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1 Introduction
A multi-task learning (MTL) algorithm learns an inductive bias to learn several tasks together. MTL
is incredibly pervasive in machine learning: it has natural connections to random effects models [5];
user preference prediction (including collaborative filtering) can be framed as MTL [6]; multi-class
classification admits the popular one-vs-all and all-pairs MTL reductions; and MTL admits provably
good learning in settings where single-task learning is hopeless [3, 4]. But if we see a random set of
tasks today, which of the tasks will matter tomorrow? Not knowing the challenges nature will pose
in the future, it is wise to mitigate the worst case by ensuring a minimum proficiency on each task.

Consider a simple learning scenario: A music preference prediction company is in the business of
predicting what 5-star ratings different users would assign to songs. At training time, the com-
pany learns a shared representation for predicting the users’ song ratings by pooling together the
company’s limited data on each user’s preferences. Given this learned representation, a separate
predictor for each user can be trained very quickly. At test time, the environment selects a user
according to some (possibly randomized) rule and solicits from the company a prediction of that
user’s preference for a particular song. The environment may also ask for predictions about new
users, described by a few ratings each, and so the company must leverage its existing representation
to rapidly learn new predictors and produce ratings for these new users.

Performing MTL well requires simultaneous navigation of several trade-offs. Classically, MTL
minimizes a regularized sum of the empirical risks of a set of tasks, thereby implicitly assuming
that the learner will be tested on test tasks drawn uniformly at random from the empirical task
distribution of the training tasks. By considering the various trade-offs in MTL, it becomes apparent
that classical MTL may not be ideal:
• There is a model order selection trade-off to motivate whether MTL should be done at all: Sim-

pler, single-task learning models are ideal when the tasks are unrelated, while more complex
MTL models are preferable when the tasks are related.

• Since MTL couples each task’s model via a shared parameter, there is a trade-off between mini-
mizing the risks of different tasks. One goal is to minimize the task-wise mean of the true risks.
Another is to minimize the task-wise maximum of the true risks. A company might want the
most accurate predictions on average, but it also may want to avoid doing very badly on any
single task to minimize negative feedback and a potential loss of business. While at training
time classical MTL commits to a fixed distribution over users, at test time the user distribution
could change or the sequence of users for which ratings are elicited could be adversarial.

• Teleology vs Deontology: Whereas utilitarianism would seek to minimizing the average predic-
tion error, typically at the expense of some locally egregious outcomes, minimizing the task-wise
maximum of the prediction errors is the most fair to all tasks (or people).

• There is a second model order selection trade-off: Some tasks may overfit more than others,
depending on the choice of the shared and model-specific parameters. Minimizing `p norms of
the empirical risk, for p > 1, places more emphasis on tasks for which the model currently has
high empirical risk. This can be a form of early stopping; in the extreme case of p =∞, learning
stops for tasks whose empirical risk is below the task-wise maximum of the empirical risks.

This work introduces minimax multi-task learning as a response to the above. We also cast a spec-
trum of multi-task learning. At one end of the spectrum lies minimax MTL; departing from this
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point progressively relaxes the “hardness” of the maximum until full relaxation reaches the second
endpoint and recovers classical MTL. We further sculpt a generalized loss-compositional paradigm
for MTL which includes this spectrum and several other new MTL formulations. This paradigm
equally applies to learning to learn (LTL), where the goal is to learn a hypothesis space from a set
of training tasks such that this representation admits good hypotheses on future tasks.

Theoretically, we show (via Theorem 1) the following: If it is possible to obtain maximum empirical
risk across a set of training tasks below some level γ, then it is likely that the maximum true risk
obtained by the learner on a new task is bounded by roughly γ. Hence, if the goal is to minimize the
worst case outcome over new tasks, theory suggests minimizing the maximum of the empirical risks
across the training tasks rather than their mean. Empirical evaluations of several MTL formulations
from the new paradigm are promising, but for space reasons we cannot present these results here.

