Shortest Paths

Nishant Mehta

Lectures 5-7/

FInding the Fastest Way to Travel
between Two Intersections in Vancouver

Granville St Homer St
and 4 3 4 aqd
W Hastings St m W Hastings St
e 1 5
2 3 2 1
6 4 5
ol el o
2 3 2
1 2 5 1
Granville St ©<\ ; ><> Homer St
and 1 1 and

W Pender St W Pender St

Shortest Paths in Weighted Graphs

Find fastest way o fravel across the country using directed
graph representing roads, with edge weights representing:

e distfances

« fravel fimes between cities
(might account for speed limits, traffic, efc.)

Find a fastest way using flights
o Flight distances between airports.

« Might also allow for warps in space-time continuum.
Negative fravel time

Single-Source Shortest Paths

o If graph is unweighted:

e Breadth-First Search is a solution (more on this soon)

o If graph is weighted:

o Every edge is associated with a humber:

integers, rational numbers, real numbers (might be negative!)

« An edge weight can represent:
distance, connection cost, affinity

Single-Source Shortest Paths Problem

e Input: A weighted directed graph G = (V, E)
and a source vertex s

o Output: All single-source shortest paths for s in G, i.e, for
all other vertices v in G, a shortest path from s fo v.

e A path p= (vg,v1,...,v,) from s = vy to v = v
is shortest if its length w(p) = Z?Zl w(vi—1,v;)
is the minimum possible among all s—v paths

Optimal substructure

Optimal substructure - an optimal solution fo a problem
contains with It optimal solufions fo subproblems

Example:
« Problem: Find shortest path from vertex v, fo vertex v,

« Subproblem: Find shortest path from intermediate vertex V; fo v,

-
e " s

-

4

Subpaths of shortest paths are shortest paths

Lemma

Let Py, = (v, Vs, ..., V) be a shortest path from v, fo v, .
Take some arbitrary i, j satisfying 1 <i <j <k, and let
P;= v,V ..., v;) be the subpath of Py, from v; to v;.
Then Pl-j Is a shortest path from v, fo Vi

Relax: The most important function for today’s lecture

ReELAX(U, V)

If d[u] + w(u, v) < d[v]

dlv] < d[u] + w(u, v)

mtlv] <« u

Single-source shortest paths for weighted

DAGS

« Suppose we have a weighted directed acyclic graph (DAG)

o An easy way fo solve single-source shortest paths problem:

(1) Use topological sort to obtain topological ordering
(basically, use DFS + a slight amount of extra work)

(2) For each vertex u in topological order
For all vertices v adjacent to u

RELAX(U, V)

e Runtime?

https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html

Single-source shortest paths for weighted

DAGS

« Suppose we have a weighted directed acyclic graph (DAG)

o An easy way fo solve single-source shortest paths problem:

(1) Use topological sort to obtain topological ordering
(basically, use DFS + a slight amount of extra work)

(2) For each vertex u in topological order
For all vertices v adjacent to u

RELAX(U, V)

e« Runtime? O(V + E)

https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html

Single-source shortest paths for weighted

DAGS

« Suppose we have a weighted directed acyclic graph (DAG)

o An easy way fo solve single-source shortest paths problem:

(1) Use topological sort to obtain topological ordering
(basically, use DFS + a slight amount of extra work)

(2) For each vertex u in topological order
For all vertices v adjacent to u

RELAX(U, V)
e« Runtime? O(V + E)

« Claim: Above algorithm is correct. Let's prove it

https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html

Breadth-First Search for Unweighted Graphs

For each vertex, keep track of a color:
e WHITE: Unvisited
e RED: Visited and Active - some adjacent vertices might not been added to queue yet

e BLACK: Visited and Inactive - all adjacent vertices have been added to queue

Pseudocode:
I. Forallu e V
2. Color u WHITE, set d|u] = oo, and set 7|u] = null
3. Color s RED and set d[s] =0
4. Enqueue s into empty queue ()
5. While @ is not empty:

