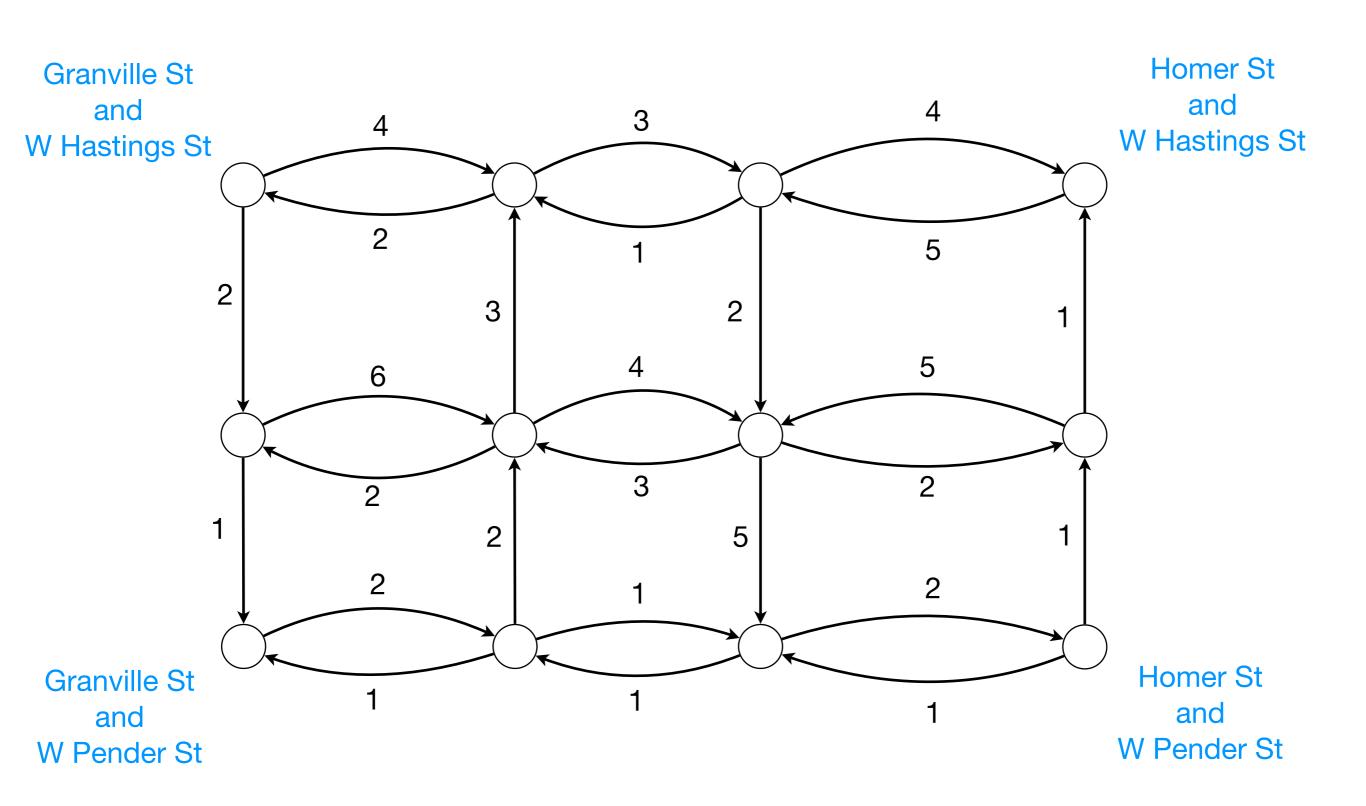
Shortest Paths

Nishant Mehta

Lectures 5–7

Finding the Fastest Way to Travel between Two Intersections in Vancouver



Shortest Paths in Weighted Graphs

- Find fastest way to travel across the country using directed graph representing roads, with edge weights representing:
 - distances
 - travel times between cities
 (might account for speed limits, traffic, etc.)
- Find a fastest way using flights
 - Flight distances between airports.
 - Might also allow for warps in space-time continuum.
 Negative travel time

Single-Source Shortest Paths

- If graph is unweighted:
 - Breadth-First Search is a solution (more on this soon)
- If graph is weighted:
 - Every edge is associated with a number: integers, rational numbers, real numbers (might be negative!)
 - An edge weight can represent: distance, connection cost, affinity

Single-Source Shortest Paths Problem

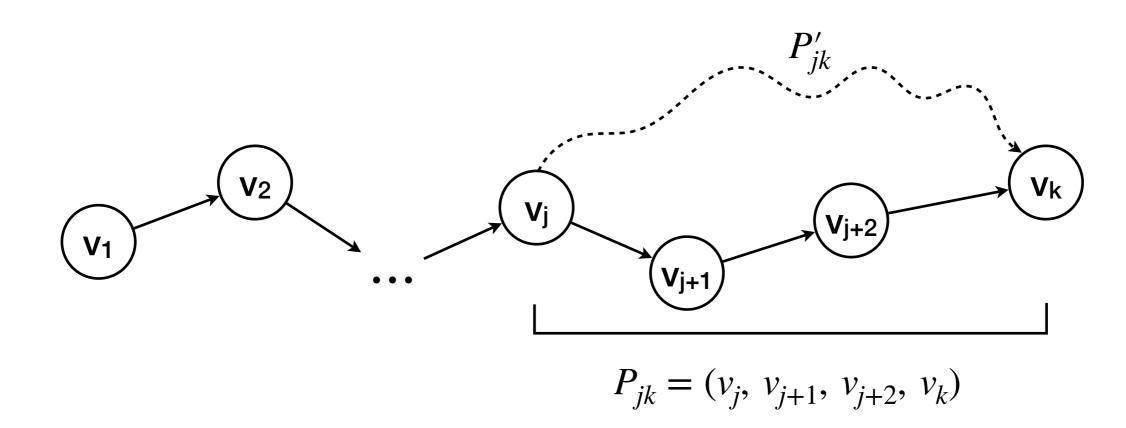
- Input: A weighted directed graph G = (V, E)
 and a source vertex s
- Output: All single-source shortest paths for s in G, i.e., for all other vertices v in G, a shortest path from s to v.
 - A path $p = (v_0, v_1, \dots, v_k)$ from $s = v_0$ to $v = v_k$ is shortest if its length $w(p) = \sum_{j=1}^k w(v_{j-1}, v_j)$ is the minimum possible among all s-v paths

Optimal substructure

Optimal substructure - an optimal solution to a problem contains with it optimal solutions to subproblems

Example:

- ullet Problem: Find shortest path from vertex v_1 to vertex v_k
- ullet Subproblem: Find shortest path from intermediate vertex v_i to v_k



Subpaths of shortest paths are shortest paths

Lemma

Let $P_{1k}=(v_1,v_2,...,v_k)$ be a shortest path from v_1 to v_k . Take some arbitrary i,j satisfying $1 \leq i < j \leq k$, and let $P_{ij}=(v_i,v_{i+1},...,v_j)$ be the subpath of P_{1k} from v_i to v_j . Then P_{ij} is a shortest path from v_i to v_j .

Relax: The most important function for today's lecture

RELAX(u, v)

If
$$d[u] + w(u, v) < d[v]$$
 $d[v] \leftarrow d[u] + w(u, v)$
 $\pi[v] \leftarrow u$

Single-source shortest paths for weighted DAGs

- Suppose we have a weighted directed acyclic graph (DAG)
- An easy way to solve single-source shortest paths problem:
 - (1) Use <u>topological sort</u> to obtain topological ordering (basically, use DFS + a slight amount of extra work)
 - (2) For each vertex u in topological order For all vertices v adjacent to u

 RELAX(u, v)
- Runtime?

Single-source shortest paths for weighted DAGs

- Suppose we have a weighted directed acyclic graph (DAG)
- An easy way to solve single-source shortest paths problem:
 - (1) Use <u>topological sort</u> to obtain topological ordering (basically, use DFS + a slight amount of extra work)
 - (2) For each vertex u in topological order For all vertices v adjacent to u

 RELAX(u, v)
- Runtime? O(V + E)

Single-source shortest paths for weighted DAGs

- Suppose we have a weighted directed acyclic graph (DAG)
- An easy way to solve single-source shortest paths problem:
 - (1) Use <u>topological sort</u> to obtain topological ordering (basically, use DFS + a slight amount of extra work)
 - (2) For each vertex u in topological order For all vertices v adjacent to u

 RELAX(u, v)
- Runtime? O(V + E)
- Claim: Above algorithm is correct.
 Let's prove it!

