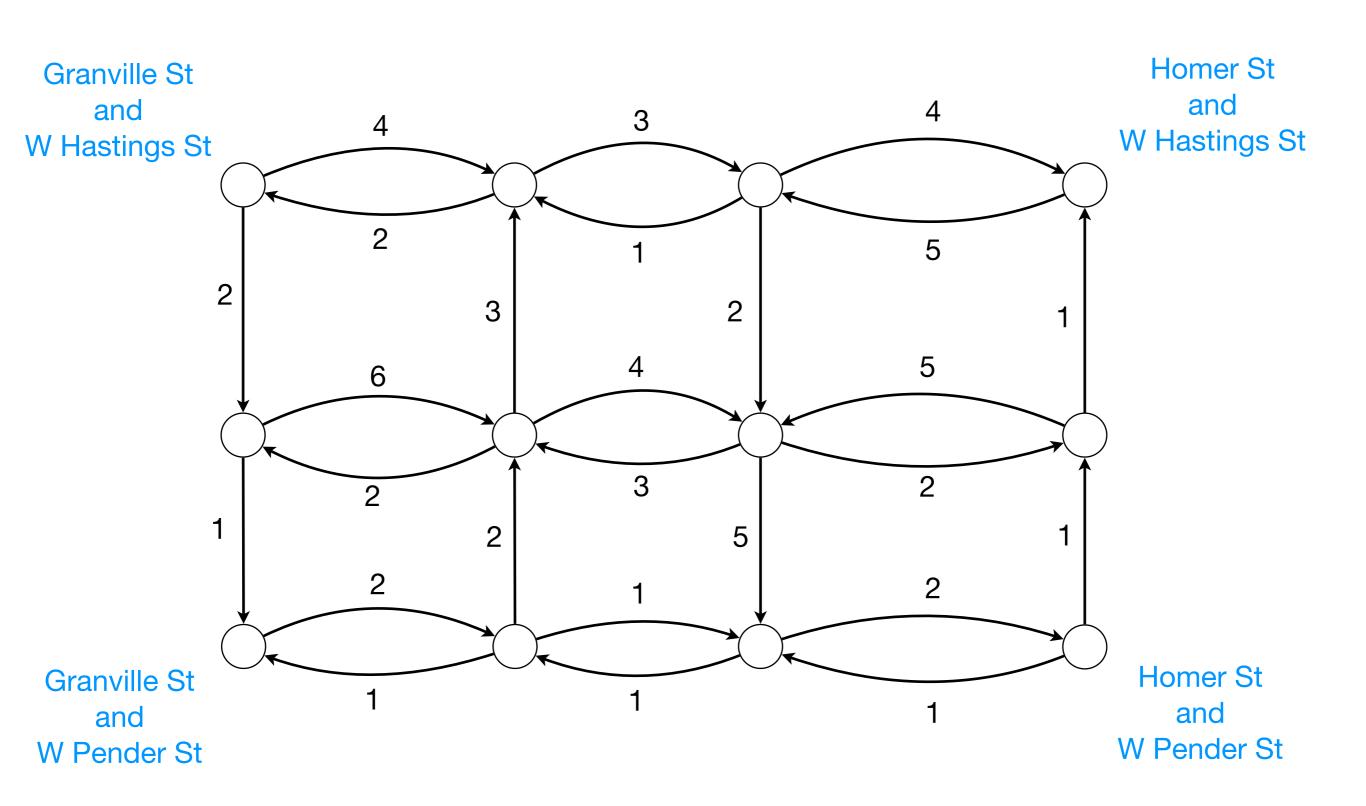
Shortest Paths

Nishant Mehta

Lecture 5 - Part II

Finding the Fastest Way to Travel between Two Intersections in Vancouver



Shortest Paths in Weighted Graphs

- Find fastest way to travel across the country using directed graph representing roads, with edge weights representing:
 - distances
 - travel times between cities
 (might account for speed limits, traffic, etc.)
- Find a fastest way using flights
 - Flight distances between airports.
 - Might also allow for warps in space-time continuum.
 Negative travel time

Single-Source Shortest Paths

- If graph is unweighted:
 - Breadth-First Search is a solution (more on this soon)
- If graph is weighted:
 - Every edge is associated with a number: integers, rational numbers, real numbers (might be negative!)
 - An edge weight can represent: distance, connection cost, affinity