6. u < Dequeue(Q)
7. For each WHITE vertex v adjacent to u

8. Color v RED
9. Set d[v] = d|u] + 1 and w[v] = wu.
10. Enqueue v into ()
11. Color u BLACK

Dijkstra's Algorithm

Dijkstra’'s Algorithm

Input: A simple directed graph G with nonnegative edge-weights
and a source vertex s in G

Output: A number d[u] for each vertex u in G such that d[u] is
the weight of the shortest path in G from s fo u

Dijkstra’'s Algorithm - Conceptual Version

Dijkstra(V, E, s):
S « {s}
dls] « O
While S £ V
For all vé& S such that there is an edge (u, v) for some u € S:
cost c[v] « mingu v:uinsy dlu] + w(u, v)
Of these vertices, let v be one for which c[v] is minimum

Add v to S
dlv] « c[v]

Note: this version doesn't use Relax! But
for an implementation, it's good to do so.
Also, this version doesn't keep track of
the predecessor array!

Dijkstra’s Algorithm

Dijkstra(V, E, s):

ForvinV
dlv] « oo ; mlv] « null;
dls] « O
S« 1
Q = BuildPriorityQueue(V, d)

While Q not empty
u < DeleteMin(Q)

RELAX(U, V)
S« SUu
For v in Adj[u] If d[u] + w(u, v) < d[V]
Relax(u,v) dlv] « d[u] + w(u, v)

mtlv] <« u

Dijkstra’ s algorithm: a greedy
[algorithm

E

+c0

ijkstra’ s algorithm: Initializing

Dijkstra’ s algorithm: Initializing Cloud
C (consisting of “solved” subgraph)

+c0

f

+c0

ijkstra’ s algorithm: pull v into C

Dijkstra’ s algorithm: update C’s
[neighborhood

+c0

Dijkstra’ s algorithm: pick closest
[vertex u outside C

+c0

f

+c0

ijkstra’ s algorithm: pull « into C

Dijkstra’ s algorithm: update C’s
[neighborhood

Dijkstra’ s algorithm: pick closest
[vertex u outside C

[Dijkstra’ s algorithm: pull « into C]

Dijkstra’ s algorithm: update C’s
[neighborhood

Dijkstra’ s algorithm: pick closest
[vertex u outside C

[Dijkstra’ s algorithm: pull « into C]

Dijkstra’ s algorithm: update C’s]
[neighborhood

Dijkstra’ s algorithm: pick closest]
[vertex u outside C

[Dijkstra’ s algorithm: pull « into C]

Dijkstra’ s algorithm: update C’s]
[neighborhood

Dijkstra’ s algorithm: pick closest]
[vertex u outside C

[Dijkstra’ s algorithm: pull « into C]

Dijkstra’ s algorithm: update C’s]
[neighborhood

Dijkstra’ s algorithm: pick closest]
[vertex u outside C

| Dijkstra’ s algorithm: pull « into C]

Dijkstra’ s algorithm: update C’s]
[neighborhood

Dijkstra’ s algorithm: pick closest]
[vertex u outside C

| Dijkstra’ s algorithm: pull u into C]

Dijkstra’ s algorithm: update C’s]
[neighborhood

Dijkstra’ s algorithm: pick closest]
[vertex u outside C

| Dijkstra’ s algorithm: pull u into C]

Dijkstra’ s algorithm: update C’s]
| neighborhood

Dijkstra’ s algorithm: pick closest]
[vertex u outside C

| Dijkstra’ s algorithm: pull u into C]

Dijkstra’s Algorithm

Dijkstra(V, E, s):

ForvinV
dlv] « oo ; mlv] « null;
dls] « O
S« 1
Q = BuildPriorityQueue(V, d)

While Q not empty
u < DeleteMin(Q)

RELAX(U, V)
S« SUu
For v in Adj[u] If d[u] + w(u, v) < d[V]
Relax(u,v) dlv] « d[u] + w(u, v)

mtlv] <« u

Dijkstra vs Prim

Dijkstra(V, E, s):

ForvinV
dlv] «oo: 7 [v] « null:
dls] « O
S « ()
Q = BuildPriorityQueue(V, d)