Breadth-First Search for Unweighted Graphs

For each vertex, keep track of a color:

- White: Unvisited
- Red: Visited and Active some adjacent vertices might not been added to queue yet
- Black: Visited and Inactive all adjacent vertices have been added to queue

Pseudocode:

- 1. For all $u \in V$
 - 2. Color u White, set $d[u] = \infty$, and set $\pi[u] = \text{null}$
- 3. Color s Red and set d[s] = 0
- 4. Enqueue s into empty queue Q
- 5. While Q is not empty:
 - 6. $u \leftarrow \text{Dequeue}(Q)$
 - 7. For each White vertex v adjacent to u
 - 8. Color v Red
 - 9. Set d[v] = d[u] + 1 and $\pi[v] = u$.
 - 10. Enqueue v into Q
 - 11. Color u Black

Dijkstra's Algorithm

Dijkstra's Algorithm

Input: A simple directed graph G with nonnegative edge-weights and a source vertex s in G

Output: A number d[u] for each vertex u in G such that d[u] is the weight of the shortest path in G from s to u

Dijkstra's Algorithm - Conceptual Version

```
Dijkstra(V, E, s):
   S \leftarrow \{s\}
   d[s] \leftarrow 0
   While S \neq V
       For all v \notin S such that there is an edge (u, v) for some u \in S:
          cost c[v] \leftarrow \min_{\{(u, v): u \text{ in } S\}} d[u] + w(u, v)
       Of these vertices, let v be one for which c[v] is minimum
       Add v to S
       d[v] \leftarrow c[v]
```

Note: this version doesn't use Relax! But for an implementation, it's good to do so. Also, this version doesn't keep track of the predecessor array!

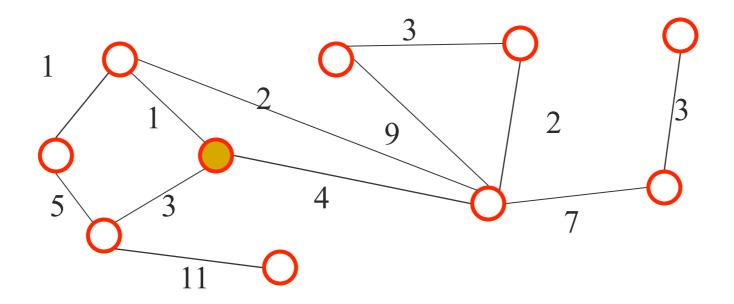
Dijkstra's Algorithm

```
Dijkstra(V, E, s):
   For v in V
       d[v] \leftarrow \infty : \pi[v] \leftarrow \text{null}:
   d[s] \leftarrow 0
   S \leftarrow \emptyset
   Q = BuildPriorityQueue(V, d)
   While Q not empty
       u \leftarrow DeleteMin(Q)
       S \leftarrow S \cup u
       For v in Adj[u]
           Relax(u,v)
```

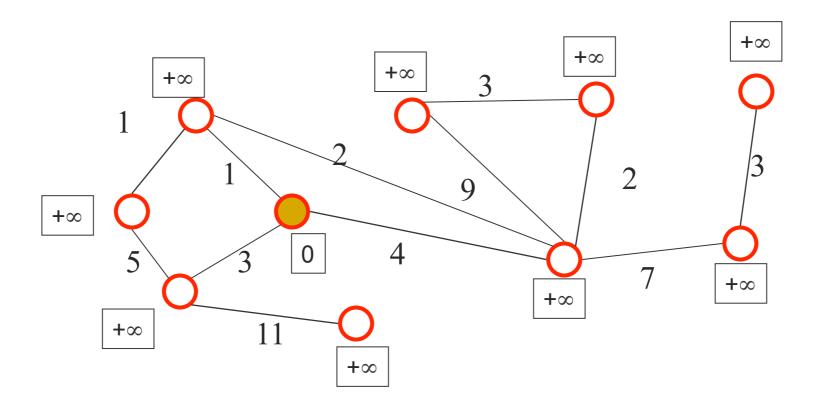
RELAX(u, v)

If
$$d[u] + w(u, v) < d[v]$$
 $d[v] \leftarrow d[u] + w(u, v)$
 $\pi[v] \leftarrow u$

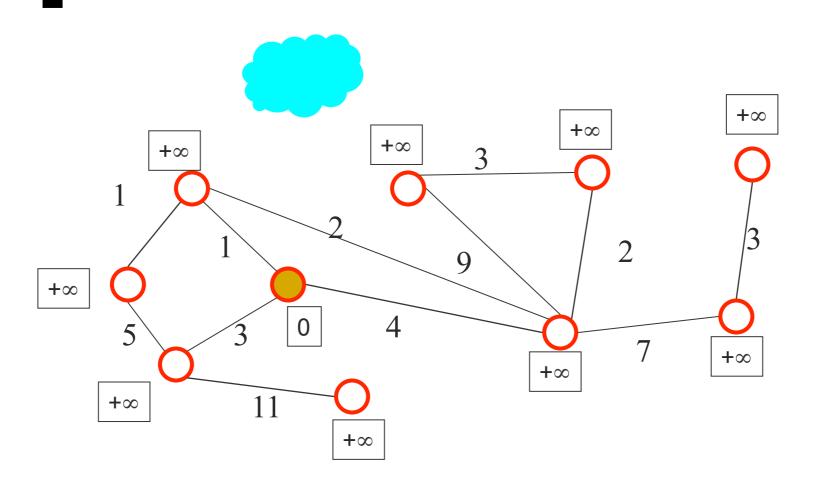
Dijkstra's algorithm: a greedy algorithm



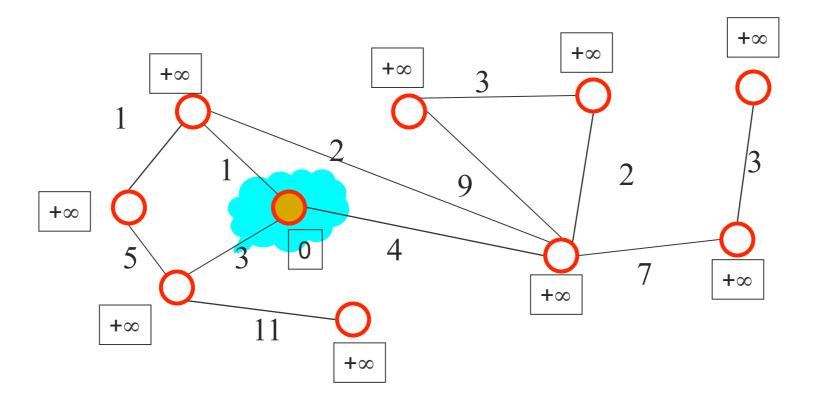
Dijkstra's algorithm: Initializing



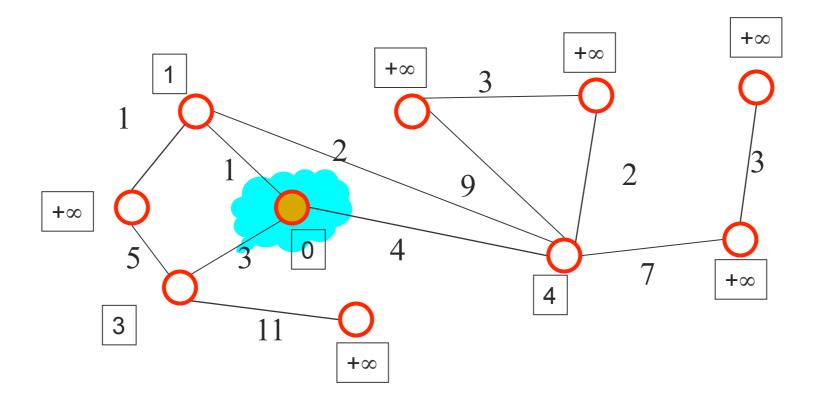
Dijkstra's algorithm: Initializing Cloud C (consisting of "solved" subgraph)



