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Finding the Fastest Way to Travel 
between Two Intersections in Vancouver

4

2

3

1

4

5
2

1

3

2

2

5

1

1

6

2

2

1

1

1

2

1

4

3

5

2

Granville St

and


W Hastings St

Homer St

and


W Pender St

Homer St

and


W Hastings St

Granville St

and


W Pender St



Shortest Paths in Weighted Graphs

• Find fastest way to travel across the country using directed 
graph representing roads, with edge weights representing: 

• distances 

• travel times between cities                                              
(might account for speed limits, traffic, etc.) 

• Find a fastest way using flights 

• Flight distances between airports. 

• Might also allow for warps in space-time continuum. 
Negative travel time



Single-Source Shortest Paths

• If graph is unweighted: 

• Breadth-First Search is a solution (more on this soon) 

• If graph is weighted: 

• Every edge is associated with a number: 

integers, rational numbers, real numbers (might be negative!) 

• An edge weight can represent: 

distance, connection cost, affinity



Single-Source Shortest Paths Problem

• Input: A weighted directed graph G = (V, E)              
Input: and a source vertex s 

• Output: All single-source shortest paths for s in G, i.e., for 
all other vertices v in G, a shortest path from s to v. 

• A path p = (v0, v1, . . . , vk) from s = v0 to v = vk
is shortest if its length w(p) =

Pk
j=1 w(vj�1, vj)

is the minimum possible among all s–v paths



Optimal substructure

Optimal substructure - an optimal solution to a problem              
contains with it optimal solutions to subproblems 

Example: 

• Problem: Find shortest path from vertex  to vertex  

• Subproblem: Find shortest path from intermediate vertex  to 

v1 vk

vj vk

v1
v2 vj

vj+1⋯
vj+2

vk

P′￼jk

Pjk = (vj, vj+1, vj+2, vk)



Subpaths of shortest paths are shortest paths

Lemma 

Let  be a shortest path from  to  . 
Take some arbitrary  satisfying , and let 

 be the subpath of  from  to  . 

Then  is a shortest path from  to  .

P1k = (v1, v2, …, vk) v1 vk
i, j 1 ≤ i < j ≤ k

Pij = (vi, vi+1, …, vj) P1k vi vj
Pij vi vj



Relax: The most important function for today’s lecture

RELAX(u, v) 

If d[u] + w(u, v) < d[v] 

d[v]  d[u] + w(u, v) 

[v]  u

←

⇡ ←



Single-source shortest paths for weighted DAGs

• Suppose we have a weighted directed acyclic graph (DAG) 

• An easy way to solve single-source shortest paths problem: 

(1) Use topological sort to obtain topological ordering 
(basically, use DFS + a slight amount of extra work) 

(2) For each vertex u in topological order 

_For all vertices v adjacent to u 

__RELAX(u, v) 

• Runtime?

https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html
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Single-source shortest paths for weighted DAGs

• Suppose we have a weighted directed acyclic graph (DAG) 

• An easy way to solve single-source shortest paths problem: 

(1) Use topological sort to obtain topological ordering 
(basically, use DFS + a slight amount of extra work) 

(2) For each vertex u in topological order 

_For all vertices v adjacent to u 

__RELAX(u, v) 

• Runtime?  O(V + E) 

• Claim: Above algorithm is correct.      Let’s prove it!

https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html


Breadth-First Search for Unweighted Graphs 
Breadth-First Search: Unweighted Graphs
For each vertex, keep track of a color:

• White: Unvisited

• Red: Visited and Active - some adjacent vertices might not been added to queue yet

• Black: Visited and Inactive - all adjacent vertices have been added to queue

Pseudocode:

1. For all u 2 V

2. Color u White, set d[u] =1, and set ⇡[u] = null

3. Color s Red and set d[s] = 0

4. Enqueue s into empty queue Q

5. While Q is not empty:

6. u Dequeue(Q)

7. For each White vertex v adjacent to u

8. Color v Red
9. Set d[v] = d[u] + 1 and ⇡[v] = u.

10. Enqueue v into Q

11. Color u Black

Remarks

• We discover one layer of nodes at a time. The layer of v is indicated by the value of
d[v] when v is enqueued.

