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Random graphs of configuration type

Graph with N nodes (typically, N large); specified degree
distribution, {Pk}, where Pk is the probability that a randomly
chosen vertex (node) has degree k.

Construction principle: assume N nodes; draw a degree sequence
{ki} from the given distribution; assign ki “stubs” to vertex i ;
choose pairs of stubs randomly, and connect these stubs to get
edges; multiple connections are not allowed. Finally, discard
leftover stubs.
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Some terminology

〈kn〉 =
∞∑
k=0

knPk

(n = 1 : average number of stubs). Variance:

Var [k] = 〈k2〉 − 〈k〉2

Generating function Ψ(x) =
∑

Pkxk . Then

Ψ(1) = 1, Ψ′(1) = 〈k〉,

Ψ encodes all we know about the graph.
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An Epidemiology Precursor: The Miller-Volz Model

Ref.: Miller JC (2011) A note on a paper by E. Volz:
SIR Dynamics in random networks, JM Biol. 62

Volz, E.M. (2008) SIR dynamics in random networks, JM Biol. 56.

A susceptible node with degree k:

remains susceptible while none of its k edges has transmitted
infection.
Transmission is a necessary condition for infection.

If θ(t) is the probability that a random edge has not transmitted by
time t, then the probability that the node remains susceptible is θk .

Speed at which the susceptible node becomes infected is
determined by the dynamics of θ.
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Let {Pk} be the degree distribution, with generating function

Ψ(x) =
∞∑
n=0

Pkxk . (1)

The probability that a randomly selected node remains susceptible
at time t is

Ψ(θ) = P0 + θP1 + θ2P2 + . . .

(because... : Let’s draw the possibilities!)
=⇒ the fraction of nodes that are susceptible at time t is

S = Ψ(θ) . (2)

The fraction of infectious nodes I (t) increases because susceptible
nodes get infected, and decreases because infected nodes recover
(with a constant rate γ per node). Thus,

dI

dt
= −dS

dt
− γI = −Ψ′(θ)

dθ

dt
− γI .
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To describe the dynamics of θ, let PI (t) be the probability that the
neighbour connected by this edge is infectious at time t, and β be
the transmission rate along an random edge.

Then βPI is the attack rate on the edge, and θ is the survival
probability =⇒

θ′ = −βPI θ .

Let φ = PI θ : the probability that a random edge of class θ
connects a (degree-1, see above) susceptible node to an infectious
node. Then, the above equation becomes

θ′ = −βφ . (3)

Reinhard Illner, Victoria // joint work with J. Ma, M. Li, R. EdwardsMarketing Models of SIR and SIS Type on Random Networks



To describe the dynamics of θ, let PI (t) be the probability that the
neighbour connected by this edge is infectious at time t, and β be
the transmission rate along an random edge.
Then βPI is the attack rate on the edge, and θ is the survival
probability =⇒

θ′ = −βPI θ .

Let φ = PI θ : the probability that a random edge of class θ
connects a (degree-1, see above) susceptible node to an infectious
node. Then, the above equation becomes

θ′ = −βφ . (3)

Reinhard Illner, Victoria // joint work with J. Ma, M. Li, R. EdwardsMarketing Models of SIR and SIS Type on Random Networks



We treat φ as a second dependent variable!

An edge leaves class φ either because transmission occurred along
it (at rate β), or because the infectious node recovers (at rate γ).
Further, an edge of a susceptible node enters class φ because its
other neighbour becomes infected:
this happens at a rate −h′(t), where h(t) is the probability
that we arrive at a susceptible node when following a
random edge that has not transmitted disease.
Thus,

φ′ = −βφ− γφ− h′(t) .
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Finally, we model h(t): The probability that we arrive at a
degree-k node when following a random edge is

qk = kPk/

∞∑
k=0

kPk = kPk/Ψ′(1).