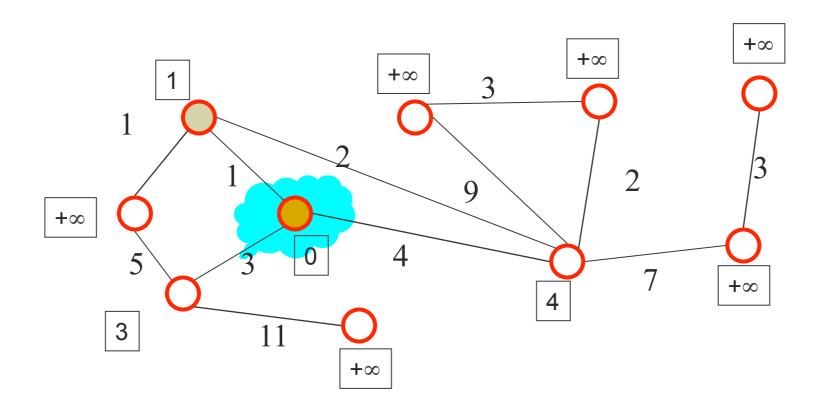
Dijkstra's algorithm: pull v into C



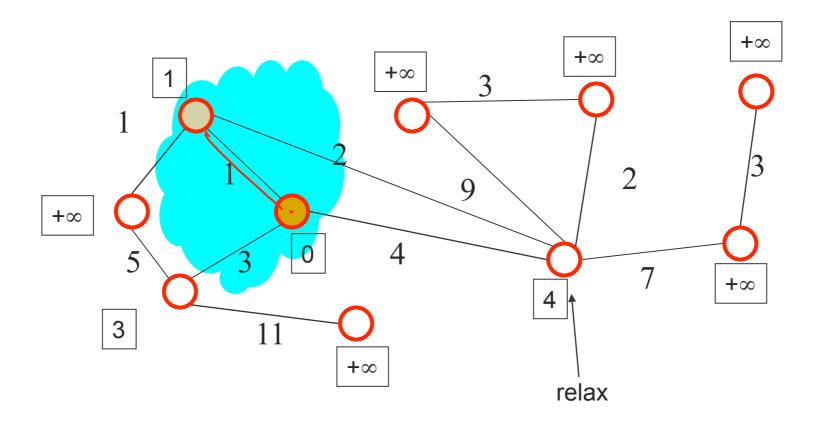
Dijkstra's algorithm: update C's neighborhood



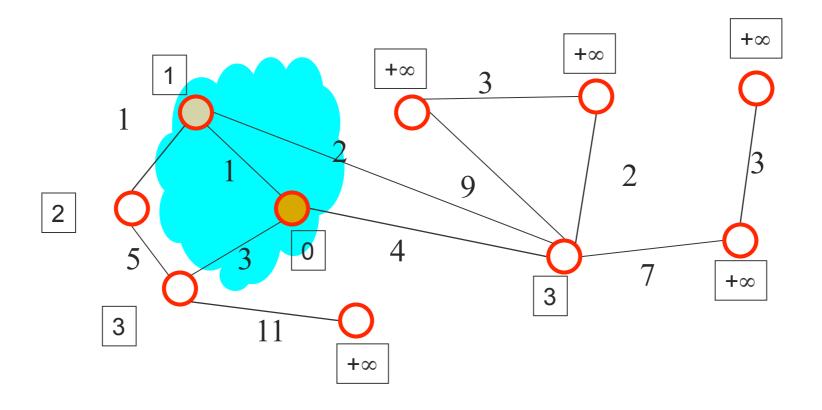
Γ Dijkstra's algorithm: pick closest vertex u outside C



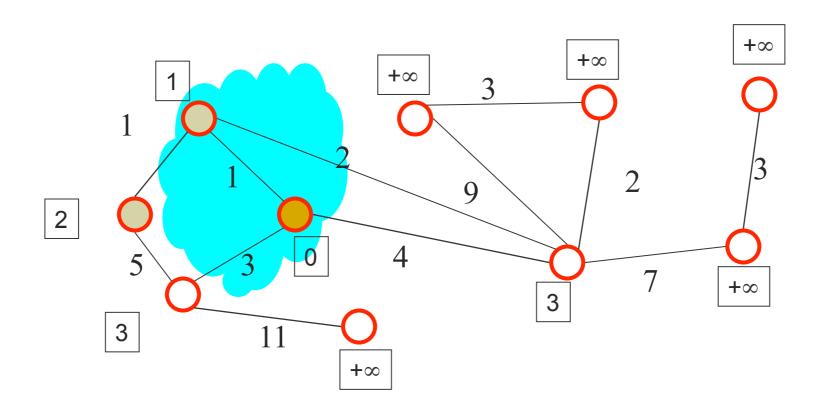
Dijkstra's algorithm: pull u into C



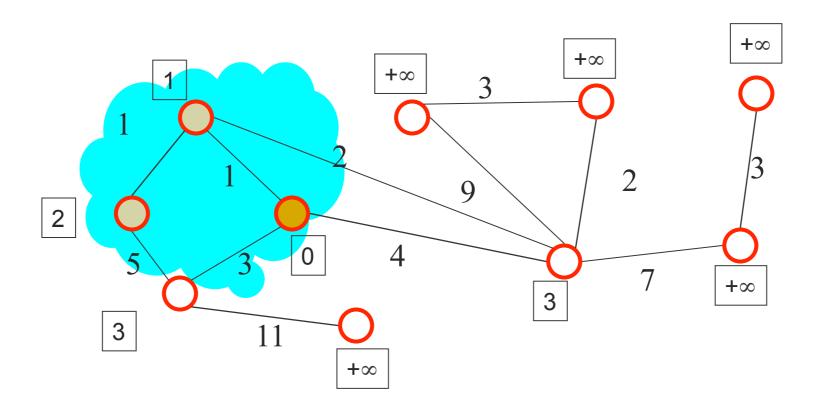
Dijkstra's algorithm: update C's neighborhood



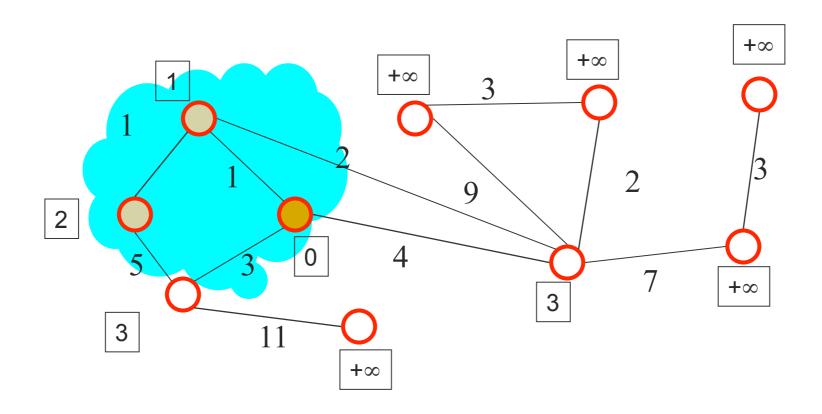
Γ Dijkstra's algorithm: pick closest vertex u outside C



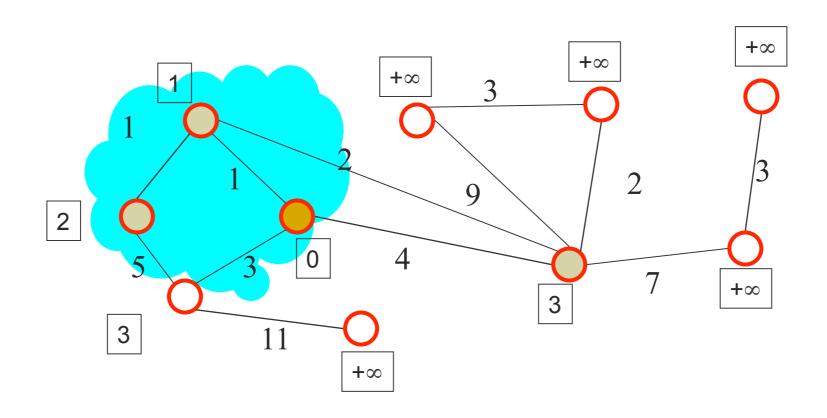
Dijkstra's algorithm: pull u into C



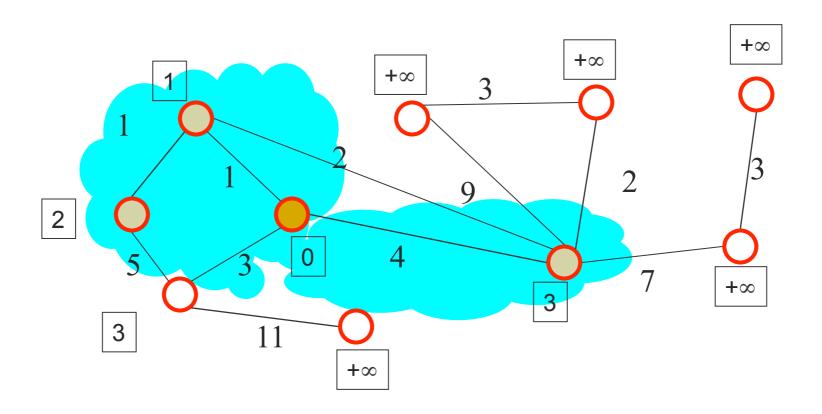
Dijkstra's algorithm: update C's neighborhood