• Once a node is added to the queue, it is never added again, so d[v] and ⇡[v] are at their
final values!

• On completion, each node but s has a predecessor (the node which caused it to be
enqueued), indicated by the predecessor array. Equivalently, one can add an edge
(u, v) to a tree when at vertex u and adding vertex v to the queue.

Runtime

• O(n+m) - cost of initialization and cost of visiting (and possibly enqueueing) adjacent
vertices is O(m) in the worst case.

Correctness Obvious. All vertices at distance ` will appear in layer `. Also, their prede-
cessors are stored, and tracing back yields a path of length `.
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Dijkstra’s Algorithm



Dijkstra’s Algorithm

Input: A simple directed graph G with nonnegative edge-weights 
and a source vertex s in G 

Output: A number d[u] for each vertex u in G such that d[u] is 
the weight of the shortest path in G from s to u



Dijkstra’s Algorithm - Conceptual Version

Dijkstra(V, E, s): 

S  {s} 

d[s]  0 

While S    V 

For all v   S such that there is an edge (u, v) for some u   S: 

cost c[v]  min{(u, v): u in S} d[u] + w(u, v) 

Of these vertices, let v be one for which c[v] is minimum 

Add v to S 

d[v]  c[v]

←
←

←

←

/2
6=

2

Note: this version doesn’t use Relax! But 
for an implementation, it’s good to do so. 
Also, this version doesn’t keep track of 
the predecessor array!



Dijkstra’s Algorithm

Dijkstra(V, E, s): 

For v in V 

d[v]     ;   [v]  null; 

d[s]  0 

S  

Q = BuildPriorityQueue(V, d) 

While Q not empty 

u  DeleteMin(Q) 

S  S    u 

For v in Adj[u] 

Relax(u,v)

← ←
←

←

←
← [

⇡1

;

RELAX(u, v) 

If d[u] + w(u, v) < d[v] 

d[v]  d[u] + w(u, v) 

[v]  u

←

⇡ ←



Dijkstra�s algorithm: a greedy 
algorithm 
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Dijkstra�s algorithm: Initializing 
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Dijkstra�s algorithm: Initializing Cloud 
C (consisting of �solved� subgraph)  
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Dijkstra�s algorithm: pull v into C 
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Dijkstra�s algorithm: update C�s 
neighborhood 
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Dijkstra�s algorithm: pick closest 
vertex u outside C 
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Dijkstra�s algorithm: pull u into C 
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Dijkstra�s algorithm: update C�s 
neighborhood 
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Dijkstra�s algorithm: pick closest 
vertex u outside C 
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Dijkstra�s algorithm: pull u into C 
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Dijkstra�s algorithm: update C�s 
neighborhood 
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Dijkstra�s algorithm: pick closest 
vertex u outside C 
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Dijkstra�s algorithm: pull u into C 
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Dijkstra�s algorithm: update C�s 
neighborhood 
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Dijkstra�s algorithm: pick closest 
vertex u outside C 
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Dijkstra�s algorithm: pull u into C 
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Dijkstra�s algorithm: update C�s 
neighborhood 
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Dijkstra�s algorithm: pick closest 
vertex u outside C 
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Dijkstra�s algorithm: pull u into C 
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Dijkstra�s algorithm: update C�s 
neighborhood 
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Dijkstra�s algorithm: pick closest 
vertex u outside C 
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Dijkstra�s algorithm: pull u into C 
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Dijkstra�s algorithm: update C�s 
neighborhood 
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Dijkstra�s algorithm: pick closest 
vertex u outside C 
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Dijkstra�s algorithm: pull u into C 
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Dijkstra�s algorithm: update C�s 
neighborhood 
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Dijkstra�s algorithm: pick closest 
vertex u outside C 
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Dijkstra�s algorithm: pull u into C 
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Dijkstra�s algorithm: update C�s 
neighborhood 
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Dijkstra�s algorithm: pick closest 
vertex u outside C 
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Dijkstra�s algorithm: pull u into C 
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Dijkstra’s Algorithm

Dijkstra(V, E, s): 

For v in V 

d[v]     ;   [v]  null; 

d[s]  0 

S  

Q = BuildPriorityQueue(V, d) 