While Q not empty
u < DeleteMin(Q)
S« SuUu

For v in Adj[u]

If d[u] + w(u, v) < d[v]
dlv] « dlu] + w(u, v)

nlv] < u

UpdatePQ(v, d[v])

Prim(V. E, s):

ForvinV

dlv] «oo: tlv] <« null;
dls] « O
S «1()
Q = BuildPriorityQueue(V, d)
While Q not empty

U « DeleteMin(Q)

S« SuUu

For v in Adj[u]

If w(u, v) < d[v]
dlv] <« w(u, v)

mlv] < u
UpdatePQ(v, d[v])

Dijkstra’'s Algorithm - Runtime
Dijkstra(V, E, s):

ForvinV
dlv] «oo: 7 [v] « null;
dls] « O
S «1()
Q = BuildPriorityQueue(V, d) < O(V) for binary or

While Q not empty Fibonacci heap

V calls —— U « DeleteMin(Q) <«—— 0O(log V)/call for binary or
S« SuUuy Fibonacci heaps

For v in Adj[u]

If d[u] + w(u, v) < d[V]

dlv] « dlu] + w(u, v)
ntlv] < u O(log V)/call for binary heap
hdatePQ(v, d[v]) " O(1)/call for Fibonacci heap

at most E calls — U

RELAX preserves upper bound property of d|v]

 Upper bound property: Any sequence of calls o RELAX
maintains the invariant that d[v] > &(s, v) forall v € V

o Proof: simple exercise

« Imporfant consequence:

If no path from s fo v, then d[v] = co always!

Dijkstra’s Algorithm - Correctness

Claim: for all v in S, the algorithm’s path P, from s-v is @
shortest s-v path

Proof by induction

Base case: |S| = 1, with S = {s}

Clearly, Ps = (s) is a shortest s-s path (of length zero!)
Inductive step

« Suppose the claim holds for |S| = k

« Prove that it holds for [S| = k + 1

Dijkstra’s Algorithm - Correctness

Let |S| = k and suppose algorithm is about to add v fo S,
by way of uin S

Let P, be the algorithm'’s s-v path after the addition,
with penulfimate verfex u in S

Consider an arbitrary alternative path PQ

P! has a first edge (x, y) that crosses the cut (S, V' \ S)

w(P)) > 5(_5,_X) + w(x, y) > (%) >(y)

= d|x] + w(x, y)
T

= 0(s, u) + w(u, v)

Dijkstra’s Algorithm - Correctness

« Consider an arbitrary alternative path PQ

« P/ has a first edge (x, y) that crosses the cut (S, V' \ S)

S
o——()

)

w(P)) > 5(s, x) + w(x, y)
— d:X: 1 W(X, y) (inductive hypothesis)

Path P! cannot be -
shorter than ,DV > d uj + W(u, V) (v is hext verfex added to S)

— 5(5, u) -+ W(u, v) (inductive hypothesis)
= w(Py)

Dijkstra’'s Algorithm - Negative Weights

What would Dijkstra do?

“Greed is good.”
-Gordon Gekko

“Greed is not good
(when a graph has
negative edge weights)."

- Bernie Sanders

“Greed is good.”
-Gordon Gekko

Bellman-Ford Algorithm

Recall: Path Relaxation Property

Let p = (Vo, V1, ... Vk) be a shortest path from vo to vk
Initialize d and 7t with source s

Suppose that a sequence of Relax calls occurs which
includes the subsequence:

e RELAX(Vo, V1), RELAX(V1, Vo). ... RELAX(Vk-1, Vk)

Then after the last RELAX call in this subsequence and for all
times thereafter, we have d|v] = (s, vk)

(Proved last time)

Bellman-Ford Algorithm

e An Observation:

e Suppose shortest path from vertex s fo vertex t consists
of 1 edge: p = (vo, v1) with s = vo and t = v

« Then affer calling RELAX(Vo, V1):
d[t] — d[Vl] — 6(V(), V1) — 6(5, t)
e Shortest path from s fo t has been found!

« How o ensure RELAX(vo, Vi) getfs called?