2 Minimax multi-task learning

We begin with the MTL and LTL setups. In this work, each example (x, y) will live in X × Y for
input instance x and label y. Typically, X is a subset of Rn while Y is {−1, 1} or a compact subset
of R. Define a loss function ` : R × Y → R+. For simplicity, this work considers `2 loss (squared
loss) `(y′, y) = (y′−y)2 for regression and hinge loss `(y′, y) = max{0, 1−y′y} for classification.

MTL and LTL often are framed as applying an inductive bias to learn a common hypothesis space,
selected from a fixed family of hypothesis spaces, and thereafter learning from this hypothesis space
a hypothesis for each task observed at training time. It will be useful to formalize the various sets
and elements present in the preceding statement. Let H be a family of hypothesis spaces. Any
hypothesis spaceH ∈ H itself is a set of hypotheses; each hypothesis h ∈ H is a map h : X → R.

Learning to learn In LTL, the goal is to achieve inductive transfer to learn the best H from H.
Unlike in MTL, there is an environment of tasks: an unknown probability measure Q over a space
of task probability measures P . The goal is to find the optimal representation via the objective

inf
H∈H

EP∼Q inf
h∈H

E(x,y)∼P `(y, h(x)). (1)

In practice, T (unobservable) training task probability measures P1, . . . , PT ∈ P are drawn iid from
Q, and from each task t a set of m examples are drawn iid from Pt.

Multi-task learning Whereas in learning to learn there is a distribution over tasks, in multi-task
learning there is a fixed, finite set of tasks indexed by [T ] := {1, . . . , T}. Each task t ∈ [T ]
is coupled with a fixed but unknown probability measure Pt. Classically, the goal of MTL is to
minimize the expected loss at test time under the uniform distribution on [T ]:

inf
H∈H

1

T

X
t∈[T ]

inf
h∈H

E(x,y)∼Pt`(y, h(x)). (2)

Notably, this objective is equivalent to (1) when Q is the uniform distribution on {P1, . . . , PT }. In
terms of the data generation model, MTL differs from LTL since the tasks are fixed; however, just
as in LTL, from each task t a set of m examples are drawn iid from Pt .

Minimax MTL A natural generalization of classical MTL arises by introducing a prior distribu-
tion π over the set of tasks [T ]. Given π, the (idealized) objective of this generalized MTL is

inf
H∈H

Et∼π inf
h∈H

E(x,y)∼Pt`(y, h(x)), (3)

given only the training data {(xt,1, yt,1), . . . , (xt,m, yt,m)}t∈[T ]. The classical MTL objective (2)
equals (3) when π is taken to be the uniform prior over [T ]. We argue that in many instances, that
which is most relevant to minimize is not the expected error under a uniform distribution over tasks,
or even any pre-specified π, but rather the expected error for the worst π. We propose to minimize
the maximum error over tasks under an adversarial choice of π, yielding the objective

inf
H∈H

sup
π∈(T−1)-simplex

Et∼π inf
h∈H

E(x,y)∼Pt`(y, h(x))

As the supremum is attained at an extreme point of the simplex, this objective is equivalent to
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inf
H∈H

max
t∈[T ]

inf
h∈H

E(x,y)∼Pt`(y, h(x)). (4)

In practice, we approximate the true objective by using the (regularized) empirical objective:
infH∈H maxt∈[T ] infh∈H

Pm
i=1 `(yt,i, h(xt,i)).

We can motivate minimax MTL theoretically by showing that the worst-case performance on future
tasks likely will not be much higher than the maximum of the empirical risks for the training tasks.