The probability that this node is susceptible is θk−1qk , and we
arrive at

h(t) =
∞∑
k=0

θk−1
kPk

Ψ′(1)
=

Ψ′(θ)

Ψ′(1)
. (4)
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The equation for φ′ can now be rewritten as

φ′ = −(β + γ)φ− Ψ′′(θ)

Ψ′(1)
θ′ = −(β + γ)φ+ βφ

Ψ′′(θ)

Ψ′(1)
. (5)

The dynamics of the disease are thus determined by (3) and (5).
The fraction of nodes which are infectious at time t changes
according to

I ′(t) = −S ′ − γI = βφΨ′(θ)− γI . (6)
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Homogeneous Limit

In a homogeneously mixed population, seen as a contact network
on a complete graph, the Miller-Volz model becomes the classic
SIR model

dS

dt
= −qSI ,

dI

dt
= qSI − γI ,

where q = (N − 1)β is the per capita transmission rate in a
population of N individuals.
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Marketing: Generalized Bass models

Cllassical Bass model (Frank Bass, 1969) assumes that a
well-mixed potential buyer population divides into a fraction which
has bought a product, F (t), and 1− F (t), the fraction that has
not bought but consists of potential buyers (called “susceptibles”,
for obvious reasons):

dF

dt
= α(1− F ) + qF (1− F ) . (7)

α is the rate of spontaneous conversion into buyers due to
advertising; q represents the adoption rate of the product due to
word-of-mouth recruitment of a potential buyer.

If we set F = I , 1− F = S , α = 0, the equation is

dI

dt
= qIS ,

exactly the SIR model for γ = 0. “Word of mouth” propagation of
a product “is” an infectious disease without recovery.
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Adapting the Miller-Volz ideas, I: No advertising

Identical to the Miller-Volz model, but NO recovery. Use subscript
W to label the random “word-of-mouth” network. Variables will
be θW , φW ; the equations will be

dθW
dt

= −βφW , (8a)

dφW
dt

= −βφW + βφW
Ψ′′(θW )

Ψ′(1)
, (8b)

S = Ψ(θW ) , (8c)

dI

dt
= βφW Ψ′(θW ) . (8d)
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Adapting Miller-Volz ideas, II: marketing one product

We incorporate an (outside) marketing node A in the model,
connecting to all nodes in W .

Denote by θA(t) the fraction of all
edges with source A which have not transmitted by time t. A
node in the word-of-mouth network W remains susceptible if
information has neither been transmitted by word of mouth nor by
A-edges, so Equation (8c) must now be modified to become

S(t) = Ψ(θW )θA . (9)

Edges in the class θA only leave their class because of transmission.
Thus,

dθA
dt

= −αθA . (10)
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Probability that the source node of a θW edge is susceptible should
now be modelled as

h(t) =
Ψ′(θW )

Ψ′(1)
θA .

Reduction of this probability by the infection of a susceptible
source causes a θW edge to enter φW . Thus,

dφW
dt

= −βφW −h′(t) = −βφW +βφW
Ψ′′(θW )

Ψ′(1)
θA+ αθA

Ψ′(θW )

Ψ′(1)
.

The A-edges have no direct influence on the θW edges.
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Initial Conditions

Initially, every node is susceptible, and no edge has transmitted.
The complete network marketing model is:

S(t) = Ψ(θW )θA , (11a)

dθA
dt

= −αθA , (11b)

dθW
dt

= −βφW , (11c)

dφW
dt

= −βφW + βφW
Ψ′′(θW )

Ψ′(1)
θA + αθA

Ψ′(θW )

Ψ′(1)
, (11d)

with initial conditions S(0) = 1, θW (0) = 1, φW (0) = 0,
θA(0) = 1.
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Two competing products

In addition to A (e.g., “Apple”) there is now a second external
node B (e.g., “Microsoft”), also connected by an edge to each
node in W . B competes with A to place their product.

Susceptibles (initially all nodes in W ) can turn into two different
kinds of buyers, IA and IB . Probability θW is defined as before, but
now there are fractions φA and φB of edges in W which have not
transmitted but originate in an IA or IB , respectively.