Initialize d and 7t with source s

For each edge (u, v) € E

RELAX(U, V)

Bellman-Ford Algorithm

e An Observation:

e Suppose shortest path from vertex s fo vertex t consists
of 2 edges: p = (S =vo, V1, V2 = 1)

« Then after calling RELAX(Vo, V1), RELAX(v1, V2):
dt] = d[VQ] — 5(V0, V2) — 6(5, t)

« Shortest path from s fo t has been found!

« How to ensure RELAX(Vo, V1), RELAX(v1, V2) gets called?

Initialize d and 7t with source s
Forj=1—>2

For each edge (u,v) € E

RELAX(U, V)

Bellman-Ford Algorithm

If no negative cycles, shortest path from vertex s to vertex t
consists of (at most) n-1 edges: p = (vo, v, ..., vk) with k < n-1

After calling RELAX(Vo, v1), RELAX(V1, V2), RELAX(Vk-1, Vk):
d[t] = d[vi] = &(vo, vi) = 6(s, t)

« Shortest path from s fo t has been found!

How fo ensure subsequence RELAX(Vo, V1), ..., RELAX(Vk-1, Vk)
of calls occurs?

Initialize d and 7t with source s
Forj=1— n-1

For each edge (u,v) € E

RELAX(U, V)

Bellman-Ford Algorithm

BELLMAN-FORD(G, w, s)

Initialize d and 7t with source s

Forj=1— n-1 ReELAX(u,V)
For each edge (u, v) € E If dlu] + w(uv) < d[v]
RELAX(U, V) dlv] « d[u] + w(uyv)
For each edge (u, v) € E milv] « u

If d[v] > d[u] + w(u, v)
Return False

Return True

Bellman-Ford Algorithm - Correctness

Claim 1:
If there are no negative cycles:

(A) The algorithm correctly finds the shortest paths
(d[v] = 8(s, v) for all v) and predecessor array is correct.

(B) The algorithm refturns True.

Claim 2:

If there is a negative cycle, the algorithm detects it
and returns False

Bellman-Ford Algorithm - Correctness

Claim 1:
If there are no negative cycles:

(A) The algorithm correctly finds the shortest paths
(d[v] = 8(s, v) for all v) and predecessor array is correct.

Proof:
This we already showed in the derivation of the algorithm!

The desired subsequence of calls to RELAX occurs,
which is all that is required.

Bellman-Ford Algorithm - Correctness

Claim 1:
If there are no negative cycles:

(B) The algorithm returns True

Proof:
We only need to verify that
d[v] < d[u] + w(u, v) for all edges (u,v) € E
From Claim 1 (A), this is equivalent o
5(s,v) < &8(s,u) + w(u,v) for all edges (u,v) € E

This must be the case. Why? An s-v path that first visits u
and then follows edge (u,v) cannot have less weight than
the shortfest s-v path

Bellman-Ford Algorithm - Correctness

Claim 2:

If there is a negative cycle, the algorithm detects it
and returns False

Proof:
Suppose (for a contradiction) that the algorithm returns True
Then d[v] < d[u] + w(u, v) for all edges (u,v) € E (%)
Let the negative cycle be (v, vy, ..., Vi), Where vy = v

Summing inequality (%) over each edge in the cycle yields:

Z dlv;] < Z (dvj—1] + w(vj_1,Vv}))

Bellman-Ford Algorithm - Correctness

(Proof of Claim 2)
Suppose (for a contradiction) that the algorithm returns True
Then d[v] < d[u] + w(u, v) for all edges (u,v) € E (%)
Let the negative cycle be (v, v1, ..., Vi), where vo = v

Summing inequality () over each edge in the cycle yields:

Z dlv;] < Z (dlvj—1] + w(vj-1,v}))

k k

But since vg = v, it holds that Z dlv;| = Z d[vj_1]
j=1 j=1

The above implies that 0 < Zjlle w(vj_1, V),

a contradiction of the cycle being negative!

Bellman-Ford Algorithm - Time Complexity

. O(V E)
« (For loop from 1 to n-1) - (Nested for loop over edges)

« Compare to Dijkstra’s algorithm
« O(E log V)

o Dealing with negative-weight edges has a cost!

