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Abstract

We introduce FuncICA, a new independent component anal-

ysis method for pattern discovery in inherently functional

data, such as time series data. We show how applying the

dual of temporal ICA to temporal data, and likewise apply-

ing the dual of spatiotemporal ICA to spatiotemporal data,

enables independent component regularization not afforded

by the primal forms applied to their original domains. We

call this family of regularized dual ICA algorithms FuncICA.

FuncICA can be considered an analog to functional principal

component analysis, where instead of extracting components

to minimize L2 reconstruction error, we maximize indepen-

dence of the components over the functional observations.

In this work, we develop an algorithm for extracting inde-

pendent component curves, derive a method for optimally

smoothing the curves, and validate this method on both

synthetic and real datasets. Results for synthetic, gene ex-

pression, and electroencephalographic event-related poten-

tial data indicate that FuncICA can recover well-known sci-

entific phenomena and improve classification accuracy, high-

lighting its utility for unsupervised learning in continuous

data. We conclude this work with a forward-looking, novel

framework for fMRI data analysis by making use of the func-

tional dual of spatiotemporal ICA.

1 Introduction

We propose a novel solution for unsupervised pattern
discovery in time series and other structured data. In
particular, we are searching for linearly varying patterns
of activation. A simple example of such a pattern is an
uptrend sustained for a fixed period of time, such that
linear variation affects the slope of the trend. Two pow-
erful applications are automatic identification of event-
related potentials in electroencephalography (EEG) and
discovery of time-varying signaling mechanisms for gene
expression. Existing temporal methods are unable to
find such time series patterns: functional principal com-
ponents analysis (FPCA) only finds patterns that have
Gaussian variation over the observations, while existing
temporal independent component analysis (ICA) meth-
ods are concerned with recovering statistically indepen-
dent signals sampled over time rather than statistically
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independent patterns sampled over entire time series ob-
servations(e.g. each observation is a 2-second long uni-
variate time series). The former type of source recovery,
the primal form of ICA, is not sufficient for discovery of
many types of patterns.

1.1 ICA in the primal Algorithmic treatments of
ICA abound, but our explorations of this space have
led to at least one conclusion: all currently existing ICA
algorithms treat the problem of ICA in the primal with
respect to their domain. By ICA in the primal we mean
that for a linear model

(1.1) X = AS,

where the i th row of X specifies the observations
of a random variable Xi, and the j th column of X
represents the j th joint observation of the joint variable
X, ICA seeks a linear unmixing of the random variables
X1, . . . Xn such that the resulting variables S1, . . . , Sn
are statistically independent over their observations.

This formulation of ICA naturally lends itself to
solving the blind source separation (BSS) problem. In
this problem, we observe n signals that are indepen-
dently and identically distributed (IID)1, and the ob-
served signals have been mixed (each observation at a
time index is the same linear combination of the values
of source signals at that time index). The goal in BSS is
to recover the statistically independent source signals.

1.2 ICA in the dual While the primal form can
solve highly interesting problems like blind source sep-
aration [1] and compression, a dual form of ICA opens
to the door to a world of different, equally important
problems. In this work, we consider ICA in a dual rep-
resentation. We still have precisely the same observed
data X, but we frame the problem as the mixing model
XT = ÃST which implies that Ã−1XT = ST .2 In the
primal, the rows of A−1 are the independent compo-
nents, which by themselves are of little value except for

1By IID, we mean that each signal’s observations at a given

time are assumed to be independent of observations of that signal
at other times, and each observation of a given signal is assumed

to be drawn from an identical distribution.
2For now, assume that A is positive definite (A � 0) and hence

invertible.



Figure 1: The data for temporal ICA in the primal. Random
variables are signals sampled over time indices.

knowing the inverse mixing coefficients; however, when
they are left multiplied with the data, they yield source
signals which likely are of value by themselves, such as a
particular speaker’s speech over some time period. The
concept of the dual of ICA has been visited before, by
Stone et al. [2] and more recently by Choi et al. [3].

In the dual, the rows of Ã−1 are time series, which
in themselves, are of particular value, while the sources
ST are not of value without the data XT . The implica-
tions of the independent components being time series
in the dual is that the independent components repre-
sent time series whose inner product over the observa-
tions (i.e., their activation, or coefficient) is statistically
independent. For instance, an independent component
in the dual may be some time series pattern of stock
value change that occurs in financial market data that
is synchronized to a merger event, with a linear acti-
vation coefficient that varies depending on the market
capitalization of the new company produced. Further,
this temporal progression is statistically independent of
the other independent components over the time series
observations, and hence it appears to, in isolation, cap-
ture some underlying phenomenon of some system (in
this case, a financial market).