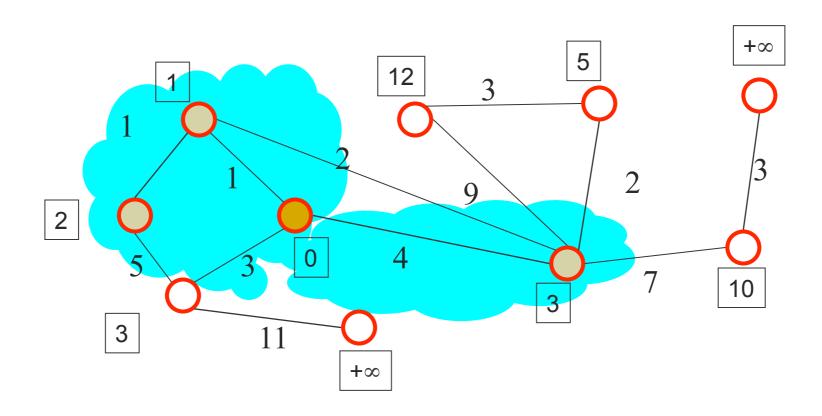
Γ Dijkstra's algorithm: pick closest vertex u outside C



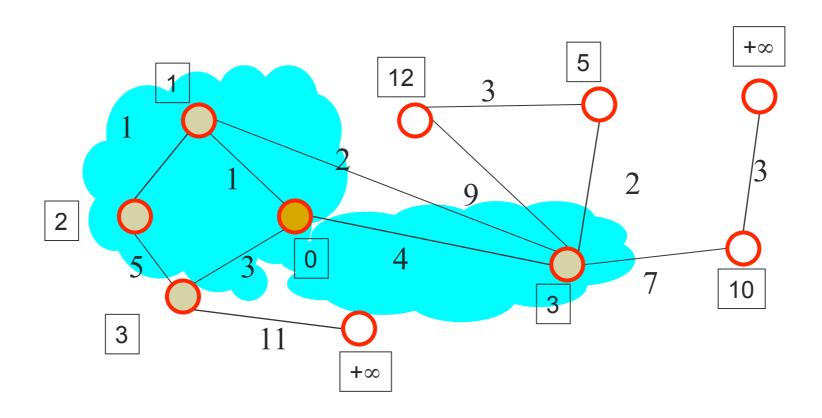
Dijkstra's algorithm: pull u into C



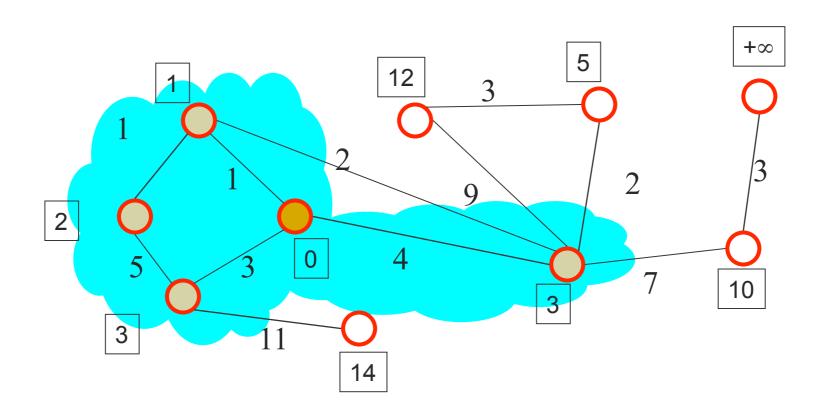
Dijkstra's algorithm: update C's neighborhood



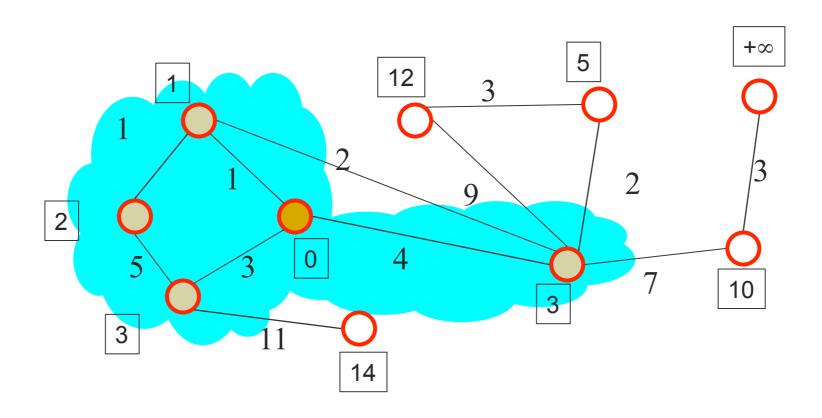
Γ Dijkstra's algorithm: pick closest vertex u outside C



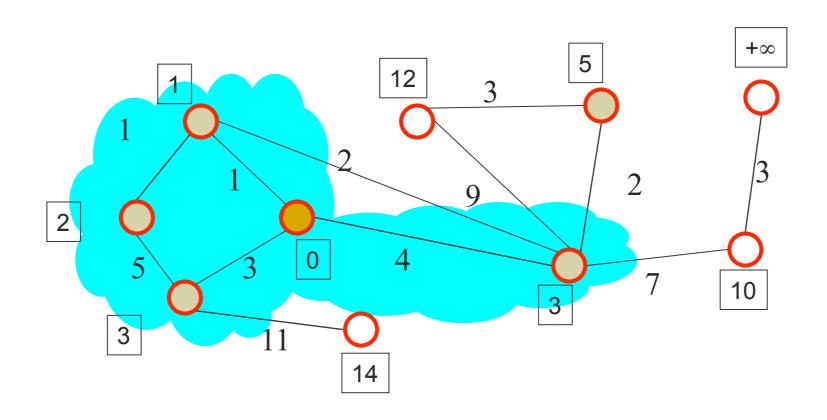
Dijkstra's algorithm: pull u into C



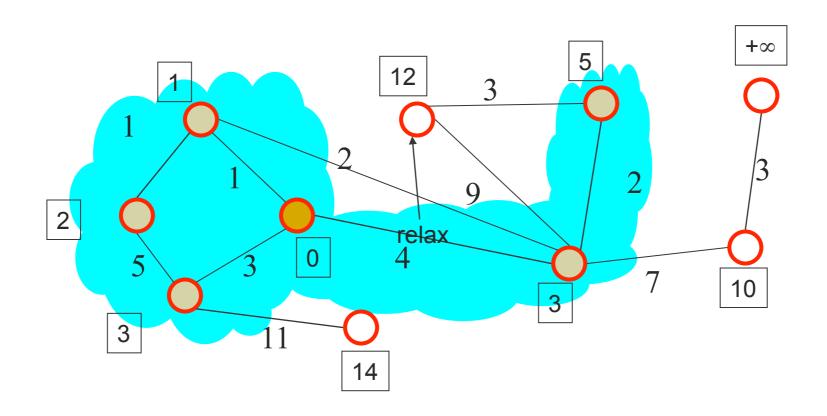
Dijkstra's algorithm: update C's neighborhood



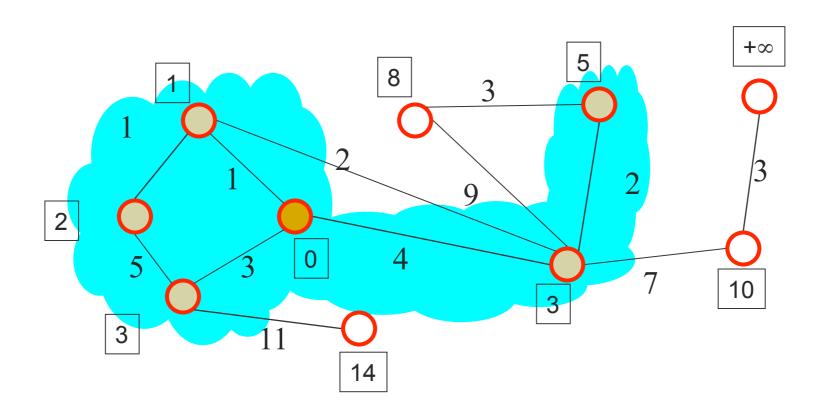
Γ Dijkstra's algorithm: pick closest vertex u outside C