Allow two possibly different word-of-mouth transmission rates βA
and βB . By θA and θB we denote the fractions of edges from A
into W (and B into W ) which have not transmitted.
As before, we assume that, initially, every node is susceptible, and
no edge has transmitted. This leads to the following equations:
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S(t) = Ψ(θW )θAθB , (12a)

θ′A = −αAθA , (12b)

θ′B = −αBθB , (12c)

θ′W = −βAφA − βBφB , (12d)

φ′A = −βAφA +
Ψ′′(θW )

Ψ′(1)
βAφAθAθB + αA

Ψ′(θW )

Ψ′(1)
θAθB (12e)

φ′B = −βBφB +
Ψ′′(θW )

Ψ′(1)
βBφBθAθB + αB

Ψ′(θW )

Ψ′(1)
θAθB(12f)

Initial conditions as in (11), except φA(0) = φB(0) = 0,
θA(0) = θB(0) = 1.
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The gain terms in the third and fourth equations add up to −h′,
where h(t) now is given by

h(t) =
Ψ′(θW )

Ψ′(1)
θAθB .

This h is the probability of reaching a susceptible node if one
follows a W -edge from a susceptible inside W . The rate of change
of h tells us how fast this susceptible turns into an infected, and
we have to distinguish whether it turns into an IA or an IB node.
The four terms in h′ are split in just the right way to reflect this.
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Equations (12) allow to compute the fractions IA, IB of users who
have bought products A or B, respectively: Compute

S ′ =Ψ′(θW )θ′W θAθB + Ψ(θW )θ′AθB + Ψ(θW )θAθ
′
B

=− βAΨ′(θW )φAθAθB − αAΨ(θW )θAθB

− βBΨ′(θW )φBθAθB − αBΨ(θW )θAθB .

The first two terms on the right clearly generate A-buyers, the last
two terms generate B-buyers. Hence,

I ′A = βAΨ′(θW )φAθAθB + αAΨ(θW )θAθB , (13a)

I ′B = βBΨ′(θW )φBθAθB + αBΨ(θW )θAθB . (13b)
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Some Tests

Numerical tests gave perfect agreement of the behaviour predicted
by this model with microscopic simulations performed using
Gillespie’s algorithm. We compare our models with the underlying
stochastic marketing process on two types of networks: a Poisson
network and a scale-free network. For a Poisson degree distribution

Pk =
λke−λ

k!
,

and
Ψ(x) = eλ(x−1) .

A scale-free network has a power-law degree distribution

Pk ∝ k−r
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Figure : Comparison of the single-product model (11) with stochastic
simulations (average of 500 runs) on a Poisson and a scale-free network.
Network size for both networks N = 20, 000. Poisson network: average
degree 〈k〉 = 6. Scale-free network: Pk ∝ k r where r = −2, with
maximum degree kmax = 66. Word-of-mouth transmission rate β = 1,
Advertisement rate α = 0.01.
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Figure : Comparison of the two-product model (12) with stochastic
simulations on a Poisson and a scale-free network. The networks are the
same as in Figure 1. The word-of-mouth transmission rates are
βA = βB = 1, the advertisement rate αA = 0.01, αB = 0.02.
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Some additional observations

If the transmission rates βA = βB are equal, it is rather
straightforward to predict the market shares companies A and B
will achieve:

Theorem
Let βA = βB = β and φA(0) = φB(0) = 0. Then, for all t > 0,

IA
IB

=
αA

αB
. (14)

This means that relative market share is proportional to relative
advertising effort, regardless of the underlying network.

Compare with the previous figures!
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A random network may have disconnected components.
For example: two degree one nodes may form an isolated pair.

More prevalent on a scale free network, which has many
degree-one nodes. Thus, word of mouth may not be able to reach
everyone on the social network.

Take 1 product, no advertising: The expected final fraction of
buyers can be computed. Specifically, as θW (t) is a positive and
decreasing function, θW (∞) exists. The fraction of susceptible
nodes that never become buyers as time t →∞ is
S(∞) = Ψ(θW (∞)). To compute θW (∞), we first simplify the
equations: Dividing φ′W by θ′W yields
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dφW
dθW

= 1− Ψ′′(θW )

Ψ′(1)
.

Integrating on both sides, with φW (θW (0)) ≈ φW (1) ≈ 0, leads to

φW = θW −
Ψ′(θW )

Ψ′(1)
.

Substituting into the equations results in

θ′W = −βθW + β
Ψ′(θW )

Ψ′(1)
.