The dual of ICA just described is actually the dual
of temporal ICA. For clarity, see the primal and dual
forms in Figures 1 and 2 respectively. Researchers in
various communities, including neuroscience, psychol-
ogy, and computer science, have explored another form
of ICA, known as spatial ICA [4], which enables them to
analyze functional magnetic resonance imaging (fMRI)
data to understand the brain. In spatial ICA, each fMRI
image is a random variable, and the voxel indices index
the observations. This already appears to be quite sim-
ilar to our dual representation of temporal ICA, and in
fact a näıve implementation of the dual of spatial ICA
for this data is equivalent to temporal ICA. For the dual

Figure 2: The data for temporal ICA in the dual. Random
variables are time indices sampled over time series.

of both temporal and spatial ICA, we will show how, us-
ing functional3 representations of data, we can exploit
the smoothness properties of temporally and spatially
sampled data respectively to perform noise reduction
on our data that improves the utility of our recovered
temporal and spatial patterns respectively.

Our algorithm, FuncICA, finds precisely these
smooth patterns with the level of smoothness optimized
by a novel, information-theory-inspired objective that is
empirically validated. At this point in time, the brain is
rapidly being imaged via fMRI under a number of stim-
uli, and it is critical that there exist a method suitable
for detecting underlying patterns of activation that can
help us better understand neural processes. After in-
troducing FuncICA, our main result, and analyzing its
performance, we will argue that both spatial, tempo-
ral, and a method known as spatiotemporal ICA are all
not quite the right ICA methods to use for fMRI data.
We will then show how, with small changes, FuncICA
is a more natural method to use for fMRI data analysis
and can be a powerful tool for spatiotemporal pattern
discovery in this exciting domain.

We begin by providing an overview of ICA in its
primal form and some necessary functional notation, as
well as a brief summary of FPCA, the closest method to
FuncICA. Our contribution follows: we introduce Fun-
cICA and a regularization parameter for smoothing, de-
velop an objective function for optimization of this pa-
rameter, validate this objective function for synthetic
and real EEG data, and demonstrate superior classi-
fication results using FuncICA features for microarray
gene expression data and ERP data from the brain, as
compared to FPCA and the standard (non-functional)
dual of temporal ICA. Our results indicate that the al-
gorithm produces components that can recover sources,

3This use of the word functional refers to the function spaces
notion, not to be confused with the functional in fMRI.



improve classification accuracy by sparsely representing
information, and effectively estimate the P300 event-
related potential in the brain. Finally, we conclude with
a forward-looking, novel framework for fMRI data anal-
ysis.

2 ICA and FPCA

Prior to introducing FuncICA, we formally introduce
ICA and some functional analysis notation. We also
describe functional PCA (FPCA) because it is the first
step in performing FuncICA, and it is also an analog
to FuncICA that finds uncorrelated but not necessarily
statistically independent components

2.1 ICA ICA seeks a linear transformation from sta-
tistically dependent to statistically independent compo-
nents. The model can be expressed as an instantaneous
linear mixing model

(2.2) X(t) = AS(t),

where4 t ∈ [T ], X(t) ∈ Rn, A ∈ Rn x n, and S(t) ∈ Rn.
The source signal distributions of S1, . . . , Sn realized
at indices [T ] are statistically independent, but the
mixing matrix A clearly erases the independence of the
distributions of the observed signals X1, . . . , Xn. The
task is then to estimate the unmixing matrix W = A−1

such that

(2.3) Y , WX = WAS.

It is known that we can recover S only up to a scaling
and permutation.

It can be shown that maximizing independence of
the source distributions is equivalent to minimizing the
Kullback-Leibler (KL) divergence between the differ-
ence between the joint density of the sources and the
product of the marginal densities:

H(Y ) = DKL

(
p(Y )‖

n∏
i=1

p(Yi)

)
(2.4)

=
n∑
i=1

H(Yi)−H(Y ),

where H(Y ) is the entropy of Y . Notably, the KL
divergence of two distributions P and Q is 0 iff all of
the Yi are statistically independent, so minimizing this
objective function is firmly grounded.

Before describing functional PCA, some notation
and basis functional analysis is required.

4Here, we adopt the notation [k] = {1, 2, . . . , k}.

2.2 Functional representation Let t ∈ [0, T ] and
X be a set of n functionals {X1(t), . . . , Xn(t)}, where
Xi(t) ∈ L2. L2 is a Hilbert space with inner product
defined as the integral of the product of two functionals:

(2.5) 〈f, g〉 =
∫
f(t)g(t)dt.

If we let β(t) be a set of m basis functions
{β1(t), . . . , βm(t)}, then we can represent each func-
tional Xi(t) as a linear combination of the basis func-
tions

(2.6) Xi(t) =
m∑
j=1

φi,jβj(t).

The choice of basis is a non-trivial task. For our
analysis we have used a flexible cubic b-spline basis,
so that each βj(t) ∈ C20(R).5 Using a nonparametric
basis may offer a representation that captures functional
variability in the right places, but the simplicity of our
choice of basis makes the analysis cleaner and also is
very computationally efficient.

Having established the necessary functional nota-
tion, we describe functional PCA; we then show FPCA
to be a close analog and the first step of FuncICA.