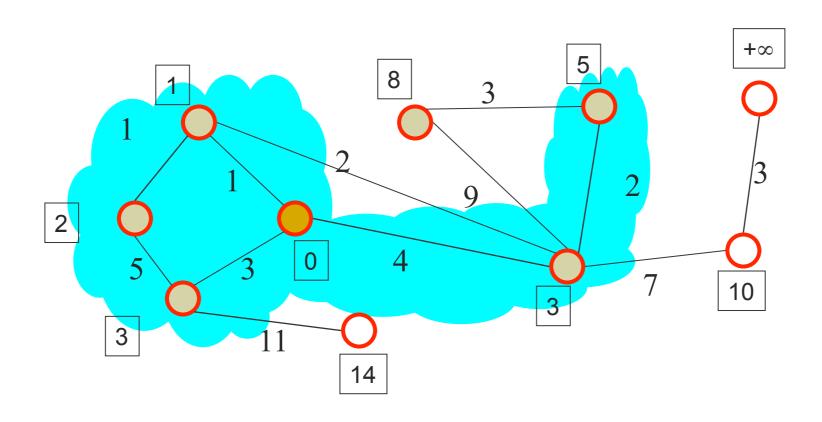
Dijkstra's algorithm: pull u into C



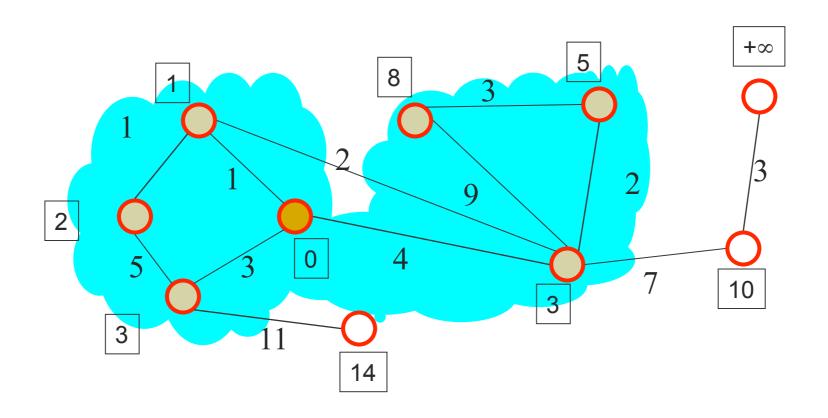
Dijkstra's algorithm: update C's neighborhood



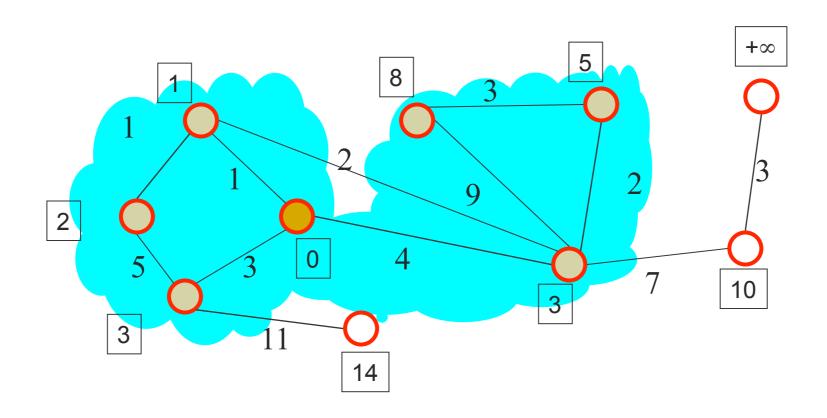
Γ Dijkstra's algorithm: pick closest vertex u outside C



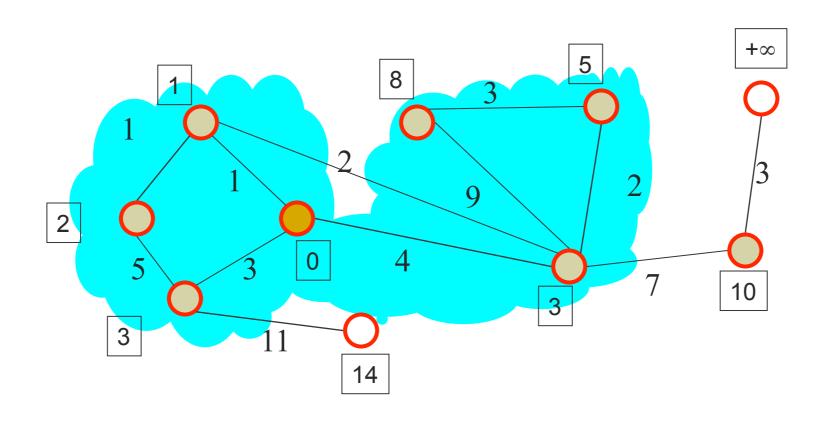
Dijkstra's algorithm: pull u into C



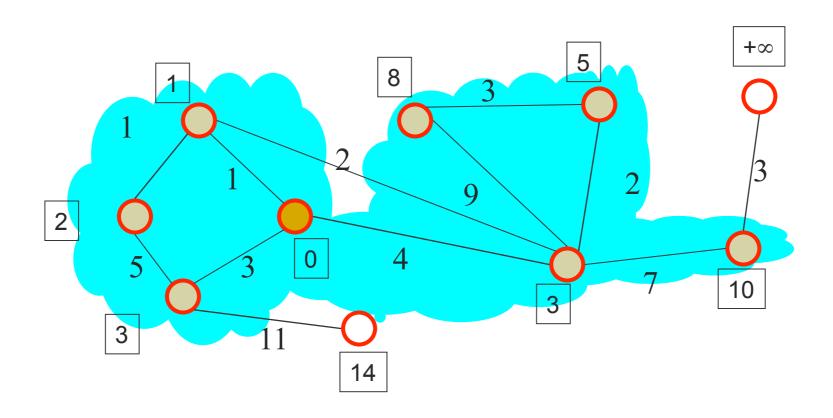
Dijkstra's algorithm: update C's neighborhood



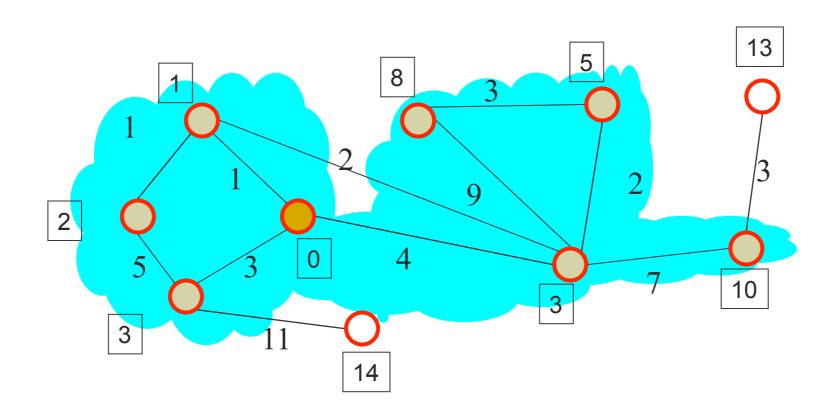
Γ Dijkstra's algorithm: pick closest vertex u outside C



