
Shortest Paths

Nishant Mehta

Lectures 5–6

Finding the Fastest Way to Travel
between Two Intersections in Vancouver

4

2

3

1

4

5
2

1

3

2

2

5

1

1

6

2

2

1

1

1

2

1

4

3

5

2

Granville St

and

W Hastings St

Homer St

and

W Pender St

Homer St

and

W Hastings St

Granville St

and

W Pender St

Shortest Paths in Weighted Graphs

• Find fastest way to travel across the country using directed
graph representing roads, with edge weights representing:

• distances

• travel times between cities
(might account for speed limits, traffic, etc.)

• Find a fastest way using flights

• Flight distances between airports.

• Might also allow for warps in space-time continuum.
Negative travel time

Single-Source Shortest Paths

• If graph is unweighted:

• Breadth-First Search is a solution (more on this soon)

• If graph is weighted:

• Every edge is associated with a number:

integers, rational numbers, real numbers (might be negative!)

• An edge weight can represent:

distance, connection cost, affinity

Single-Source Shortest Paths Problem

• Input: A weighted directed graph G = (V, E)
Input: and a source vertex s

• Output: All single-source shortest paths for s in G, i.e., for
all other vertices v in G, a shortest path from s to v.

• A path p = (v0, v1, . . . , vk) from s = v0 to v = vk
is shortest if its length w(p) =

Pk
j=1 w(vj�1, vj)

is the minimum possible among all s–v paths

Optimal substructure

Optimal substructure - an optimal solution to a problem
contains with it optimal solutions to subproblems

Example:

• Problem: Find shortest path from vertex to vertex

• Subproblem: Find shortest path from intermediate vertex to

v1 vk

vj vk

v1
v2 vj

vj+1⋯
vj+2

vk

P′￼jk

Pjk = (vj, vj+1, vj+2, vk)

Subpaths of shortest paths are shortest paths

Lemma

Let be a shortest path from to .
Take some arbitrary satisfying , and let

 be the subpath of from to .

Then is a shortest path from to .

P1k = (v1, v2, …, vk) v1 vk
i, j 1 ≤ i < j ≤ k

Pij = (vi, vi+1, …, vj) P1k vi vj
Pij vi vj

Relax: The most important function for today’s lecture

RELAX(u, v)

If d[u] + w(u, v) < d[v]

d[v] d[u] + w(u, v)

[v] u

←

⇡ ←

Single-source shortest paths for weighted DAGs

• Suppose we have a weighted directed acyclic graph (DAG)

• An easy way to solve single-source shortest paths problem:

(1) Use topological sort to obtain topological ordering
(basically, use DFS + a slight amount of extra work)

(2) For each vertex u in topological order

_For all vertices v adjacent to u

__RELAX(u, v)

• Runtime?

https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html

Single-source shortest paths for weighted DAGs

• Suppose we have a weighted directed acyclic graph (DAG)

• An easy way to solve single-source shortest paths problem:

(1) Use topological sort to obtain topological ordering
(basically, use DFS + a slight amount of extra work)

(2) For each vertex u in topological order

_For all vertices v adjacent to u

__RELAX(u, v)

• Runtime? O(V + E)

https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html

Single-source shortest paths for weighted DAGs

• Suppose we have a weighted directed acyclic graph (DAG)

• An easy way to solve single-source shortest paths problem:

(1) Use topological sort to obtain topological ordering
(basically, use DFS + a slight amount of extra work)

(2) For each vertex u in topological order

_For all vertices v adjacent to u

__RELAX(u, v)

• Runtime? O(V + E)

• Claim: Above algorithm is correct. Let’s prove it!

https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html

Breadth-First Search for Unweighted Graphs
Breadth-First Search: Unweighted Graphs
For each vertex, keep track of a color:

• White: Unvisited

• Red: Visited and Active - some adjacent vertices might not been added to queue yet

• Black: Visited and Inactive - all adjacent vertices have been added to queue

Pseudocode:

1. For all u 2 V

2. Color u White, set d[u] =1, and set ⇡[u] = null

3. Color s Red and set d[s] = 0

4. Enqueue s into empty queue Q

5. While Q is not empty:

6. u Dequeue(Q)

7. For each White vertex v adjacent to u

8. Color v Red
9. Set d[v] = d[u] + 1 and ⇡[v] = u.

10. Enqueue v into Q

11. Color u Black

Remarks

• We discover one layer of nodes at a time. The layer of v is indicated by the value of
d[v] when v is enqueued.