2.3 Functional PCA FPCA, introduced by Ramsay
and Silverman [5, 6], is in its unregularized form equiv-
alent to the Karhunen-Loève expansion. Ramsay and
Silverman developed an optimally smoothed FPCA to
minimize reconstruction error; we discuss one method in
Section 4. Via the derivation of FPCA that follows, we
hope to convey that FPCA is conceptually equivalent to
PCA in a basis function space. This intepretation will
ease understanding of FuncICA as well.

For a functional random variable X(t), consider the
covariance function

(2.7) Γ(s, t) = E[X(s)X(t)].

We decompose Γ(s, t) in terms of eigenfunctions γj :

(2.8) Γ(s, t) =
∞∑
i=1

λjγj(s)γj(t),

where λj is the jth eigenvalue of the covariance function.
Estimating the sample eigenfunctions γ̂j(s) is equivalent

5C20(R) is the class of functions of R that have compact support
and are continuous up to the second derivative.



to the following optimization problem:

maximize
∫ ∫

γj(s)Γ̂(s, t)γj(t) ds dt,

subject to
∫
γj(t)2dt = 1∫
γi(t)γj(t)dt = 0 for i < j.

If we let f be a vector of coefficients for the basis
expansion of ξ(t) in terms of the basis functions βj(t),
then

(2.9) ξ(t) =
m∑
j=1

fjβj(t).

Further, for A a coefficients matrix for the basis func-
tions over the data, we have

(2.10) Xi(t) =
m∑
j=1

Ai,jβj(t).

Let L be the basis function inner product matrix such
that

(2.11) Li,j =
∫
βi(t)βj(t)dt.

Then the principal component score for Xi(t) is

(2.12)
∫
ξ(t)Xi(t)dt = A(i)L

T f,

where A(i) denotes the ith row of A. The PC scores for
all of the functional data are then ALT f .

Let Vj,k = 1
n−1

∑n
i=1(Ai,j − Āj)(Ai,k − Āk) induce

the sample variance matrix of the basis coefficients. Our
objective is to maximize with respect to f the objective
function fTLV LT f .

In this form, f is the leading eigenvector. We can
estimate the coefficients for the ith eigenfunction by
using the Gram-Schmidt process and formulating the
objective function using the projected data.

3 FuncICA

3.1 FuncICA derivation. A functional version of
ICA is equivalent to the original ICA formulation with
A now being the linear operator:

(3.13) A : L2 7→ L2,

because both the functional observations Xi(t) and
the independent functionals Sj are in L2. This linear
operator is somewhat like the analog to the A matrix in
ICA, if A were permitted to take on an infinite number

of rows and columns. As in the case of FPCA, to
gain tractability we consider each functional observation
Xi(t) by its expansion in terms of basis functions βj(t),
such that

(3.14) Xi(t) =
m∑
j=1

ψi,jβj(t).

To compactly represent this information, let β be a
linear map

(3.15) β : Rm 7→ L2.

To ease the understanding of this operator, we treat
it as an analog to a matrix with an infinite number
of columns. The jth row is then the functional βj(t).
If A ∈ Rn × L2 and B ∈ Rm × L2, then each row
of the matrices corresponds to a functional, and hence
ABT = C such that

(3.16) Ci,j =
∫
Ai(t)Bj(t)dt,

where Ai(t) is the ith row of A and Bj(t) is the jth row
of B.

Using this notation, X = ψβ, where each row of
X is a functional observation and ψ ∈ Rn x m. The
principal component matrix is

(3.17) E = UTX = UTψβ = ρβ, for ρ ∈ Rm x m.

For some linear operator Z : L2 7→ L2, let σZ denote
the score matrix of Z over the data X. The principal
component score matrix is then

(3.18) σE = EXT = ρβ(ψβ)T = ρββTψT .

We can then apply a left linear transformation W to the
principal component matrix to obtain some

(3.19) Y = WE = φβ,

where φ = Wρ. The corresponding score matrix for the
functionals in Y is then

(3.20) σY = Y XT = WEXT = WσE = φββTψT .

If we let σY denote the target score matrix where
independence of the marginal distributions of Yi over the
data X is maximized, then the problem of ICA reduces
to the familiar setting of optimizing an independence
objective function with respect to a finite matrix of
parameters W (applied to σE).



3.2 Algorithm To optimize W , recall our objective
function 2.4. After performing FPCA, we are left with

(3.21) H(E) =
n∑
i=1

H(Ei)−H(E).

Considering rotations of the functional data using the
dual orthogonal decomposition provided by E, we con-
sider left rotations W (such that Y = WE) that main-
tain uncorrelatedness of the distributions of the Ei while
minimizing H(Y ). Reformulating H(Y ) in terms of Y ,
W , and E, we have

H(Y ) =
n∑
i=1

H(Yi)−H(Y )(3.22)

=
n∑
i=1

H(Yi)−H(WE),

which by Theorem 9.6.4 of Cover and Thomas [7] is
equal to

(3.23)
n∑
i=1

H(Yi)−H(E)− log(|W |).

