)
e« Runtime? O(V + E)

« Claim: Above algorithm is correct. Let's prove it

https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html

Breadth-First Search for Unweighted Graphs

For each vertex, keep track of a color:
e WHITE: Unvisited
e RED: Visited and Active - some adjacent vertices might not been added to queue yet

e BLACK: Visited and Inactive - all adjacent vertices have been added to queue

Pseudocode:
I. Forallu e V
2. Color u WHITE, set d|u] = oo, and set 7|u] = null
3. Color s RED and set d[s] =0
4. Enqueue s into empty queue ()
5. While @ is not empty:

6. u < Dequeue(Q)
7. For each WHITE vertex v adjacent to u

8. Color v RED
9. Set d[v] = d|u] + 1 and w[v] = wu.
10. Enqueue v into ()
11. Color u BLACK

Dijkstra's Algorithm

Dijkstra’'s Algorithm

Input: A simple directed graph G with nonnegative edge-weights
and a source vertex s in G

Output: A number d[u] for each vertex u in G such that d[u] is
the weight of the shortest path in G from s fo u

Dijkstra’'s Algorithm - Conceptual Version

Dijkstra(V, E, s):
S « {s}
dls] « O
While S £ V
For all vé& S such that there is an edge (u, v) for some u € S:
cost c[v] « mingu v:uinsy dlu] + w(u, v)
Of these vertices, let v be one for which c[v] is minimum

Add v to S
dlv] « c[v]

Note: this version doesn't use Relax! But
for an implementation, it's good to do so.
Also, this version doesn't keep track of
the predecessor array!

Dijkstra’s Algorithm

Dijkstra(V, E, s):

ForvinV
dlv] « oo ; mlv] « null;
dls] « O
S« 1
Q = BuildPriorityQueue(V, d)

While Q not empty
u < DeleteMin(Q)

RELAX(U, V)
S« SUu
For v in Adj[u] If d[u] + w(u, v) < d[V]
Relax(u,v) dlv] « d[u] + w(u, v)

mtlv] <« u

Dijkstra’ s algorithm: a greedy
[algorithm

E

+c0

ijkstra’ s algorithm: Initializing

Dijkstra’ s algorithm: Initializing Cloud
C (consisting of “solved” subgraph)

+c0

f

+c0

ijkstra’ s algorithm: pull v into C

Dijkstra’ s algorithm: update C’s
[neighborhood

+c0

Dijkstra’ s algorithm: pick closest
[vertex u outside C

+c0

f

+c0

ijkstra’ s algorithm: pull « into C

Dijkstra’ s algorithm: update C’s
[neighborhood

Dijkstra’ s algorithm: pick closest
[vertex u outside C

[Dijkstra’ s algorithm: pull « into C]

Dijkstra’ s algorithm: update C’s
[neighborhood

Dijkstra’ s algorithm: pick closest
[vertex u outside C

[Dijkstra’ s algorithm: pull « into C]

Dijkstra’ s algorithm: update C’s]
[neighborhood

Dijkstra’ s algorithm: pick closest]
[vertex u outside C

[Dijkstra’ s algorithm: pull « into C]

Dijkstra’ s algorithm: update C’s]
[neighborhood

Dijkstra’ s algorithm: pick closest]
[vertex u outside C

[Dijkstra’ s algorithm: pull « into C]

Dijkstra’ s algorithm: update C’s]
[neighborhood

Dijkstra’ s algorithm: pick closest]
[vertex u outside C

| Dijkstra’ s algorithm: pull « into C]

Dijkstra’ s algorithm: update C’s]
[neighborhood

Dijkstra’ s algorithm: pick closest]
[vertex u outside C

| Dijkstra’ s algorithm: pull u into C]

Dijkstra’ s algorithm: update C’s]
[neighborhood

Dijkstra’ s algorithm: pick closest]
[vertex u outside C

| Dijkstra’ s algorithm: pull u into C]

