
Shortest Paths

Nishant Mehta

Lecture 5 - Part II

Finding the Fastest Way to Travel
between Two Intersections in Vancouver

4

2

3

1

4

5
2

1

3

2

2

5

1

1

6

2

2

1

1

1

2

1

4

3

5

2

Granville St

and

W Hastings St

Homer St

and

W Pender St

Homer St

and

W Hastings St

Granville St

and

W Pender St

Shortest Paths in Weighted Graphs

• Find fastest way to travel across the country using directed
graph representing roads, with edge weights representing:

• distances

• travel times between cities
(might account for speed limits, traffic, etc.)

• Find a fastest way using flights

• Flight distances between airports.

• Might also allow for warps in space-time continuum.
Negative travel time

Single-Source Shortest Paths

• If graph is unweighted:

• Breadth-First Search is a solution (more on this soon)

• If graph is weighted:

• Every edge is associated with a number:

integers, rational numbers, real numbers (might be negative!)

• An edge weight can represent:

distance, connection cost, affinity

Single-Source Shortest Paths Problem

• Input: A weighted directed graph G = (V, E)
Input: and a source vertex s

• Output: All single-source shortest paths for s in G, i.e., for
all other vertices v in G, a shortest path from s to v.

• A path p = (v0, v1, . . . , vk) from s = v0 to v = vk
is shortest if its length w(p) =

Pk
j=1 w(vj�1, vj)

is the minimum possible among all s–v paths

Optimal substructure

Optimal substructure - an optimal solution to a problem
contains with it optimal solutions to subproblems

Example:

• Problem: Find shortest path from vertex to vertex

• Subproblem: Find shortest path from intermediate vertex to

v1 vk

vj vk

v1
v2 vj

vj+1⋯
vj+2

vk

P′￼jk

Pjk = (vj, vj+1, vj+2, vk)

Subpaths of shortest paths are shortest paths

Lemma

Let be a shortest path from to .
Take some arbitrary satisfying , and let

 be the subpath of from to .

Then is a shortest path from to .

P1k = (v1, v2, …, vk) v1 vk
i, j 1 ≤ i < j ≤ k

Pij = (vi, vi+1, …, vj) P1k vi vj
Pij vi vj

Relax: The most important function for today’s lecture

RELAX(u, v)

If d[u] + w(u, v) < d[v]

d[v] d[u] + w(u, v)

[v] u

←

⇡ ←

Single-source shortest paths for weighted DAGs

• Suppose we have a weighted directed acyclic graph (DAG)

• An easy way to solve single-source shortest paths problem:

(1) Use topological sort to obtain topological ordering
(basically, use DFS + a slight amount of extra work)

(2) For each vertex u in topological order

_For all vertices v adjacent to u

__RELAX(u, v)

• Runtime?

https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html

Single-source shortest paths for weighted DAGs

• Suppose we have a weighted directed acyclic graph (DAG)

• An easy way to solve single-source shortest paths problem:

(1) Use topological sort to obtain topological ordering
(basically, use DFS + a slight amount of extra work)

(2) For each vertex u in topological order

_For all vertices v adjacent to u

__RELAX(u, v)

• Runtime? O(V + E)

https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html

Single-source shortest paths for weighted DAGs

• Suppose we have a weighted directed acyclic graph (DAG)

• An easy way to solve single-source shortest paths problem:

(1) Use topological sort to obtain topological ordering
(basically, use DFS + a slight amount of extra work)

(2) For each vertex u in topological order

_For all vertices v adjacent to u

__RELAX(u, v)

• Runtime? O(V + E)

• Claim: Above algorithm is correct. Let’s prove it!

https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html

Breadth-First Search for Unweighted Graphs
Breadth-First Search: Unweighted Graphs
For each vertex, keep track of a color:

• White: Unvisited

• Red: Visited and Active - some adjacent vertices might not been added to queue yet

• Black: Visited and Inactive - all adjacent vertices have been added to queue

Pseudocode:

1. For all u 2 V

2. Color u White, set d[u] =1, and set ⇡[u] = null

3. Color s Red and set d[s] = 0

4. Enqueue s into empty queue Q

5. While Q is not empty:

6. u Dequeue(Q)

7. For each White vertex v adjacent to u

8. Color v Red
9. Set d[v] = d[u] + 1 and ⇡[v] = u.

10. Enqueue v into Q

11. Color u Black

Remarks

• We discover one layer of nodes at a time. The layer of v is indicated by the value of
d[v] when v is enqueued.

• Once a node is added to the queue, it is never added again, so d[v] and ⇡[v] are at their
final values!

• On completion, each node but s has a predecessor (the node which caused it to be
enqueued), indicated by the predecessor array. Equivalently, one can add an edge
(u, v) to a tree when at vertex u and adding vertex v to the queue.

Runtime

• O(n+m) - cost of initialization and cost of visiting (and possibly enqueueing) adjacent
vertices is O(m) in the worst case.

Correctness Obvious. All vertices at distance ` will appear in layer `. Also, their prede-
cessors are stored, and tracing back yields a path of length `.

2