To maintain the uncorrelatedness of the functionals, we
restrict W to the set of orthogonal (rotation) matrices.
Because rotation matrices have unity determinant, it
is true that log(|W |) = 0. Discarding the fixed H(E)
term, we are left with the new objective function

(3.24) H∗(Y ) =
n∑
i=1

H(Yi).

Employing this objective is equivalent to direct en-
tropy minimization, for which many existing ICA algo-
rithms can be applied. Because of our unique domain
of finding an optimal rotation of basis function coef-
ficients, and also due to convincing source separation
results for a variety of mixtures, we use the RADICAL
ICA algorithm for optimizing W .

The core idea of RADICAL is consider pairwise
rotations of (Yi, Yj) that minimize Hi + Hj ; hence, the
optimization directly minimizes the sum of marginal
entropies of pairwise source estimates. In order to
estimate the entropy of some Yi, one could use a
nonparametric method that exploits the order statistics
of univariate data to estimate entropy consistently [8].
RADICAL employs a modified, more robust version of
this estimator. It is beyond the scope of the paper to
give a thorough treatment of RADICAL. The interested
reader is encouraged to read [9] for details6.

6RADICAL is competitive with other recent algorithms [10],
so our analysis is restricted to RADICAL.

This work would be far from complete without spe-
cial considerations for the functional data. A caveat
of source separation in the functional case is that the
distributions estimated are heavily dependent upon the
choice of functionals obtained by applying FPCA. Vary-
ing the level of smoothing appropriately can provide in-
dependent functionals that both have lower marginal
entropies and better approximate the source distribu-
tions of interest.

4 Optimal Smoothing

Individual functional observations often exhibit a large
amount of spiky behavior due to observation error and
small variations in the underlying stochastic processes,
but the underlying processes of interest often evolve
smoothly. This nuisance roughness motivates a method
for incorporating a smoothing method into the function
extraction. Numerous methods exist for controlling
roughness in extracted curves; the method employed
here follows a quite general framework used by Ramsay
and Silverman [6]. Instead of choosing eigenfunctions
with the constraint

(4.25)
∫
ξ(t)2dt = 1,

we impose the alternate, roughness-penalizing con-
straint

(4.26)
∫
ξ(t)2dt+ α

∫
(Lξ(t))2dt = 1,

where α ≥ 0 and L is a linear combination of differential
operators such that

(4.27) Lξ =
m∑
i=0

aiD
iξ.

Note that the goodness of a particular penalty operator
L is likely domain-dependent. One simple choice of L
that we adopt for our experiments is L = D2, a penalty
on the norm of the second derivative. This choice yields
the new constraint

(4.28)
∫
ξ(t)2dt+ α

∫
(D2ξ(t))2dt = 1,

for α ≥ 0. Optimal selection of L is also a worthy
problem to tackle; however, our results suggest that D2

is sufficient for the data tested here.

4.1 Objective for α optimization A key inquiry
in this work is to identify cases where it is beneficial
to choose a smoothing parameter α other than the L2

optimal reconstruction error parameter α∗P . α∗P can be
selected by minimizing reconstruction error via leave-
one-out cross-validation (LOOCV), where in each epoch



one curve is the test set and the remaining curves are the
training set [5]. Because our goal is to extract indepen-
dent functions that maximally depart from Gaussianity
(minimal marginal entropy), we conjecture that smooth-
ing is beneficial only when Gaussian sources exist in the
data and those sources are sufficiently rougher than the
non-Gaussian sources. An example of this would be
a high frequency harmonic source with amplitude nor-
mally distributed over the observed functionals. The
essence of our approach is to assign a FuncICA result
(a set of independent functionals) a score that penal-
izes the result increasingly as the sources become more
Gaussian.

The negentropy of a unit-variance random variable
Yi is defined as

(4.29) J(Yi) = H(N (0, 1))−H(Yi).

Note that J(Yi) is non-negative because for a fixed
variance the Gaussian distribution has maximal entropy
[11].

Our objective function is then

(4.30) Q(Y ) =
p∑
i=1

1
J(Yi)

.

This objective heavily penalizes nearly-Gaussian
sources and mostly ignores sources with high negen-
tropy.

The algorithm for optimizing α is shown in Algo-
rithm 1. The idea is to optimize Q starting at α∗P , the
optimal α chosen by FPCA, and to slowly increase α
as long as Q decreases. Choice of the parameter γ (for
γ > 1) can be decided by an optimizer.