Dijkstra’ s algorithm: update C’s]
| neighborhood

Dijkstra’ s algorithm: pick closest]
[vertex u outside C

| Dijkstra’ s algorithm: pull u into C]

Dijkstra’s Algorithm

Dijkstra(V, E, s):

ForvinV
dlv] « oo ; mlv] « null;
dls] « O
S« 1
Q = BuildPriorityQueue(V, d)

While Q not empty
u < DeleteMin(Q)

RELAX(U, V)
S« SUu
For v in Adj[u] If d[u] + w(u, v) < d[V]
Relax(u,v) dlv] « d[u] + w(u, v)

mtlv] <« u

Dijkstra vs Prim

Dijkstra(V, E, s):

ForvinV
dlv] «oo: 7 [v] « null:
dls] « O
S « ()
Q = BuildPriorityQueue(V, d)

While Q not empty
u < DeleteMin(Q)
S« SuUu

For v in Adj[u]

If d[u] + w(u, v) < d[v]
dlv] « dlu] + w(u, v)

nlv] < u

UpdatePQ(v, d[v])

Prim(V. E, s):

ForvinV

dlv] «oo: tlv] <« null;
dls] « O
S «1()
Q = BuildPriorityQueue(V, d)
While Q not empty

U « DeleteMin(Q)

S« SuUu

For v in Adj[u]

If w(u, v) < d[v]
dlv] <« w(u, v)

mlv] < u
UpdatePQ(v, d[v])

Dijkstra’'s Algorithm - Runtime
Dijkstra(V, E, s):

ForvinV
dlv] «oo: 7 [v] « null;
dls] « O
S «1()
Q = BuildPriorityQueue(V, d) < O(V) for binary or

While Q not empty Fibonacci heap

V calls —— U « DeleteMin(Q) <«—— 0O(log V)/call for binary or
S« SuUuy Fibonacci heaps

For v in Adj[u]

If d[u] + w(u, v) < d[V]

dlv] « dlu] + w(u, v)
ntlv] < u O(log V)/call for binary heap
hdatePQ(v, d[v]) " O(1)/call for Fibonacci heap

at most E calls — U

RELAX preserves upper bound property of d|v]

 Upper bound property: Any sequence of calls o RELAX
maintains the invariant that d[v] > &(s, v) forall v € V

o Proof: simple exercise

« Imporfant consequence:

If no path from s fo v, then d[v] = co always!

Dijkstra’s Algorithm - Correctness

Claim: for all v in S, the algorithm’s path P, from s-v is @
shortest s-v path

Proof by induction

Base case: |S| = 1, with S = {s}

Clearly, Ps = (s) is a shortest s-s path (of length zero!)
Inductive step

« Suppose the claim holds for |S| = k

« Prove that it holds for [S| = k + 1

Dijkstra’s Algorithm - Correctness

Let |S| = k and suppose algorithm is about to add v fo S,
by way of uin S

Let P, be the algorithm'’s s-v path after the addition,
with penulfimate verfex u in S

Consider an arbitrary alternative path PQ

P! has a first edge (x, y) that crosses the cut (S, V' \ S)

w(P)) > 5(_5,_X) + w(x, y) > (%) >(y)

= d|x] + w(x, y)
T

= 0(s, u) + w(u, v)

Dijkstra’s Algorithm - Correctness

« Consider an arbitrary alternative path PQ

« P/ has a first edge (x, y) that crosses the cut (S, V' \ S)

S
o——()

)

w(P)) > 5(s, x) + w(x, y)
— d:X: 1 W(X, y) (inductive hypothesis)

Path P! cannot be -
shorter than ,DV > d uj + W(u, V) (v is hext verfex added to S)

— 5(5, u) -+ W(u, v) (inductive hypothesis)
= w(Py)

Dijkstra’'s Algorithm - Negative Weights

What would Dijkstra do?

“Greed is good.”
-Gordon Gekko

“Greed is not good
(when a graph has
negative edge weights)."

- Bernie Sanders

“Greed is good.”
-Gordon Gekko