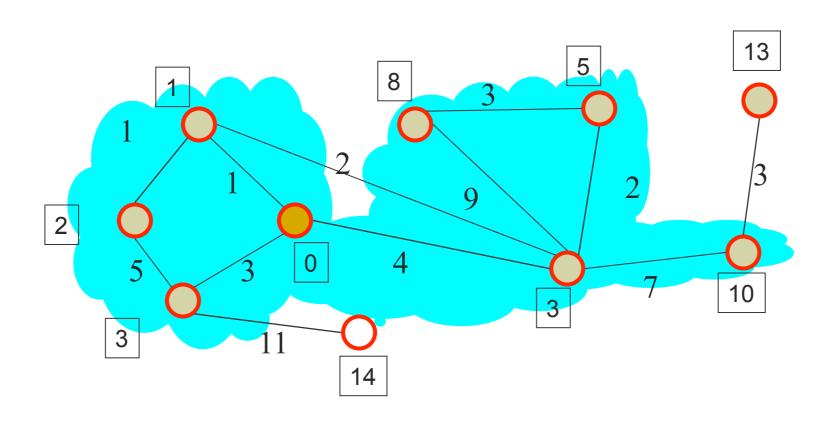
Dijkstra's algorithm: pull u into C



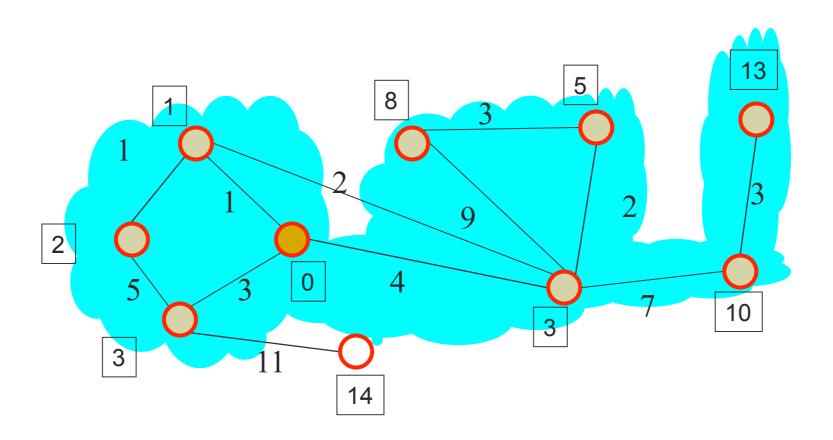
Dijkstra's algorithm: update C's neighborhood



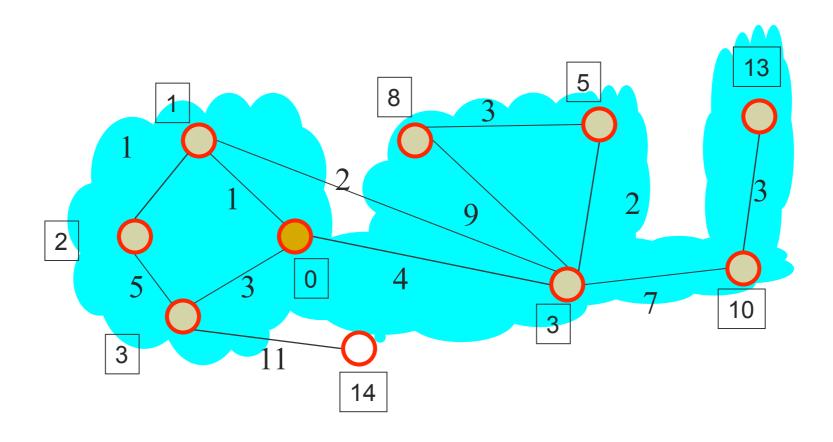
Γ Dijkstra's algorithm: pick closest vertex u outside C



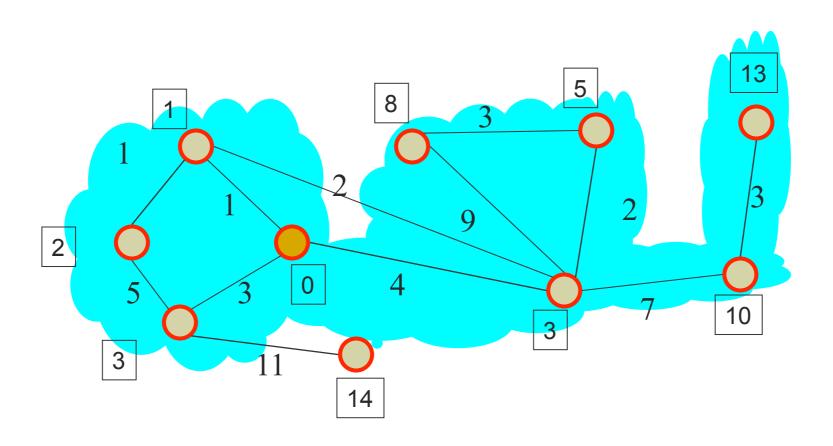
Dijkstra's algorithm: pull *u* into *C*



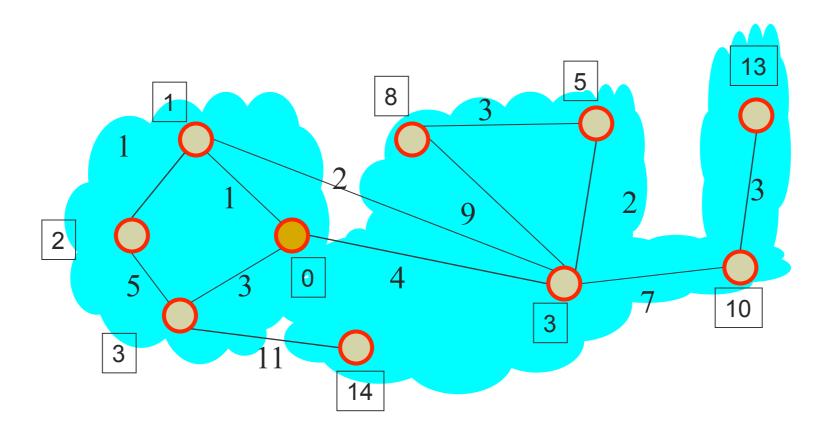
Dijkstra's algorithm: update C's neighborhood



Γ Dijkstra's algorithm: pick closest vertex u outside C



Dijkstra's algorithm: pull u into C



Dijkstra's Algorithm

```
Dijkstra(V, E, s):
   For v in V
       d[v] \leftarrow \infty : \pi[v] \leftarrow \text{null}:
   d[s] \leftarrow 0
   S \leftarrow \emptyset
   Q = BuildPriorityQueue(V, d)
   While Q not empty
       u \leftarrow DeleteMin(Q)
       S \leftarrow S \cup u
       For v in Adj[u]
           Relax(u,v)
```

RELAX(u, v)

If
$$d[u] + w(u, v) < d[v]$$
 $d[v] \leftarrow d[u] + w(u, v)$
 $\pi[v] \leftarrow u$

Dijkstra vs Prim

```
Dijkstra(V, E, s):
                                                        Prim(V, E, s):
   For v in V
                                                            For v in V
                                                                d[v] \leftarrow \infty : \pi[v] \leftarrow \text{null}:
       d[v] \leftarrow \infty : \pi[v] \leftarrow \text{null}
   d[s] \leftarrow 0
                                                            d[s] \leftarrow 0
   S \leftarrow \emptyset
                                                            S \leftarrow \emptyset
   Q = BuildPriorityQueue(V, d)
                                                            Q = BuildPriorityQueue(V, d)
   While Q not empty
                                                            While Q not empty
                                                                u \leftarrow DeleteMin(Q)
       u \leftarrow DeleteMin(Q)
       S \leftarrow S \cup u
                                                                S \leftarrow S \cup u
       For v in Adj[u]
                                                                For v in Adj[u]
           If d[u] + w(u, v) < d[v]
                                                                    If w(u, v) < d[v]
                                                                        d[v] \leftarrow w(u, v)
               d[v] \leftarrow d[u] + w(u, v)
                                                                        \pi[v] \leftarrow u
               \pi[v] \leftarrow u
               UpdatePQ(v, d[v])
                                                                        UpdatePQ(v, d[v])
```

Dijkstra's Algorithm - Runtime

```
Dijkstra(V, E, s):
                For v in V
                    d[v] \leftarrow \infty : \pi[v] \leftarrow null:
                d|s| \leftarrow 0
                S \leftarrow \emptyset
                                                                   O(V) for binary or
                Q = BuildPriorityQueue(V, d)
                                                                           Fibonacci heap
                While Q not empty
                                               \leftarrow O(log V)/call for binary or
             \rightarrow u \leftarrow DeleteMin(Q)
 V calls
                                                                           Fibonacci heaps
                    S \leftarrow S \cup u
                    For v in Adj[u]
                       If d[u] + w(u, v) < d[v]
                           d[v] \leftarrow d[u] + w(u, v)
                                                          O(log V)/call for binary heap
                           \pi[v] \leftarrow u
                                                          O(1)/call for Fibonacci heap
at most E calls \rightarrow UpdatePQ(v, d[v])
```

Relax preserves upper bound property of d[v]

- Upper bound property: Any sequence of calls to Relax maintains the invariant that $d[v] \geq \delta(s, v)$ for all $v \in V$
- Proof: simple exercise
- Important consequence:

If no path from s to v, then $d[v] = \infty$ always!