Algorithm 1
1: Minimize FPCA LOOCV error to find α∗P .
2: Q(0) =∞
3: α(1) = α∗P
4: τ = 0
5: repeat
6: τ = τ + 1
7: Y = FuncICA(X, α(τ))
8: Q(τ) =

∑p
i=1

1
J(Yi)

9: α(τ+1) = γ · α(τ)

10: until Q(τ) > Q(τ−1)

11: return α(τ−1)

5 Previous Temporal ICA Methods

In this section, we frame FuncICA in the context of
other temporal ICA methods that also exploit the
temporal structure of the data. Two important points
to note are:

1. These methods solve a problem different than the
one solved by FuncICA.

2. The methods make use of temporal dependence in
a way that is inconsistent with the problem solved
by FuncICA.

Convolutive mixing is a variation of the instantaneous
linear mixing model, where the goal is to isolate an au-
dio source signal from echoey microphone recordings. A
closely related problem is source separation where the
sources exhibit temporal structure [12, 13]; a simple ex-
ample would be if a source signal had significant auto-
correlation and the cross-correlation among the source
signals, by virtue of their independence, is zero. The
family of methods for solving these problems attempt
to recover independent components whose activations
vary independently over time, and hence the temporal
structure of the problem can be used by minimizing the
cross-correlation between the observed signals. In the
dual, the independent components are time series and
the goal is to attain statistical independence of their
activation over the functional observations. In this set-
ting, the cross-correlation between signals is not of in-
terest, because the independent components themselves
are unconstrained; it is only their activation over the
functional data that is optimized to be statistically in-
dependent.

Several ICA methods attempt to recover dominant
independent components [14, 15], with a goal similar to
our goal of discovering time series patterns. A common
strategy here is to first do ICA on whitened data that
has not been dimensionality-reduced, and then to use
some properties of the components to select the most
dominant components. For n signals, this becomes in-
tractable in the primal formulation, due toO(n3) scaling
properties for ICA algorithms. Additionally, by using
the primal interpretation of statistical independence,
the recovered time series patterns are not guaranteed to
have statistically independent activation over the time
series observations.

In contrast, FuncICA’s computational complexity
is limited by the number of basis functions it uses to
represent each observed time series, rather than the
number of observed time series. Further, by using
FPCA prior to optimizing the independence objective,
the dimensionality of the problem is further reduced.
As a result, the algorithm’s computational complexity
is linear in n, and we are able to show results of FuncICA
for datasets containing a very high number of signals;
our synthetic dataset consists of 104 time series in which
we mine for independent component curves. Hence,
from a practical computability standpoint, we flexibly
can facilitate computability by reducing the number of



basis functions used in our representation or being more
aggressive in the FPCA dimensionality reduction step7.
We now present results of FuncICA on synthetic and
real-world brain data.

6 Experiments and Results

We tested FuncICA’s performance on synthetic data
and two real-world data sets. Our goal is to demonstrate
that FuncICA is capable of extracting highly interesting
components that sparsely encode the most relevant
information for functional data sets, and further to
contrast the performance of FuncICA with FPCA and
the non-functional dual of temporal ICA. We first
discuss results on synthetic data as validation of the
independent curve extraction and smoothing methods.
We then present scientifically intriguing results for
feature extraction and classification in EEG and gene
expression data. Note that in this section, when we
refer to ICA, we mean the standard (non-functional)
dual of temporal ICA.

6.1 Synthetic data For our experiments with syn-
thetic data, we created 2 independent functions by using
orthogonal functions with unit norm. These consisted
of
(6.31)

S1(t) =
1√
2

sin(10πt) and S2(t) =
1√
2

cos(10πt),

sampled at 1000 points with uniform spacing. We
generated 104 realizations of 2 IID Laplace random
variables Z1 and Z2 with zero mean and unit variance
(Zi ∼ Laplace(0, 1√

2
)). The sources were mixed to form

104 observations Xi for i ∈ [104]:

(6.32) Xi = Z1,i · S1 + Z2,i · S2,

where Zi,j represents the jth realization of Zi.
Source recovery accuracy We ran FuncICA on

multiple data sets generated as described above; 120
cubic-bspline basis functions were used, and α was set
to zero since no observation noise or other roughness
was added to the data.

In order to rigorously evaluate source recovery per-
formance, we define a measure of accuracy to be the
minimum inner product among the source functionals’
inner products with their best fit independent function-
als; more formally, accuracy is
(6.33)

min{〈S1, (arg max
Yi

〈S1, Yi〉)〉, 〈S2, (arg max
Yj

〈S2, Yj〉)〉}.

7Using FPCA for dimensionality reduction is preferred. Choice

of the number of basis functions appears to be subjective, while
FPCA minimizes a clear objective.
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Figure 3: S1(t) and S2(t) are shown in red and green re-
spectively. IC1(t) and IC2(t) are the black dotted lines.
PC1(t) and PC2(t) are the blue and magenta lines respec-
tively. The independent functionals are near-perfect replicas
of the sources, while the principal component functions are
phase-shifted from the sources.

As shown by a typical recovery result in Figure 3,
FuncICA achieved near-perfect source recovery , while
FPCA nearly always recovered a phase-shifted version
of the sources. The mean accuracy of FuncICA over
5 realizations of the synthetic data was 0.9999, while
FPCA’s mean accuracy over the same 5 realizations
was only 0.9051. The reason for the discrepancy
is that FPCA tends to select more Gaussian source
distributions as a result of minimizing reconstruction
error. This is evidenced from the entropy estimates
(using Vasicek’s entropy estimator [8]) for the 2 PC
distributions being 1.3963 and 1.3610 respectively, while
entropy estimates for the two IC distributions were
lower at 1.3647 and 1.3296 respectively, yielding a
difference of the sums of the marginal entropies of
0.0629.

