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Finding the Fastest Way to Travel 
between Two Intersections in Vancouver
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Shortest Paths in Weighted Graphs

• Find fastest way to travel across the country using directed 
graph representing roads, with edge weights representing: 

• distances 

• travel times between cities                                              
(might account for speed limits, traffic, etc.) 

• Find a fastest way using flights 

• Flight distances between airports. 

• Might also allow for warps in space-time continuum. 
Negative travel time



Single-Source Shortest Paths

• If graph is unweighted: 

• Breadth-First Search is a solution (more on this soon) 

• If graph is weighted: 

• Every edge is associated with a number: 

integers, rational numbers, real numbers (might be negative!) 

• An edge weight can represent: 

distance, connection cost, affinity



Single-Source Shortest Paths Problem

• Input: A weighted directed graph G = (V, E)              
Input: and a source vertex s 

• Output: All single-source shortest paths for s in G, i.e., for 
all other vertices v in G, a shortest path from s to v. 

• A path p = (v0, v1, . . . , vk) from s = v0 to v = vk
is shortest if its length w(p) =

Pk
j=1 w(vj�1, vj)

is the minimum possible among all s–v paths



Optimal substructure

Optimal substructure - an optimal solution to a problem              
contains with it optimal solutions to subproblems 

Example: 

• Problem: Find shortest path from vertex  to vertex  

• Subproblem: Find shortest path from intermediate vertex  to 

v1 vk

vj vk

v1
v2 vj

vj+1⋯
vj+2

vk

P′￼jk

Pjk = (vj, vj+1, vj+2, vk)



Subpaths of shortest paths are shortest paths

Lemma 

Let  be a shortest path from  to  . 
Take some arbitrary  satisfying , and let 

 be the subpath of  from  to  . 

Then  is a shortest path from  to  .

P1k = (v1, v2, …, vk) v1 vk
i, j 1 ≤ i < j ≤ k

Pij = (vi, vi+1, …, vj) P1k vi vj
Pij vi vj



Relax: The most important function for today’s lecture

RELAX(u, v) 

If d[u] + w(u, v) < d[v] 

d[v]  d[u] + w(u, v) 

[v]  u

←

⇡ ←



Single-source shortest paths for weighted DAGs

• Suppose we have a weighted directed acyclic graph (DAG) 

• An easy way to solve single-source shortest paths problem: 

(1) Use topological sort to obtain topological ordering 
(basically, use DFS + a slight amount of extra work) 

(2) For each vertex u in topological order 

_For all vertices v adjacent to u 

__RELAX(u, v) 

• Runtime?

https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html
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Single-source shortest paths for weighted DAGs

• Suppose we have a weighted directed acyclic graph (DAG) 

• An easy way to solve single-source shortest paths problem: 

(1) Use topological sort to obtain topological ordering 
(basically, use DFS + a slight amount of extra work) 

(2) For each vertex u in topological order 

_For all vertices v adjacent to u 

__RELAX(u, v) 

• Runtime?  O(V + E) 

• Claim: Above algorithm is correct.      Let’s prove it!

https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html


Breadth-First Search for Unweighted Graphs 
Breadth-First Search: Unweighted Graphs
For each vertex, keep track of a color:

• White: Unvisited

• Red: Visited and Active - some adjacent vertices might not been added to queue yet

• Black: Visited and Inactive - all adjacent vertices have been added to queue

Pseudocode:

1. For all u 2 V

2. Color u White, set d[u] =1, and set ⇡[u] = null

3. Color s Red and set d[s] = 0

4. Enqueue s into empty queue Q

5. While Q is not empty:

6. u Dequeue(Q)

7. For each White vertex v adjacent to u

8. Color v Red
9. Set d[v] = d[u] + 1 and ⇡[v] = u.

10. Enqueue v into Q

11. Color u Black

Remarks

• We discover one layer of nodes at a time. The layer of v is indicated by the value of
d[v] when v is enqueued.

• Once a node is added to the queue, it is never added again, so d[v] and ⇡[v] are at their
final values!

• On completion, each node but s has a predecessor (the node which caused it to be
enqueued), indicated by the predecessor array. Equivalently, one can add an edge
(u, v) to a tree when at vertex u and adding vertex v to the queue.

Runtime

• O(n+m) - cost of initialization and cost of visiting (and possibly enqueueing) adjacent
vertices is O(m) in the worst case.

Correctness Obvious. All vertices at distance ` will appear in layer `. Also, their prede-
cessors are stored, and tracing back yields a path of length `.
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