LTL bound for the maximum risk Let P (1), . . . , P (T ) be probability measures drawn iid from
Q, and for t ∈ [T ] let z(t) be an m-sample (a sample of m points) from P (t) with corresponding
empirical measure P (t)

m . If P is a probability measure then P` ◦ h := E`(y, h(x)); similarly, if Pm

is an empirical measure, then Pm` ◦ h := 1
m

∑m
i=1 `(yi, h(xi)). Our focus is the learning to learn

setting with a minimax lens: when one learns a representation H ∈ H from multiple training tasks
and observes maximum empirical risk γ, we seek a guarantee that H’s true risk on a newly drawn
test task will be bounded by roughly γ. Such a goal is in striking contrast to the classical emphasis
of LTL, where the goal is to obtain bounds on H’s expected true risk. Using H’s expected true risk
and Markov’s inequality, Baxter [3, the display prior to (25) ] showed that the probability that H’s
true risk on a newly drawn test task is above some level γ decays as the expected true risk over γ:

Pr


inf
h∈H

P` ◦ h ≥ γ
ff
≤ 1

γT

„X
t∈[T ]

P (t)
m ` ◦ ht + ε

«
, (5)

where the size of ε is controlled by T , m, and the complexities of certain spaces.

The expected true risk is not of primary interest for controlling the tail of the (random) true risk,
and a more direct approach yields a much better bound. In this short paper we restrict the space of
representations H to be finite with cardinality C; in this case, the analysis is particularly simple and
illuminates the idea for proving the general case. The next theorem is the main result of this section:
Theorem 1. Let |H| = C, and let the loss ` be L-Lipschitz in its second argument and bounded by
B. Suppose T tasks P (1), . . . , P (T ) are drawn iid from Q and from each task P (t) an iid m-sample
z(t) is drawn. Suppose there exists H ∈ H such that all t ∈ [T ] satisfy minh∈H P

(t)
m ` ◦ h ≤ γ. Let

P be newly drawn probability measure from Q. Let ĥ be the empirical risk minimizer over the test
m-sample. With probability at least 1− δ with respect to the random draw of the T tasks and their
T corresponding m-samples:

Pr

8<:P` ◦ ĥ > γ +
1

T
+ 2Lmax

H∈H
Rm(H) +

s
8 log 4

δ

m

9=; ≤ log 2C
δ

+ logdBe+ log(T + 1)

T
. (6)

In the above,Rm(H) is the Rademacher complexity ofH (cf. [2]). Critically, in (6) the probability
of observing a task with high true risk decays with T , whereas in (5) the decay is independent of T .
Hence, when the goal is to minimize the probability of bad performance on future tasks uniformly,
this theorem motivates minimizing the maximum of the empirical risks as opposed to their mean.

3 A generalized loss-compositional paradigm for MTL

Given a set of T tasks, we represent the empirical risk for hypothesis ht ∈ H (∈ H) on task
t ∈ [T ] as ˆ̀

t(ht) :=
∑m

i=1 `(yt,i, ht(xt,i)). Additionally define a set of hypotheses for multiple
tasks h := (h1, . . . , hT ) ∈ HT and the vector of empirical risks ˆ̀(h) := (ˆ̀

1(h1), . . . , ˆ̀
T (hT )).

With this notation set, the proposed loss-compositional paradigm encompasses any regularized min-
imization of a (typically convex) function φ : RT

+ → R+ of the empirical risks:

inf
H∈H

inf
h∈HT

φ
`

ˆ̀(h)
´

+ Ω
`
(H,h)

´
, (7)

where Ω(·) : H× ∪H∈HHT → R+ is a regularizer.

`p MTL One notable specialization that is still quite general is the case when φ is an `p-norm,
yielding `p MTL. This subfamily encompasses classical MTL and many new MTL formulations:
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Classical MTL as `1 MTL: inf
H∈H

inf
h∈HT

1

T

X
t∈[T ]

ˆ̀(ht)+Ω
`
(H,h)

´
≡ inf
H∈H

inf
h∈HT

1

T
‖ ˆ̀(h)‖1+Ω

`
(H,h)

´
.

Minimax MTL as `∞ MTL: inf
H∈H

inf
h∈HT

max
t∈[T ]

ˆ̀(ht) + Ω
`
(H,h)

´
≡ inf
H∈H

inf
h∈HT

‖ ˆ̀(h)‖∞ + Ω
`
(H,h)

´
.