Dijkstra's Algorithm - Correctness

- Claim: for all v in S, the algorithm's path P_{ν} from s-v is a shortest s-v path
- Proof by induction
- Base case: |S| = 1, with $S = \{s\}$
- Clearly, $P_s = (s)$ is a shortest s-s path (of length zero!)
- Inductive step
 - Suppose the claim holds for |S| = k
 - Prove that it holds for |S| = k + 1

Dijkstra's Algorithm - Correctness

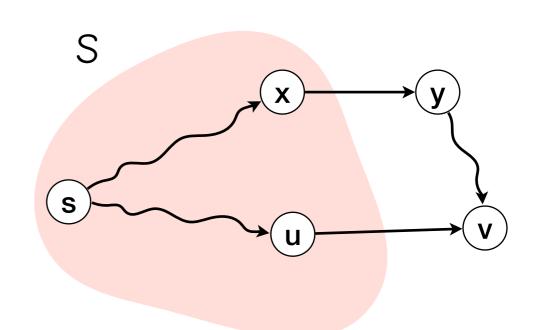
- Let |S| = k and suppose algorithm is about to add v to S, by way of u in S
- Let P_{ν} be the algorithm's s- ν path after the addition, with penultimate vertex u in S
- Consider an arbitrary alternative path P_{v}^{\prime}
- P'_{v} has a first edge (x, y) that crosses the cut $(S, V \setminus S)$

$$w(P'_{v}) \geq \delta(s, x) + w(x, y)$$

$$= d[x] + w(x, y)$$

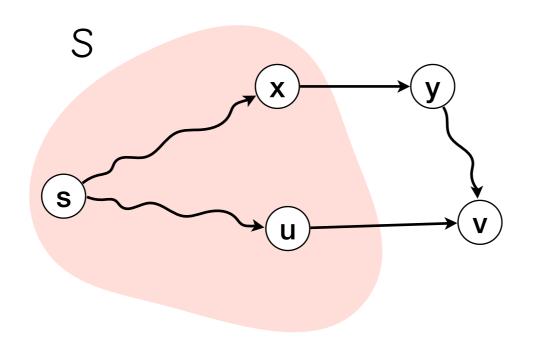
$$\geq d[u] + w(u, v)$$

$$= \delta(s, u) + w(u, v)$$



Dijkstra's Algorithm - Correctness

- Consider an arbitrary alternative path P'_{ν}
- P'_v has a first edge (x, y) that crosses the cut $(S, V \setminus S)$

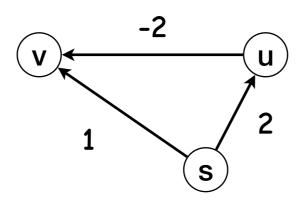


Path P'_{v} cannot be shorter than P_{v}

$$w(P'_v) \ge \delta(s,x) + w(x,y)$$

= $d[x] + w(x,y)$ (inductive hypothesis)
 $\ge d[u] + w(u,v)$ (v is next vertex added to S)
= $\delta(s,u) + w(u,v)$ (inductive hypothesis)
= $w(P_v)$

Dijkstra's Algorithm - Negative Weights



What would Dijkstra do?

"Greed is good."
-Gordon Gekko

"Greed is good." -Gordon Gekko "Greed is not good (when a graph has negative edge weights)."

- Bernie Sanders

Recall: Path Relaxation Property

- Let $p = (v_0, v_1, ..., v_k)$ be a shortest path from v_0 to v_k
- Initialize d and π with source s
- Suppose that a sequence of Relax calls occurs which includes the subsequence:
 - RELAX(v_0 , v_1), RELAX(v_1 , v_2), ..., RELAX(v_{k-1} , v_k)
- Then after the last Relax call in this subsequence and for all times thereafter, we have $d[v_k] = \delta(s, v_k)$
- (Proved last time)

- An Observation:
 - Suppose shortest path from vertex s to vertex t consists of 1 edge: $p = (v_0, v_1)$ with $s = v_0$ and $t = v_1$
 - Then after calling RELAX(v_0 , v_1):

$$d[t] = d[v_1] = \delta(v_0, v_1) = \delta(s, t)$$

- Shortest path from s to t has been found!
- How to ensure RELAX(v_0 , v_1) gets called?

Initialize d and π with source s

For each edge $(u, v) \in E$ RELAX(u, v)

- An Observation:
 - Suppose shortest path from vertex s to vertex t consists of 2 edges: $p = (s = v_0, v_1, v_2 = t)$
 - Then after calling Relax(v_0 , v_1), Relax(v_1 , v_2):

$$d[t] = d[v_2] = \delta(v_0, v_2) = \delta(s, t)$$

- Shortest path from s to t has been found!
- How to ensure Relax(v_0 , v_1), Relax(v_1 , v_2) gets called?

Initialize d and π with source s

For
$$j = 1 \rightarrow 2$$

For each edge $(u, v) \in E$

- If no negative cycles, shortest path from vertex s to vertex t consists of (at most) n-1 edges: $p = (v_0, v_1, ..., v_k)$ with $k \le n-1$
- After calling Relax(v_0 , v_1), Relax(v_1 , v_2), ..., Relax(v_{k-1} , v_k): $d[t] = d[v_k] = \delta(v_0, v_k) = \delta(s, t)$
 - Shortest path from s to t has been found!
- How to ensure subsequence Relax(v_0 , v_1), ..., Relax(v_{k-1} , v_k) of calls occurs?

Initialize d and π with source s

For
$$j = 1 \rightarrow n-1$$

For each edge $(u, v) \in E$ RELAX(u, v)

BELLMAN-FORD(G, w, s)

Initialize d and π with source s

For
$$j = 1 \rightarrow n-1$$

For each edge $(u, v) \in E$

RELAX(u, v)

For each edge $(u, v) \in E$

If
$$d[v] > d[u] + w(u, v)$$

Return False

Return True

RELAX(u,v)

If
$$d[u] + w(u,v) < d[v]$$
 $d[v] \leftarrow d[u] + w(u,v)$
 $\pi[v] \leftarrow u$

Claim 1:

If there are no negative cycles:

- (A) The algorithm correctly finds the shortest paths $(d[v] = \delta(s, v))$ for all v) and predecessor array is correct.
- (B) The algorithm returns True.

Claim 2:

If there is a negative cycle, the algorithm detects it and returns False

Claim 1:

If there are no negative cycles:

(A) The algorithm correctly finds the shortest paths $(d[v] = \delta(s, v))$ for all v) and predecessor array is correct.

Proof:

This we already showed in the derivation of the algorithm!

The desired subsequence of calls to Relax occurs, which is all that is required.

Claim 1:

If there are no negative cycles:

(B) The algorithm returns True

Proof:

We only need to verify that

$$d[v] \leq d[u] + w(u, v)$$
 for all edges $(u, v) \in E$

From Claim 1 (A), this is equivalent to

$$\delta(s,v) \leq \delta(s,u) + w(u,v)$$
 for all edges $(u,v) \in E$

This must be the case. Why? An s-v path that first visits u and then follows edge (u,v) cannot have less weight than the shortest s-v path

Claim 2:

If there is a negative cycle, the algorithm detects it and returns False

Proof:

Suppose (for a contradiction) that the algorithm returns True

Then
$$d[v] \leq d[u] + w(u, v)$$
 for all edges $(u, v) \in E$ (\star)

Let the negative cycle be (v_0, v_1, \ldots, v_k) , where $v_0 = v_k$

Summing inequality (\star) over each edge in the cycle yields:

$$\sum_{j=1}^k d[v_j] \leq \sum_{j=1}^k (d[v_{j-1}] + w(v_{j-1}, v_j))$$

(Proof of Claim 2)

Suppose (for a contradiction) that the algorithm returns True

Then
$$d[v] \le d[u] + w(u, v)$$
 for all edges $(u, v) \in E$ (\star)

Let the negative cycle be (v_0, v_1, \ldots, v_k) , where $v_0 = v_k$

Summing inequality (\star) over each edge in the cycle yields:

$$\sum_{j=1}^k d[v_j] \leq \sum_{j=1}^k (d[v_{j-1}] + w(v_{j-1}, v_j))$$

But since $v_0 = v_k$, it holds that $\sum_{j=1}^k d[v_j] = \sum_{j=1}^k d[v_{j-1}]$

The above implies that $0 \leq \sum_{j=1}^{k} w(v_{j-1}, v_j)$, a contradiction of the cycle being negative!

