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Multi-Observation Elicitation

Standard Property Elicitation (single-observation losses)

argminEy p[l(r, Y)]
reRrd

Squared loss elicits the mean of P

Variance is not elicitable by a single observation loss!

Multi-Observation Elicitation (multi-observation losses)

Variance is now elicitable, using m = 2

Ur, Y1, Ys) = (r B %(Yl B Y2)2>2

The 2-norm is also elicitable. Let Y = {1, 2, ..., K}

K
Squared 2-norm: ) P;

j=1

f(l’, Yl, Yg) — (I’ — 1{Y1 — YQ})2

Multi-Observation Regression

Classical regression

g . Regress on y using

ERM with squared loss

How about e.g. variance or 2-norm?

Traditional approach predicts
variance by regressing on y
and y? separately.
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This might have high sample
complexity and is suboptimal
when the property varies in a
simple way.
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Solution: Regress directly on property via multi-observation loss!

So we try to minimize R(f) := Ex~p |[Ey~pr [¢¢(X,Y)]]

1<
How? Use ERM: min - ;ef(/x,-, (Vi1 \ Yim))

..d. ~D drawn from Dy

Problem: We don’t have a multi-observation sampling oracle.
So, we don't have meta-samples!

We need to make do with a classical sampling oracle.
(classical, single-observation samples)

“Meta” Algorithm for ERM with Meta-Samples

Solution: Form approximate meta-samples using extra samples
and assume that the conditional distribution is slowly changing:

JK such that, for all x,x’ € X: [|Dy — Dyll1v < K||x — x'[|5

(1) Collect large number of classical samples

(2) Clump together samples with nearby x-values

Xi1, Yi
y (Xi1 Vi)

(Xi2, Yi2)

N &

/ X

Form into it" meta-sample (X, (Yi1, Yi2))

a4

(3) Run ERM on meta-samples (X, (Yi1, ., Yim))
\

Approximately drawn from Dy.

i€[n]
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Algorithm for Constructing Meta-Samples

ALGORITHM 1
Given: n,m, N, ¢
Sample n points X', ..., X* iid. from D
For;=1,..., m
Sample k = £ points Xl(f) ..... X,fj) .I.d. from D
Find a maximum matching MY) between X;,..., X* and
Xl(j) ..... X,Ef), where X*and X,-(,j) are adjacent iff || X" — X,.(,j)|| <e
If IMY)| < n
Arbitrarily match remaining X*s (ignoring distance constraints)

Let X; ; denote the match of X*in MY)
Sample a label Y; ; from Dy,
Return (X", (Yi1, ..., Yim))

i€[n]
X X X
) ® ® O O s O
X Xij  Xi Xnj XY

Guarantee:
We say X is e-well-matched by the set of matchings My, ..., M.,
if X" is matched to an e-close point in each matching.

MATCHING LEMMA
fN=0Q (md(d+2>/2n<d+1>/2), then with probability at least 1 — 6:

all but O(v/n) points X are (1/y/n)-well-matched by M, ..., M, .

General case excess risk bound

THEOREM
Assume that the conditional distribution is slowly changing.

Let the loss be L-Lipschitz, and take N = Q (md(“2)/2pld+1)/2)
If Algorithm 1 is run with input (n, m, N, 1/4/n), and if ERM is run
on the resulting meta-sample, then with probability at least 1 — 9,

. VN

R(fsnt) — R(F*) < 2LR,(F) + 2B (2\/|ogﬂ + mK) 1

G

Rademacher complexity Upper bound on loss

Proof Sketch

ldea: Think of ERM as being run on corrupted samples

Lete =1/v/n

(1) From Matching Lemma, only O(+/n) points X:* fail to be
¢-well-matched. The labels for these points are not even
approximately drawn from Dx~, so we consider the
corresponding O(+/n) meta-samples as corrupted.

(2) For each well-matched point X:":
We have ||Dx,, — Dx-|ltv < Ke forall j € [m]
Think of Y;; as sampled as follows:
First, draw Z;; from Bernoulli(K¢).

~ Dx~ i Z;=0
Then, Y;; = sample from X 1 /
Q,’j 1f Z,'j = 1]

\

Arbitrary “bad” mixture component

(3) With high probability, at most O(+/n) of meta-samples from
well-matched points have any label coming from a bad mixture
component. In all, only O(v/n) of meta-samples are corrupted.

Simulations

Setup: Let X ~ U([0,1]) and Y = g(X) + & for & ~ N(0,1)
Goal: Predict Var|Y | X]
Algorithms:
“2mom linear” - fit linear functions to moments
- fit quadratic functions to moments
“unbiased” - our algorithm (has theoretical guarantees)
“sliding” / “nearby” - other, non-theoretically rigorous algorithms

Estimating Var(sin(4mx) + N(0, 1)|x)

0.30 - L 0.25 A \

Estimating Var(2x — 14+ N (0, 1)|z)

2mom linear N -=== 2mom linear
* -= 2mom quad

unbiased

sliding

-= 2mom quad
unbiased
sliding
e-nearby
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