
Standard Property Elicitation (single-observation losses)

Squared loss elicits the mean of P

Variance is not elicitable by a single observation loss!

Multi-Observation Elicitation (multi-observation losses)

Variance is now elicitable, using

The 2-norm is also elicitable. Let

Squared 2-norm: 
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Multi-Observation Elicitation

Classical regression

How about e.g. variance or 2-norm?

Solution: Regress directly on property via multi-observation loss!

So we try to minimize

How? Use ERM:

Problem: We don’t have a multi-observation sampling oracle.
So, we don't have meta-samples!

We need to make do with a classical sampling oracle.
(classical, single-observation samples)

Multi-Observation Regression

THEOREM
Assume that the conditional distribution is slowly changing.
Let the loss be   -Lipschitz, and take                                            .   
If Algorithm 1 is run with input                         , and if ERM is run 
on the resulting meta-sample, then with probability at least         ,

General case excess risk bound

Solution: Form approximate meta-samples using extra samples 
and assume that the conditional distribution is slowly changing:

(1) Collect large number of classical samples
(2) Clump together samples with nearby x-values

(3) Run ERM on meta-samples

“Meta” Algorithm for ERM with Meta-Samples

Idea: Think of ERM as being run on corrupted samples
Let

(1) From Matching Lemma, only            points      fail to be              
e-well-matched. The labels for these points are not even 
approximately drawn from       , so we consider the 
corresponding            meta-samples as corrupted.

(2) For each well-matched point      :
We have                                      for all
Think of      as sampled as follows:

First, draw      from Bernoulli(    ).

Then, 

(3) With high probability, at most            of meta-samples from 
well-matched points have any label coming from a bad mixture 
component. In all, only            of meta-samples are corrupted.

Proof Sketch

Setup: Let                       and                         for
Goal: Predict
Algorithms:

“2mom linear” - fit linear functions to moments
“2mom quad” - fit quadratic functions to moments
“unbiased” - our algorithm (has theoretical guarantees)
“sliding” / “nearby” - other, non-theoretically rigorous algorithms

Simulations
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i , (Ỹi ,1, . . . , Ỹi ,m)

�
i2[n]

1� �

ALGORITHM 1
Given:
Sample    points                    i.i.d. from
For

Sample            points                       i.i.d. from
Find a maximum matching        between                    and
                    , where      and        are adjacent iff
If                

Arbitrarily match remaining     ’s (ignoring distance constraints)
For

Let       denote the match of      in
Sample a label       from

Return

Guarantee:
We say      is   -well-matched by the set of matchings                     
if      is matched to an   -close point in each matching.

MATCHING LEMMA

If                                           , then with probability at least         :
all but             points      are            -well-matched by                    .

Algorithm for Constructing Meta-Samples
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Regress on y using 
ERM with squared loss

Traditional approach predicts 
variance by regressing on   
and y2 separately.

This might have high sample 
complexity and is suboptimal 
when the property varies in a 
simple way.
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Upper bound on lossRademacher complexity
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