Robustness with respect to α Under two
Laplace distributions mixed with an additive high fre-
quency Gaussian component - that is, a function form of
sin(40πt) with linear activation through the data vary-
ing as N (0, σ) - FuncICA and FPCA perform very dif-
ferently when α = 0. While FuncICA separates the
Laplace-distributed sources well, FPCA extracts 4 func-
tionals that all have significant high frequency harmon-
ics. As α was increased, the high frequency harmonic
component was driven into the 3rd principal component
(PC) curve, with negligible change to the extracted IC
curves. FPCA therefore seems to be more sensitive to
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Figure 4: All plots are for the synthetic dataset. Top,
the regularization parameter α plotted versus Q. Note the
minimum at α = 1 · 10−9 and the spurious maximum at
α = 3 · 10−9. Bottom, accuracy is high in close proximity to
α = 1 · 10−9, with sharp drops as α increases above 2 · 10−9

or decreases below 5 · 10−9.

regularization in cases where the components exhibit
variable amounts of smoothness that can inform the
separation process, while FuncICA requires no regular-
ization here.

Effect of α on Q and accuracy Additionally,
FuncICA was able to extract the Laplacian-distributed
components from mixtures of two high-frequency Gaus-
sian sources and two Laplacian sources. The two Lapla-
cian sources are as described before, and the two Gaus-
sian sources are sin(40πt) and cos(40πt), again dis-
tributed according to N (0, σ). We applied Algorithm 1
to automatically find an optimal value for the regular-
ization parameter by increasing α, starting from α∗P = 0
in this case, until Q reaches a minima. Figure 4 shows
the effect of smoothing on Q and accuracy.

The left plot in Figure 4 shows that Q reaches a
minimum at α∗I = 1 · 10−9. Looking at the right plot,
the accuracy measure is quite close to the optimal value
for this choice of α, and for a small window around

α∗I , accuracy remains high. Significant departure from
α∗I results in large drops in accuracy. The intuition
behind this result is that higher values of Q indicate
independent functionals that are more Gaussian dis-
tributed, and the rest follows from the well-known result
that Gaussian sources impede source recovery of non-
Gaussian sources. Minimizing Q serves to dampen the
high frequency Gaussian components and impede their
recovery, but we are careful to stop the search for the
optimal α once Q hits a local minimum, because we oth-
erwise risk finding another local minimum at a higher
α where the non-Gaussian sources are also dampened.
Although not shown in the plots, another minima of Q
occurs at α = 1 · 10−5, but the accuracy there is sub-
stantially lower (close to 0.92) because the non-Gaussian
sources S1(t) and S2(t) have been dampened. Having
validated Algorithm 1 for optimization of α∗I on syn-
thetic data, we progress to the real-world results.

6.2 Microarray gene expression data. The mi-
croarray data obtained by [16] is of α-factor8 synchro-
nized temporal gene expression for the yeast cell cycle,
with observations of 6178 genes at 18 times in 7 minute
increments. Of interest in this domain is identification
of co-regulated genes related to specific cell cycle phases.
Among the phases G1, S, S/G2, G2/M, and M/G1, we
focus on discriminating between genes related to G1 ver-
sus non-G1 phase regulation. The motivation for this
comparison is in part due to [17], who present classifi-
cation results using FPCA.

Notably, Liebermeister [18] explored gene expres-
sion with this data set using the primal form of tempo-
ral ICA. Because Liebermeister did not use a functional
representation, the analysis was able to consider each
gene’s expression (at discrete time indices) over multi-
ple cell cycles, with each cell cycle being synchronized by
a different method. By contrast, our functional repre-
sentation currently prohibits use of multiple curves per
observation, and as a result we (in agreement with [17])
restrict our analysis to cell cycle gene expression syn-
chronized by α-factor mating pheromone. Though this
outcome may seem less preferable, a functional repre-
sentation facilitates natural methods for incorporating
genes that have missing observations at a few time in-
dices. Use of a nonzero α is not necessary here, because
the sparse temporal sampling of the gene expression pro-
cess causes the spline-fitting stage to eliminates most of
the roughness Algorithm 1 would otherwise remove.

Results For the discrimination task, we applied

8An unfortunate intersection of notation has occurred. Note
that α-factor refers to a mating pheromone within biology, which

is completely separate from our α which refers to a regularization

parameter.



FuncICA to data from a 5672-gene subset corresponding
to all genes where the α-factor synchronized data is
missing at most one value. We tested the relevance of
the extracted IC curves to a classification task involving
48 genes related to G1 phase and 50 genes related
to non-G1 phases (identified by traditional methods
by [16]) that have data available and are missing no
more than one time-indexed observation. Missing values
are handled automatically by the cubic b-spline fitting
process. We measure the quality of a set of features
according to performance of a support vector machine
(SVM) [19] with Gaussian kernel, and we use leave-
one-out cross-validation to select both a suitable SVM-
regularization parameter and kernel bandwidth.

