Multi-Observation Regression

Rafael Frongillo CU Boulder

Nishant Mehta University of Victoria Tom Morgan Harvard

Bo Waggoner **CU** Boulder

Multi-Observation Elicitation

Standard Property Elicitation (single-observation losses)

arg min $E_{Y \sim P}[\ell(r, Y)]$ $r \in \mathbb{R}^d$

Squared loss elicits the mean of P

Variance is not elicitable by a single observation loss!

Multi-Observation Elicitation (multi-observation losses)

 $\arg\min \mathsf{E}_{(Y_1,\ldots,Y_m)\sim P^m}[\ell(r,Y_1,\ldots,Y_m)]$ $r \in \mathbb{R}^{d}$

Variance is now elicitable, using m = 2

Algorithm for Constructing Meta-Samples

```
ALGORITHM 1
```

Given: n, m, N, ε Sample *n* points X_1^*, \ldots, X_n^* i.i.d. from \mathcal{D} For j = 1, ..., mSample $k = \frac{N}{m}$ points $X_1^{(j)}, \ldots, X_k^{(j)}$ i.i.d. from \mathcal{D} Find a maximum matching $M^{(j)}$ between X_1^*, \ldots, X_n^* and $X_1^{(j)}, \ldots, X_k^{(j)}$, where X_i^* and $X_{i'}^{(j)}$ are adjacent iff $||X_i^* - X_{i'}^{(j)}|| \le \varepsilon$ If $|M^{(j)}| < n$ Arbitrarily match remaining X_i^* 's (ignoring distance constraints) For i = 1, ..., nLet $X_{i,j}$ denote the match of X_i^* in $M^{(j)}$ Sample a label $\tilde{Y}_{i,i}$ from $\mathcal{D}_{X_{i,i}}$ Return $(X_i^*, (\tilde{Y}_{i,1}, \ldots, \tilde{Y}_{i,m}))_{i \in [n]}$

$$\ell(r, Y_1, Y_2) = \left(r - \frac{1}{2}(Y_1 - Y_2)^2\right)^2$$

The 2-norm is also elicitable. Let $\mathcal{Y} = \{1, 2, \dots, K\}$

Squared 2-norm: $\sum_{j=1}^{r} P_j^2$ $\ell(r, Y_1, Y_2) = (r - 1\{Y_1 = Y_2\})^2$

Multi-Observation Regression

Guarantee:

We say X_i^* is ε -well-matched by the set of matchings M_1, \ldots, M_m if X_i^* is matched to an ε -close point in each matching.

MATCHING LEMMA

If $N = \tilde{\Omega}\left(md^{(d+2)/2}n^{(d+1)/2}\right)$, then with probability at least $1 - \delta$: all but $\tilde{O}(\sqrt{n})$ points X_i^* are $(1/\sqrt{n})$ -well-matched by M_1, \ldots, M_m .

General case excess risk bound

THEOREM

Assume that the conditional distribution is slowly changing. Let the loss be *L*-Lipschitz, and take $N = \tilde{\Omega}(md^{(d+2)/2}n^{(d+1)/2})$. If Algorithm 1 is run with input $(n, m, N, 1/\sqrt{n})$, and if ERM is run on the resulting meta-sample, then with probability at least $1 - \delta$,

variance by regressing on y

This might have high sample complexity and is suboptimal when the property varies in a

Solution: Regress directly on property via multi-observation loss!

So we try to minimize $R(f) := E_{X \sim \mathcal{D}} \left[E_{\mathbf{Y} \sim \mathcal{D}_{\mathbf{Y}}^{m}} \left[\ell_{f}(X, \mathbf{Y}) \right] \right]$

How? Use ERM:

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell_f \left(X_i, \left(Y_{i,1}, \dots, Y_{i,m} \right) \right)$$

i.i.d. ~ \mathcal{D} drawn from $\mathcal{D}_{X_i}^m$

Problem: We don't have a multi-observation sampling oracle. So, we don't have meta-samples!

We need to make do with a classical sampling oracle. (classical, single-observation samples)

"Meta" Algorithm for ERM with Meta-Samples

Proof Sketch

Idea: Think of ERM as being run on corrupted samples Let $\varepsilon = 1/\sqrt{n}$

- (1) From Matching Lemma, only $O(\sqrt{n})$ points X_i^* fail to be ε -well-matched. The labels for these points are not even approximately drawn from $\mathcal{D}_{X_i^*}$, so we consider the corresponding $O(\sqrt{n})$ meta-samples as corrupted.
- (2) For each well-matched point X_i^* : We have $\|\mathcal{D}_{X_{i,j}} - \mathcal{D}_{X_i^*}\|_{\mathsf{TV}} \leq K\varepsilon$ for all $j \in [m]$ Think of \tilde{Y}_{ij} as sampled as follows: First, draw Z_{ii} from Bernoulli($K\varepsilon$).

hen,
$$\tilde{Y}_{ij} = \text{sample from} \begin{cases} \mathcal{D}_{X_i^*} & \text{if } Z_{ij} = 0 \\ Q_{ij} & \text{if } Z_{ij} = 1 \end{cases}$$

Arbitrary "bad" mixture component

Solution: Form approximate meta-samples using extra samples and assume that the conditional distribution is slowly changing:

 $\exists K \text{ such that, for all } x, x' \in \mathcal{X} : \|\mathcal{D}_x - \mathcal{D}_{x'}\|_{\mathsf{TV}} \leq K \|x - x'\|_2$

- (1) Collect large number of classical samples
- (2) Clump together samples with nearby x-values

(3) With high probability, at most $O(\sqrt{n})$ of meta-samples from well-matched points have any label coming from a bad mixture component. In all, only $O(\sqrt{n})$ of meta-samples are corrupted.

Simulations

Setup: Let $X \sim U([0, 1])$ and $Y = g(X) + \xi$ for $\xi \sim N(0, 1)$ **Goal:** Predict Var[Y | X]**Algorithms:** "2mom linear" - fit linear functions to moments

"2mom quad" - fit quadratic functions to moments "unbiased" - our algorithm (has theoretical guarantees) "sliding" / "nearby" - other, non-theoretically rigorous algorithms