• Once a node is added to the queue, it is never added again, so d[v] and ⇡[v] are at their
final values!

• On completion, each node but s has a predecessor (the node which caused it to be
enqueued), indicated by the predecessor array. Equivalently, one can add an edge
(u, v) to a tree when at vertex u and adding vertex v to the queue.

Runtime

• O(n+m) - cost of initialization and cost of visiting (and possibly enqueueing) adjacent
vertices is O(m) in the worst case.

Correctness Obvious. All vertices at distance ` will appear in layer `. Also, their prede-
cessors are stored, and tracing back yields a path of length `.

2

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Input: A simple directed graph G with nonnegative edge-weights
and a source vertex s in G

Output: A number d[u] for each vertex u in G such that d[u] is
the weight of the shortest path in G from s to u

Dijkstra’s Algorithm - Conceptual Version

Dijkstra(V, E, s):

S {s}

d[s] 0

While S V

For all v S such that there is an edge (u, v) for some u S:

cost c[v] min{(u, v): u in S} d[u] + w(u, v)

Of these vertices, let v be one for which c[v] is minimum

Add v to S

d[v] c[v]

←
←

←

←

/2
6=

2

Note: this version doesn’t use Relax! But
for an implementation, it’s good to do so.
Also, this version doesn’t keep track of
the predecessor array!

Dijkstra’s Algorithm

Dijkstra(V, E, s):

For v in V

d[v] ; [v] null;

d[s] 0

S

Q = BuildPriorityQueue(V, d)

While Q not empty

u DeleteMin(Q)

S S u

For v in Adj[u]

Relax(u,v)

← ←
←

←

←
← [

⇡1

;

RELAX(u, v)

If d[u] + w(u, v) < d[v]

d[v] d[u] + w(u, v)

[v] u

←

⇡ ←

Dijkstra�s algorithm: a greedy
algorithm

1
1

3 5

11

3

4

2 3

7

9
2

Dijkstra�s algorithm: Initializing

1
1

3 5

11

3

4

2 3

7

9
2

+∞

+∞
0

+∞
+∞

+∞

+∞ +∞ +∞

+∞

Dijkstra�s algorithm: Initializing Cloud
C (consisting of �solved� subgraph)