SVM experiments were run using all 11 PC curve
score features versus all 11 IC curve features. The PC
features resulted in 9.2% error, while the IC features
yielded 7.1% error. Removing 2 features determined
to be detrimental from the IC feature set (IC curves 5
and 10) reduced error to 6.1%, whereas removing the
last 3 PC curves yielded error of 8.2%. Unfortunately,
ICA does not have a natural solution for missing data
imputation and so we cannot provide results comparing
FuncICA to its non-functional version (RADICAL in
this case) for this problem. Our conjectures for the
results that we obtained are that FuncICA extracts
more meaningful features that are more easily exploited
by the SVM classifier.

6.3 P300 event-related potential data. The EEG
data set obtained from [20] includes 15300 1-second ob-
servations, where for each time index in a given observa-
tion there are 64 voltage values corresponding to scalp
electrical activity recorded during a brain-computer in-
terface (BCI) experimental paradigm. During the ex-
periment, a subject is attending to a particular letter
on a screen containing a 6 by 6 grid of letters and num-
bers. Each row and column is flashed once in a random
sequence, and the 1 second signal observations corre-
spond to the data recorded after each flash. The BCI
community is interested in identifying the row and col-
umn (the letter) to which a subject is attending.

Much previous work has characterized an event-
related potential (ERP) known as the P300, due to
its signature appearance as a positivity in the EEG
approximately 300 ms concluding the presentation of
an attended stimulus. In Figure 6, the empirical P300
waveform for this data set is shown; it was calculated
by taking the mean of the 2550 trials in which the P300
is known to activate. While the P300 ERP exists in
most if not all subjects, the actual timing and waveform
exhibited vary to some degree by subject and various
physiological factors affecting attention. Therefore, an

FuncICA ICA FPCA Empirical P300

column 64.3% 35.7% 37.5% 35.7%
row 55.4% 48.2% 37.5% 46.4%
letter 30.4% 17.9% 16.1% 17.9%

Figure 5: P300 classification accuracy for FuncICA, FPCA,
ICA, and empirical P300 waveform. The best accuracy
attained in each column is in bold.

automated process for estimating the waveform from
an unlabeled set of trials will prove highly useful for
classification problems where we wish to pick out the
trials that flash an attended letter.

The problem is to decide which letter was attended
to, given 15 trials of each row and column flashing.
Classification ideally takes place from 1 trial of each
row and column flashing, but in practice the low SNR
makes a larger number of trials necessary. All of our
experiments are done from recordings at the electrode
Pz, with a common average reference (CAR) filter which
instantaneously adjusts the value of the signal at an
electrode by the average of all 64 channels. We did not
apply any further spatial nor frequency filtering. The
result is a data set that is raw data with the exception
of the CAR filter; poor results are obtained from EEG
data without considerable filtering.

Results Our classification accuracy rates demon-
strate recovery of the P300 waveform under different
choices for the parameter α. The classifier was simply
to pick the row/column that had the highest mean ac-
tivation for the used feature. The results for the best
component from FuncICA, FPCA, and ICA (for ICA,
we use 256 dimensional data reduced by PCA to 12 di-
mensions) are summarized in Figure 5. The best results
for a single IC curve were obtained with α = 10−7, with
column, row, and letter classification accuracy of 64.3%,
55.4%, and 30.4% respectively. Note that letter classifi-
cation requires correct row and column classification for
15 trials where the attended letter is constant. Figure
6 illustrates the IC curve most similar to the P300 for
2 values of α.

In Figure 8 we demonstrate the success of Algorithm
1 for this data set. The value α∗I = 7.5 · 10−8 returned
by the algorithm corresponds to a neighborhood of α
values that provide high accuracy. The accuracy at
α∗I itself is quite close to better accuracy values in its
neighborhood. We interpret these results as validation
of our algorithm. To contrast FuncICA with FPCA, the
best results for a single PC curve where substantially
lower than the results for a single IC curve. As shown
by Figure 7, this result is hardly surprising as the curves
extracted by FPCA are uninteresting harmonics. The
extracted curves being harmonics also makes sense due
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Figure 7: PC curves 1, 4, 7, and 10 plotted as a dashed red
line, blue dotted line, green dashes line, and solid black line
respectively - Note that the components are almost entirely
described by harmonic behavior.

to the dominance of harmonics within EEG, and hence
a L2-loss minimizing representation is less useful for
identifying specific ERPs.

Particularly interesting is the performance of ICA
for this problem. As shown in Figure 5, ICA performed
quite poorly compared to FuncICA. We infer that the
reason for this performance is due to a lack of smooth-
ing used by ICA to extract its components; this infer-
ence is partially validated by the fact that FuncICA per-
forms optimally on this problem with nonzero choice of
α. The most surprising result is that using the empirical
P300 waveform as the component for classification re-
sults in substantially lower classification accuracy than
using the best IC curve. A possible explanation for this
result is the use of the empirical mean without employ-
ing any functional smoothing techniques. Nevertheless,
the implications for the result is that FuncICA better
captures the underlying event-related potential of inter-
est when humans are presented with unexpected stimuli.