`2 MTL (New) : inf
H∈H

inf
h∈HT

“ 1

T

X
t∈[T ]

`
ˆ̀(ht)

´2”1/2

+Ω
`
(H,h)

´
≡ inf
H∈H

inf
h∈HT

1√
T
‖ ˆ̀(h)‖2+Ω

`
(H,h)

´
.

We now see a continuum of relaxations of minimax MTL that are in the paradigm but not in `p MTL.

α-minimax MTL Minimizing the maximum loss can be problematic since the max is not robust
to cases when a small fraction of the tasks are much harder than the other tasks. Consider the case
when the empirical risk for each task in this small fraction cannot be reduced below some u. Rather
than rigidly minimizing the maximum loss, a more robust alternative is to minimize the maximize
loss in a soft way. The idea is to ensure that most tasks have low empirical risk, but a small fraction
of tasks are permitted a higher loss. We formalize this as α-minimax MTL, via the relaxed objective:

minimize
H∈H,h∈HT

min
b≥0

n
b+

1

α

X
t∈[T ]

max{0, ˆ̀
t(ht)− b}

o
+ Ω

`
(H,h)

´
. (8)

In the above, φ from the loss-compositional paradigm (7) is a variational function of the empirical
risks vector. The above optimization problem is equivalent to the perhaps more intuitive problem:

minimize
H∈H,h∈HT ,b≥0,ξ≥0

b+
1

α

X
t∈[T ]

ξt + Ω
`
(H,h)

´
subject to ˆ̀

t(ht) ≤ b+ ξt, t ∈ [T ]. (9)

Here, b plays the role of the relaxed maximum, and each ξt’s deviation from zero indicates the
deviation from the (loosely enforced) maximum. We expect ξ to be sparse. To help understand how
α affects the learning problem, let us consider a few cases:

(1) When α > T , the optimal value of b is zero, and the problem is equivalent to classical MTL. To
see this, note that for a given candidate solution with b > 0 the objective always can be reduced
by reducing b by some ε and increasing each ξt by the same ε.

(2) Suppose one task is much harder than all the other tasks (e.g. an outlier task), and its empirical
risk is separated from the maximum empirical risk of the other tasks by ρ. Let 1 < α < 2; now,
at the optimal hard maximum solution (where ξ = 0), the objective can be reduced by increasing
one of the ξt’s by ρ and decreasing b by ρ. Thus, the objective can focus on minimizing the
maximum risk of the set of T − 1 easier tasks. In this special setting, this argument can be
extended to the more general case k < α < k + 1 and k outlier tasks, for k ∈ [T ].

(3) As α approaches 0, we recover the hard maximum case of minimax MTL.

An interesting choice of α is α = 2/(d0.1T + 0.5e−1 + d0.1T + 1.5e−1) i.e. the harmonic mean of
d0.1T + 0.5e and d0.1T + 1.5e. The reason for this choice is that in the idealized case (2) above, for
large T this setting of α makes the relaxed maximum consider all but the hardest 10% of the tasks.

Models Let us see how a specific model, convex multi-task feature learning [1], fits into this
framework. This model minimizes the task-wise average loss with the trace norm penalty:

min
W

X
t

mX
i=1

`(yt,i, 〈Wt, xt,i〉) + λ‖W‖tr, (10)

where ‖·‖tr : W 7→
∑

i σi(W ) is the trace norm. In the new paradigm, H is a set where each element
is a k-dimensional subspace of linear estimators (for k � d). Each ht = Wt in some H ∈ H lives
inH’s corresponding low-dimensional subspace. Also, ˆ̀

t(ht) = 1
m

∑m
i=1 `

(
yt,i, 〈ht, xt,i〉

)
.

4 Discussion

We have established a spectrum of formulations for MTL which recovers as special cases classical
MTL and the newly formulated minimax MTL. In between these extreme points lies a continuum of
relaxed minimax MTL formulations. More generally, we introduced a loss-compositional paradigm
that operates on the vector of empirical risks, inducing the additional `p MTL paradigms. All the
minimax or α-minimax MTL formulations exhibit a built-in safeguard against overfitting in the case
of learning with a model that is very complex relative to the available data.
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