1
1

3 5

11

3

4

2 3

7

9
2

+∞

+∞
0

+∞
+∞

+∞

+∞ +∞ +∞

+∞

Dijkstra�s algorithm: pull v into C

1
1

3 5

11

3

4

2 3

7

9
2

+∞

+∞
0

+∞
+∞

+∞

+∞ +∞ +∞

+∞

Dijkstra�s algorithm: update C�s
neighborhood

1
1

3 5

11

3

4

2 3

7

9
2

1

+∞
0

3
+∞

4

+∞ +∞ +∞

+∞

Dijkstra�s algorithm: pick closest
vertex u outside C

1
1

3 5

11

3

4

2 3

7

9
2

1

+∞

0

3

+∞

4

+∞
+∞

+∞

+∞

Dijkstra�s algorithm: pull u into C

1
1

3 5

11

3

4

2 3

7

9
2

1

+∞

0

3

+∞

4

+∞
+∞

+∞

+∞

relax

Dijkstra�s algorithm: update C�s
neighborhood

1
1

3 5

11

3

4

2 3

7

9
2

1

2
0

3
+∞

3

+∞ +∞ +∞

+∞

Dijkstra�s algorithm: pick closest
vertex u outside C

1
1

3 5

11

3

4

2 3

7

9
2

1

2

0

3

+∞

3

+∞
+∞

+∞

+∞

Dijkstra�s algorithm: pull u into C

1
1

3 5

11

3

4

2 3

7

9
2

1

2
0

3
+∞

3

+∞ +∞ +∞

+∞

Dijkstra�s algorithm: update C�s
neighborhood

1
1

3 5

11

3

4

2 3

7

9
2

1

2
0

3
+∞

3

+∞ +∞ +∞

+∞

Dijkstra�s algorithm: pick closest
vertex u outside C

1
1

3 5

11

3

4

2 3

7

9
2

1

2

0

3

+∞

3

+∞
+∞

+∞

+∞

Dijkstra�s algorithm: pull u into C

1
1

3 5

11

3

4

2 3

7

9
2

1

2
0

3
+∞

3

+∞ +∞ +∞

+∞

Dijkstra�s algorithm: update C�s
neighborhood

1
1

3 5

11

3

4

2 3

7

9
2

1

2
0

3
+∞

3

12 5 +∞

10

Dijkstra�s algorithm: pick closest
vertex u outside C

1
1

3 5

11

3

4

2 3

7

9
2

1

2

0

3

+∞

3

12
5

+∞

10

Dijkstra�s algorithm: pull u into C

1
1

3 5

11

3

4

2 3

7

9
2

1

2
0

3
14

3

12 5 +∞

10

Dijkstra�s algorithm: update C�s
neighborhood

1
1

3 5

11

3

4

2 3

7

9
2

1

2
0

3
14

3

12 5 +∞

10

Dijkstra�s algorithm: pick closest
vertex u outside C

1
1

3 5

11

3

4

2 3

7

9
2

1

2

0

3

14

3

12
5

+∞

10

Dijkstra�s algorithm: pull u into C

1
1

3 5

11

3

4

2 3

7

9
2

1

2

0

3

14

3

12
5

+∞

10

relax

Dijkstra�s algorithm: update C�s
neighborhood

1
1

3 5

11

3

4

2 3

7

9
2

1

2
0

3
14

3

8 5 +∞

10

Dijkstra�s algorithm: pick closest
vertex u outside C

1
1

3 5

11

3

4

2 3

7

9
2

1

2

0

3

14

3

8
5

+∞

10

Dijkstra�s algorithm: pull u into C

1
1

3 5

11

3

4

2 3

7

9
2

1

2
0

3
14

3

8 5 +∞

10

Dijkstra�s algorithm: update C�s
neighborhood

1
1

3 5

11

3

4

2 3

7

9
2

1

2
0

3
14

3

8 5 +∞

10

Dijkstra�s algorithm: pick closest
vertex u outside C

1
1

3 5

11

3

4

2 3

7

9
2

1

2

0

3

14

3

8
5

+∞

10

Dijkstra�s algorithm: pull u into C

1
1

3 5

11

3

4

2 3

7

9
2

1

2
0

3
14

3

8 5 +∞

10

Dijkstra�s algorithm: update C�s
neighborhood

1
1

3 5

11

3

4

2 3

7

9
2

1

2
0

3
14

3

8 5 13

10

Dijkstra�s algorithm: pick closest
vertex u outside C

1
1

3 5

11

3

4

2 3

7

9
2

1

2

0

3

14

3

8
5

13

10

Dijkstra�s algorithm: pull u into C

1
1

3 5

11

3

4

2 3

7

9
2

1

2
0

3
14

3

8 5 13

10

Dijkstra�s algorithm: update C�s
neighborhood

1
1

3 5

11

3

4

2 3

7

9
2

1

2
0

3
14

3

8 5 13

10

Dijkstra�s algorithm: pick closest
vertex u outside C

1
1

3 5

11

3

4

2 3

7

9
2

1

2

0

3

14

3

8
5

13

10

Dijkstra�s algorithm: pull u into C

1
1

3 5

11

3

4

2 3

7

9
2

1

2
0

3
14

3

8 5 13

10

Dijkstra’s Algorithm

Dijkstra(V, E, s):