7 Extension to fMRI data

We have shown promising results of the dual of tem-
poral ICA for time series data; also of interest is spa-
tial data, and beyond that, spatiotemporal data. Func-
tional magnetic resonance imaging (fMRI) data consists
of three-dimensional spatial recordings of neural activa-
tions, with as many as 5 such recordings a second when
the number of acquired slices is limited (i.e., one of the
spatial dimensions is limited). With the advent of fMRI



10
−8

10
−7

10
−6

700

800

900

1000

1100

1200

1300

α

Q

Effect of smoothing on Q

10
−8

10
−7

10
−6

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

α

ac
cu

ra
cy

Effect of smoothing on accuracy

Figure 8: All plots are for the P300 dataset. Top, the
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recording that has not only high spatial resolution but
also decent temporal resolution, spatial ICA becomes
less preferable when mining for complex, spatiotempo-
ral neural activation patterns.

We earlier mentioned that the dual of temporal ICA
involves finding time series patterns whose variation
over the observed time series is statistically indepen-
dent. The dual of spatial ICA similarly involves finding
spatial patterns whose variation over the observed spa-
tial maps is statistically independent. For the case of
fMRI, it seems natural that, given the spatial and tem-
poral nature of the data, we should seek both statistical
independence in the primal temporal ICA sense (signals
that vary statistically independently over time) and the
primal spatial ICA sense (spatial maps that vary statis-
tically independently over space). Stone explored pre-
cisely just such a method by creating spatiotemporal
ICA [2], which seeks to simultaneously seek statistical
independence in both the temporal and spatial sense via

a convex combination of their respective objectives.
Notably, there is substantial temporal and spatial

dependence in neural activation patterns, and so we
strongly argue that a more appropriate method is to
consider the dual of spatiotemporal ICA, where the tem-
poral and spatial dependencies are unconstrained. The
dual of spatiotemporal ICA is in fact a generalization of
FuncICA to spatiotemporal data; this version of Fun-
cICA results in a powerful alternative method to spa-
tiotemporal ICA.

Rather than minimizing a convex combination of
the spatial and temporal dependence measure objec-
tives, we instead consider the video of the brain recorded
after presentation of some stimulus to be a single obser-
vation. Given n presentations of stimuli, we then have n
observations, each of which is a video representing spa-
tiotemporal neural activation in response to a stimulus.
The generalization needed from our previous descrip-
tion of FuncICA is to push our spline representation9

into a four-dimensional space (three spatial dimensions
plus time). Such basis functions have been used previ-
ously in positron emission tomography (PET) analysis
[21]. The second generalization required is to specify an-
other regularization term that penalizes roughness over
both space and time. After these two modifications, the
FuncICA algorithm outlined in the previous sections di-
rectly can be used to mine fMRI data for spatiotempo-
ral patterns of activation. In the near future, we will
explore this application with a highly interesting classi-
fication task using real fMRI data.

8 Conclusions

We have introduced the first algorithm for ICA on in-
herently functional data. After proposing an algorithm
for optimal smoothing of the extracted IC curves, we
validated this method on synthetic data and real-world
gene expression and EEG data. FuncICA offers a princi-
pled method for discovering IC curves in what is a very
undercomplete problem. In comparisons with FPCA,
we have shown that FuncICA extracts patterns that are
not only quite different from PC curves, but also are ca-
pable of describing interesting phenomena. FuncICA is
capable of dampening high-frequency curves that vary
according to the Gaussian distribution, and the algo-
rithm also is relatively insensitive to instantaneous ob-
servation noise.

From a theoretical perspective, we have shown how
applying the dual of temporal ICA to temporal data,
and likewise applying the dual of spatiotemporal ICA
to spatiotemporal data, enables independent component

9Alternatively, we could consider nonparametric basis func-
tions.



regularization not afforded by the primal forms applied
to their original domains. As a consequence of this
duality result, we have proposed a new method for
mining fMRI data for spatiotemporal patterns whose
activation is statistically independent over a large set of
trials.

More pragmatically, our algorithm efficiently en-
codes information via IC curves that provide superior
classification performance for identifying covarying sets
of genes. For EEG data, FuncICA can extract the P300
event-related potential using unlabeled trials; previous
work requires labeled trials to identify the P300. The
method of ICA introduced here is applicable to a dual
class of variation over sets of time series rather than
variation within individual time series.

This work is a novel addition to the set of ICA
tools that analyze data with temporal structure. An
inherent issue is the unsolved problem of balancing
reconstruction error and source separation. Without
a priori knowledge of the nature of the sources, it
is difficult to design a robust smoothing method. In
general, claims can be made about reduction of high
frequency noise. We hope that researchers working with
functional data, such as time series and spatial data, use
FuncICA to gain new insights into countless domains.
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