Single-Source Shortest Paths Algorithms

Type of Graph Algorithm Time complexity
Unweighted graph BFS OV + E)
Weighted DAG Topological sort/DFS-based OV + E)

Weighted directed graph Dijkstra's - Binary heap O(E log V)

(nonnegative weights)
Dijkstra’'s - Fibonacci heap O(V log V + E)

Weighted directed graph

(any weights) Bellman-Ford O(V E)

All-Pairs Shortest Paths Problem

e Input: A weighted directed graph G = (V, E)

o Output: All shortest paths in G, i.e, for all pairs of
vertices s, T in V, a shortest path from s fo 1

All-Pairs Shortest Paths

o First approach - run single-source shortest paths algorithm
n times, once per choice of source vertex

T f D Graph
YPe o Algorithm Time complexity _ ense r'ap.
Graph Time complexity

Dijkstra’s - Binary heap O(V E log V) O(V3 log V)
Nonhnegative
weights
Dijkstra’'s - Fibonacci heap O(V2 log V + V E) O(V3)

Any weights Bellman-Ford O(V2 E) O(V4)

All-Pairs Shortest Paths

o Need to store upper bound on weight of shortest path for every
pair of vertices

o Switch from array d to matrix D of size n X n
« D;; = upper bound on weight of shorfest path from i fo |
o Switch from predecessor array 7t to predecessor matrix T1

e TII;; = predecessor of j in some shortest path from source |

Floyd-Warshall Algorithm

Floyd-Warshall Algorithm

o Let p be a shortest path from i fo |.

o Clearly, all infermediate vertices in path p are in {1, ...

o Also, we can split p info at most 2 paths whose
infermediate vertices are in {1, ..., n-1}

P

@\/\/T\/\/\/»@

all intermediate
vertices in {1, ..., n}

Case 1 Case 2

all mtermedlate

all mtermedlate
vertices in {1, ...,

vertices in {1, ...,

P @y{@“x

All-Pairs Shortest Paths

e Fork=0,1 .., n:Let D,.(jk) be the weight of the shortest path
from i fo j for which all intermediate vertices are in {1, ..., k}

P

W@

all intermediate
vertices in {1, ..., k}

Case 1 / \Case 2

@\/\/\p/\/\/“?@ > ®K\—p\2\
T N/

all intermediate all intermediate @
vertices in {1, ..., k-1} vertices in {1, ..., k-1}

k k—1 k—1
Di(jk) _ Di(jk—l) Di(j) _ Di(k) 4 D/(q)

Floyd-Warshall Algorithm

AR - (k=1) p(k=1) | p(k=1)
« Recurrence: D, %mm{D,-j Dy Dyj }

« Base case: D,.(jo) — w(i,J)
« Why? Because no intermediate vertices can be used

FLOYD-WARSHALL(W)
DO — w
Fork=1—->n
Fori=1—->n
Forj=1—->n
D « min { DYV, DYV + DV

Return D"

Floyd-Warshall Algorithm

FLOYD-WARSHALL(W)

DO« W

Fork=1—->n

Time Complexity
O(n’)

Fori=1->n

Forj=1-n
(k) - (k=1) p(k=1) (k—1)
D « min { DYV, DY + DI
Return D"

Correctness? D,-(j") IS weight of shortest path with intermediate
vertices in {1, ..., n}. This is shortest path itself!

Floyd-Warshall Algorithm

What about that predecessor matrix?
How do we print a shortest path?

Case 1. D(k 1) + D(k) > > plk—1)

ij
Path will not change
(k)

1

Reuse predecessor from before;

Case 2. D,(,f 1)+D(k Y D,.(jk_l)

(k—1)
ij

Update path to [paTh from i to k] + [path from k to j]

(k) (k—1)
ﬂ,j < ﬂkj

"Set predecessor of j in shortest path from source i using
intermediate vertices in {1, ..., k} to be predecessor of j in
shortest path from source k using intermediatfe vertices in

{1, ..., k-1}"