For v in V

d[v] ; [v] null;

d[s] 0

S

Q = BuildPriorityQueue(V, d)

While Q not empty

u DeleteMin(Q)

S S u

For v in Adj[u]

Relax(u,v)

← ←
←

←

←
← [

⇡1

;

RELAX(u, v)

If d[u] + w(u, v) < d[v]

d[v] d[u] + w(u, v)

[v] u

←

⇡ ←

Prim(V, E, s):

For v in V

d[v] ; [v] null;

d[s] 0

S

Q = BuildPriorityQueue(V, d)

While Q not empty

u DeleteMin(Q)

S S u

For v in Adj[u]

If w(u, v) < d[v]

d[v] w(u, v)

 [v] u

UpdatePQ(v, d[v])

← ←
←

←

←
←

←
←

1

;

[

Dijkstra vs Prim
Dijkstra(V, E, s):

For v in V

d[v] ; [v] null;

d[s] 0

S

Q = BuildPriorityQueue(V, d)

While Q not empty

u DeleteMin(Q)

S S u

For v in Adj[u]

If d[u] + w(u, v) < d[v]

d[v] d[u] + w(u, v)

 [v] u

UpdatePQ(v, d[v])

← ←
←

←

←
←

←
←

1

;

[

⇡ ⇡

⇡ ⇡

Dijkstra(V, E, s):

For v in V

d[v] ; [v] null;

d[s] 0

S

Q = BuildPriorityQueue(V, d)

While Q not empty

u DeleteMin(Q)

S S u

For v in Adj[u]

If d[u] + w(u, v) < d[v]

d[v] d[u] + w(u, v)

 [v] u

UpdatePQ(v, d[v])

← ←
←

←

←
←

←
←

Dijkstra’s Algorithm - Runtime

O(V) for binary or
 Fibonacci heap

V calls

at most E calls

O(log V)/call for binary or
 Fibonacci heaps

O(log V)/call for binary heap
O(1)/call for Fibonacci heap

1

;

[

⇡

⇡

RELAX preserves upper bound property of d[v]

• Upper bound property: Any sequence of calls to RELAX
maintains the invariant that for all

• Proof: simple exercise

• Important consequence:

If no path from s to v, then always!

d [v] � �(s, v) v 2 V

d [v] = 1

Dijkstra’s Algorithm - Correctness

• Claim: for all v in S, the algorithm’s path from s-v is a
shortest s-v path

• Proof by induction

• Base case: |S| = 1, with S = {s}

• Clearly, = (s) is a shortest s-s path (of length zero!)

• Inductive step

• Suppose the claim holds for |S| = k

• Prove that it holds for |S| = k + 1

Ps

Pv

Dijkstra’s Algorithm - Correctness

• Let |S| = k and suppose algorithm is about to add v to S,
by way of u in S

• Let be the algorithm’s s-v path after the addition,
with penultimate vertex u in S

• Consider an arbitrary alternative path

• has a first edge (x, y) that crosses the cut

s
u v

x y
Sw(P 0

v) � �(s, x) + w(x , y)

= d [x] + w(x , y)

� d [u] + w(u, v)

= �(s, u) + w(u, v)

(S ,V \ S)P 0
v

Pv

P 0
v

Dijkstra’s Algorithm - Correctness

• Consider an arbitrary alternative path

• has a first edge (x, y) that crosses the cut

(inductive hypothesis)

(inductive hypothesis)

(v is next vertex added to S)

(S ,V \ S)

P 0
v

P 0
v

Path cannot be
shorter than

P 0
v

Pv

s
u v

x y
S

w(P 0
v) � �(s, x) + w(x , y)

= d [x] + w(x , y)

� d [u] + w(u, v)

= �(s, u) + w(u, v)

= w(Pv)

Dijkstra’s Algorithm - Negative Weights

s

uv
-2

21

What would Dijkstra do?

“Greed is good.”
-Gordon Gekko

“Greed is good.”
-Gordon Gekko

``Greed is not good
(when a graph has
negative edge weights).’'

- Bernie Sanders