Bellman-Ford Algorithm - Time Complexity

- O(V E)
 - (For loop from 1 to n-1) · (Nested for loop over edges)
- Compare to Dijkstra's algorithm
 - O(E log V)
 - Dealing with negative-weight edges has a cost!

Single-Source Shortest Paths Algorithms

Type of Graph	Algorithm	Time complexity
Unweighted graph	BFS	O(V + E)
Weighted DAG	Topological sort/DFS-based	O(V + E)
Weighted directed graph (nonnegative weights)	Dijkstra's - Binary heap	O(E log V)
	Dijkstra's - Fibonacci heap	O(V log V + E)
Weighted directed graph (any weights)	Bellman-Ford	O(V E)

All-Pairs Shortest Paths Problem

- Input: A weighted directed graph G = (V, E)
- Output: All shortest paths in G, i.e., for all pairs of vertices s, t in V, a shortest path from s to t

All-Pairs Shortest Paths

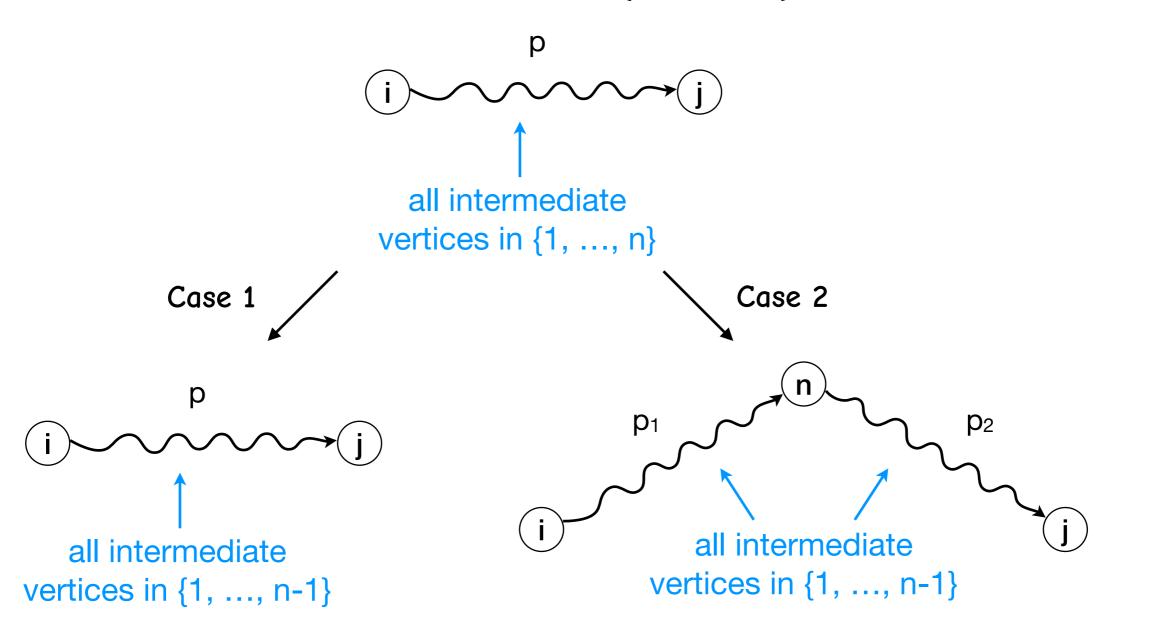
 First approach - run single-source shortest paths algorithm n times, once per choice of source vertex

Type of Graph	Algorithm	Time complexity	Dense Graph Time complexity
Nonnegative weights	Dijkstra's - Binary heap	O(V E log V)	O(V³ log V)
	Dijkstra's - Fibonacci heap	O(V ² log V + V E)	O(V ₃)
Any weights	Bellman-Ford	O(V ² E)	O(V4)

All-Pairs Shortest Paths

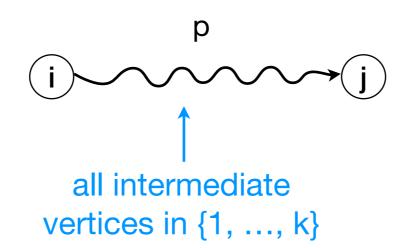
- Need to store upper bound on weight of shortest path for every pair of vertices
- Switch from array d to matrix D of size $n \times n$
 - D_{ij} = upper bound on weight of shortest path from i to j
- Switch from predecessor array π to predecessor matrix Π
 - Π_{ii} = predecessor of j in some shortest path from source i

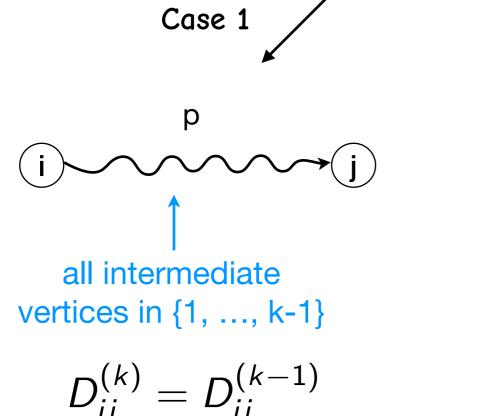
- Let p be a shortest path from i to j.
- Clearly, all intermediate vertices in path p are in {1, ..., n}
- Also, we can split p into at most 2 paths whose intermediate vertices are in {1, ..., n-1}

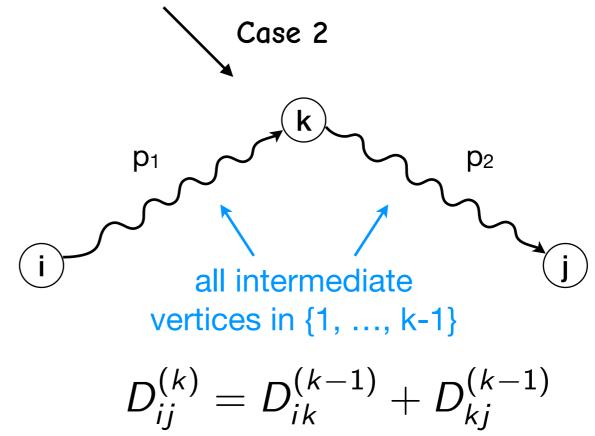


All-Pairs Shortest Paths

• For k = 0, 1, ..., n: Let $D_{ij}^{(k)}$ be the weight of the shortest path from i to j for which all intermediate vertices are in $\{1, ..., k\}$







- Recurrence: $D_{ij}^{(k)} \leftarrow \min \left\{ D_{ij}^{(k-1)}, D_{ik}^{(k-1)} + D_{kj}^{(k-1)} \right\}$
- Base case: $D_{ij}^{(0)} \leftarrow w(i,j)$
 - Why? Because no intermediate vertices can be used

FLOYD-WARSHALL(W) $D^{(0)} \leftarrow W$ For $k = 1 \rightarrow n$ For $i = 1 \rightarrow n$ For $j = 1 \rightarrow n$ $D_{ij}^{(k)} \leftarrow \min \left\{ D_{ij}^{(k-1)}, D_{ik}^{(k-1)} + D_{kj}^{(k-1)} \right\}$ Return $D^{(n)}$

FLOYD-WARSHALL(W)

$$D^{(0)} \leftarrow W$$

Time Complexity

$$O(n^3)$$

For
$$k = 1 \rightarrow n$$

For $i = 1 \rightarrow n$

For $j = 1 \rightarrow n$

$$D_{ij}^{(k)} \leftarrow \min \left\{ D_{ij}^{(k-1)}, D_{ik}^{(k-1)} + D_{kj}^{(k-1)} \right\}$$

Return $D^{(n)}$

Correctness? $D_{ii}^{(n)}$ is weight of shortest path with intermediate vertices in {1, ..., n}. This is shortest path itself!

What about that predecessor matrix?

How do we print a shortest path?

Case 1:
$$D_{ik}^{(k-1)} + D_{kj}^{(k-1)} \ge D_{ij}^{(k-1)}$$

Path will not change

Reuse predecessor from before: $\Pi_{ij}^{(k)} \leftarrow \Pi_{ij}^{(k-1)}$

Case 2:
$$D_{ik}^{(k-1)} + D_{kj}^{(k-1)} < D_{ij}^{(k-1)}$$

Update path to [path from i to k] + [path from k to j]

$$\Pi_{ij}^{(k)} \leftarrow \Pi_{kj}^{(k-1)}$$

"Set predecessor of j in shortest path from source i using intermediate vertices in $\{1, ..., k\}$ to be predecessor of j in shortest path from source k using intermediate vertices in $\{1, ..., k-1\}$ "