Single-Source Shortest Paths Problem

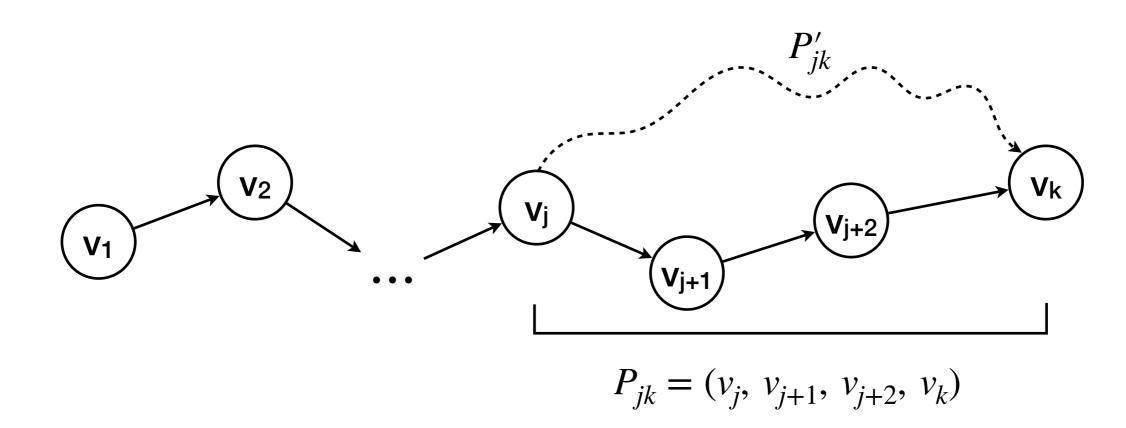
- Input: A weighted directed graph G = (V, E)
 and a source vertex s
- Output: All single-source shortest paths for s in G, i.e., for all other vertices v in G, a shortest path from s to v.
 - A path $p = (v_0, v_1, \dots, v_k)$ from $s = v_0$ to $v = v_k$ is shortest if its length $w(p) = \sum_{j=1}^k w(v_{j-1}, v_j)$ is the minimum possible among all s-v paths

Optimal substructure

Optimal substructure - an optimal solution to a problem contains with it optimal solutions to subproblems

Example:

- ullet Problem: Find shortest path from vertex v_1 to vertex v_k
- ullet Subproblem: Find shortest path from intermediate vertex v_i to v_k



Subpaths of shortest paths are shortest paths

Lemma

Let $P_{1k}=(v_1,v_2,...,v_k)$ be a shortest path from v_1 to v_k . Take some arbitrary i,j satisfying $1 \leq i < j \leq k$, and let $P_{ij}=(v_i,v_{i+1},...,v_j)$ be the subpath of P_{1k} from v_i to v_j . Then P_{ij} is a shortest path from v_i to v_j .

Relax: The most important function for today's lecture

RELAX(u, v)

If
$$d[u] + w(u, v) < d[v]$$
 $d[v] \leftarrow d[u] + w(u, v)$
 $\pi[v] \leftarrow u$

Single-source shortest paths for weighted DAGs

- Suppose we have a weighted directed acyclic graph (DAG)
- An easy way to solve single-source shortest paths problem:
 - (1) Use <u>topological sort</u> to obtain topological ordering (basically, use DFS + a slight amount of extra work)
 - (2) For each vertex u in topological order For all vertices v adjacent to u

 RELAX(u, v)
- Runtime?

Single-source shortest paths for weighted DAGs

- Suppose we have a weighted directed acyclic graph (DAG)
- An easy way to solve single-source shortest paths problem:
 - (1) Use <u>topological sort</u> to obtain topological ordering (basically, use DFS + a slight amount of extra work)
 - (2) For each vertex u in topological order For all vertices v adjacent to u

 RELAX(u, v)
- Runtime? O(V + E)

Single-source shortest paths for weighted DAGs

- Suppose we have a weighted directed acyclic graph (DAG)
- An easy way to solve single-source shortest paths problem:
 - (1) Use <u>topological sort</u> to obtain topological ordering (basically, use DFS + a slight amount of extra work)
 - (2) For each vertex u in topological order For all vertices v adjacent to u

 RELAX(u, v)
- Runtime? O(V + E)
- Claim: Above algorithm is correct.
 Let's prove it!

Breadth-First Search for Unweighted Graphs

For each vertex, keep track of a color:

- White: Unvisited
- Red: Visited and Active some adjacent vertices might not been added to queue yet
- Black: Visited and Inactive all adjacent vertices have been added to queue

Pseudocode:

- 1. For all $u \in V$
 - 2. Color u White, set $d[u] = \infty$, and set $\pi[u] = \text{null}$
- 3. Color s Red and set d[s] = 0
- 4. Enqueue s into empty queue Q
- 5. While Q is not empty:
 - 6. $u \leftarrow \text{Dequeue}(Q)$
 - 7. For each White vertex v adjacent to u
 - 8. Color v Red
 - 9. Set d[v] = d[u] + 1 and $\pi[v] = u$.
 - 10. Enqueue v into Q
 - 11. Color u Black