While Q not empty 

u  DeleteMin(Q) 

S  S    u 

For v in Adj[u] 

Relax(u,v)

← ←
←

←

←
← [

⇡1

;

RELAX(u, v) 

If d[u] + w(u, v) < d[v] 

d[v]  d[u] + w(u, v) 

[v]  u

←

⇡ ←



Prim(V, E, s): 

For v in V 

d[v]     ;    [v]  null; 

d[s]  0 

S  

Q = BuildPriorityQueue(V, d) 

While Q not empty 

u  DeleteMin(Q) 

S  S    u 

For v in Adj[u] 

If w(u, v) < d[v] 

d[v]  w(u, v) 

  [v]  u 

UpdatePQ(v, d[v])

← ←
←

←

←
←

←
←

1

;

[

Dijkstra vs Prim
Dijkstra(V, E, s): 

For v in V 

d[v]     ;    [v]  null; 

d[s]  0 

S  

Q = BuildPriorityQueue(V, d) 

While Q not empty 

u  DeleteMin(Q) 

S  S    u 

For v in Adj[u] 

If d[u] + w(u, v) < d[v] 

d[v]  d[u] + w(u, v) 

  [v]  u 

UpdatePQ(v, d[v])

← ←
←

←

←
←

←
←

1

;

[

⇡ ⇡

⇡ ⇡



Dijkstra(V, E, s): 

For v in V 

d[v]     ;    [v]  null; 

d[s]  0 

S  

Q = BuildPriorityQueue(V, d) 

While Q not empty 

u  DeleteMin(Q) 

S  S    u 

For v in Adj[u] 

If d[u] + w(u, v) < d[v] 

d[v]  d[u] + w(u, v) 

  [v]  u 

UpdatePQ(v, d[v])

← ←
←

←

←
←

←
←

Dijkstra’s Algorithm - Runtime

O(V) for binary or 
       Fibonacci heap

V calls

at most E calls

O(log V)/call for binary or 
                  Fibonacci heaps

O(log V)/call for binary heap 
O(1)/call for Fibonacci heap

1

;

[

⇡

⇡



RELAX preserves upper bound property of d[v]

• Upper bound property: Any sequence of calls to RELAX 
maintains the invariant that                    for all 

• Proof: simple exercise 

• Important consequence: 

If no path from s to v, then               always!

d [v ] � �(s, v) v 2 V

d [v ] = 1



Dijkstra’s Algorithm - Correctness

• Claim: for all v in S, the algorithm’s path     from s-v is a 
shortest s-v path 

• Proof by induction 

• Base case: |S| = 1, with S = {s} 

• Clearly,     = (s) is a shortest s-s path (of length zero!) 

• Inductive step 

• Suppose the claim holds for |S| = k 

• Prove that it holds for |S| = k + 1

Ps

Pv



Dijkstra’s Algorithm - Correctness

• Let |S| = k and suppose algorithm is about to add v to S,       
by way of u in S 

• Let     be the algorithm’s s-v path after the addition,          
with penultimate vertex u in S 

• Consider an arbitrary alternative path 

•     has a first edge (x, y) that crosses the cut

s
u v

x y
Sw(P 0

v ) � �(s, x) + w(x , y)

= d [x ] + w(x , y)

� d [u] + w(u, v)

= �(s, u) + w(u, v)

(S ,V \ S)P 0
v

Pv

P 0
v



Dijkstra’s Algorithm - Correctness

• Consider an arbitrary alternative path 

•       has a first edge (x, y) that crosses the cut

(inductive hypothesis)

(inductive hypothesis)

(v is next vertex added to S)

(S ,V \ S)

P 0
v

P 0
v

Path     cannot be 
shorter than

P 0
v

Pv

s
u v

x y
S

w(P 0
v ) � �(s, x) + w(x , y)

= d [x ] + w(x , y)

� d [u] + w(u, v)

= �(s, u) + w(u, v)

= w(Pv )



Dijkstra’s Algorithm - Negative Weights

s

uv
-2

21

What would Dijkstra do?



“Greed is good.” 
-Gordon Gekko



“Greed is good.” 
-Gordon Gekko

``Greed is not good 
(when a graph has 
negative edge weights).’' 

- Bernie Sanders