Thus, θW (∞) is the interior root (i.e., strictly between 0 and 1) of

θW =
Ψ′(θW )

Ψ′(1)
. (15)
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If there is outside advertising as used in our model, it will reach
everyone. Revisit the picture for one product and a scale-free
network, which typically has many nodes in disconnected
components; the product first diffuses quickly through word of
mouth and advertisement in the connected components, then
diffuses slowly in disconnected components through advertisement
only.
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Figure : The fraction of buyers on a scale-free network converges to unity
in two stages: it increases quickly and spreads through the large
connected component, then approach unity exponentially through
advertisement in disconnected components. The network and disease
parameters are the same as before.
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Recent work: SIS marketing models

... are much harder, because the independence assumptions one
can make in the SIR case are no longer true.

Some terminology:

S(t) + A(t) + B(t) = N

S =
∞∑
k=0

Sk

Sk + Ak + Bk = Nk = NPk .

(note that edge distribution appears here)
MSA, MSB etc. : number of directed edges with source A and
target S .
MS =

∑
kSk = MSS + MSA + MSB . MA,MB similar.
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We define

pA :=
MSA

MS
, pB :=

MSB

MS
.

Probabilities that an edge with target S has source in A or B,
respectively.

d

dt
Sk = −βApAkSk − βBpBkSk − αASk − αBSk + γ(Ak + Bk).

Linear in terms of the unknowns Sk ,Ak ,Bk , but the appearance of
the pA, pB , defined in terms of the unknowns MSA etc. This
introduces nonlinearity into the system. It also assumes,
recklessly! that the pA, pB can be used for any node with any
degree k.
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Similarly,

d

dt
Ak = βApAkSk + αASk − γAk ,

d

dt
Bk = βBpBkSk + αBSk − γBk .

Summing over k and using
∑

Ak = A,
∑

Bk = B, pAMS = MSA,
and pBMS = MSB give

d

dt
A = βAMSA − γA + αAS , (16)

d

dt
B = βBMSB − γB + αBS . (17)
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Further

d

dt
MA =

∑
k

k
dAk

dt
= βApA

∑
k

k2Sk + αAMS − γMA, (18)

d

dt
MB =

∑
k

k
dBk

dt
= βBpB

∑
k

k2Sk + αBMS − γMB .(19)

with MA(0) = MB(0) = 0, MS(0) =
∑

k kSk(0) = N
∑

k kPk .

We need equations for MSA,MSB etc.! This is somewhat
challenging.

Reinhard Illner, Victoria // joint work with J. Ma, M. Li, R. EdwardsMarketing Models of SIR and SIS Type on Random Networks



Further

d

dt
MA =

∑
k

k
dAk

dt
= βApA

∑
k

k2Sk + αAMS − γMA, (18)

d

dt
MB =

∑
k

k
dBk

dt
= βBpB

∑
k

k2Sk + αBMS − γMB .(19)

with MA(0) = MB(0) = 0, MS(0) =
∑

k kSk(0) = N
∑

k kPk .

We need equations for MSA,MSB etc.! This is somewhat
challenging.

Reinhard Illner, Victoria // joint work with J. Ma, M. Li, R. EdwardsMarketing Models of SIR and SIS Type on Random Networks



Average excess degree

∑∞
k=0 kSk , isthe total number of edges starting from a susceptible.

Thus, if we follow an edge and arrive at a node of class S , the
probability that this node has j edges is jSj/

∑∞
k=0 kSk .

(it is proportionally more likely to reach nodes with more edges if
one follows an edge). The average excess degree E of such nodes
is then

E :=
∞∑
j=1

(j − 1)
jSj∑∞

k=0 kSk
. (20)

This is needed in the sequel.
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The dynamics of MSA involves 10 terms on the right hand side.
Here is the equation.

d

dt
MSA = −βAMSA︸ ︷︷ ︸

1

− γMSA︸ ︷︷ ︸
2

+ γMAA︸ ︷︷ ︸
3

+ γMBA︸ ︷︷ ︸
4

+βAEpAMSS︸ ︷︷ ︸
5

−βBEpBMSA︸ ︷︷ ︸
6

−βAEpAMSA︸ ︷︷ ︸
7

+αAMSS︸ ︷︷ ︸
8

−αAMSA︸ ︷︷ ︸
9

−αBMSA︸ ︷︷ ︸
10

. (21)

Terms 5,6 and 7 contain an implicit assumption of EDGE
CHAOS! Note that the pA, pB are taken as independent of k. The
approximate validity of this assumption must depend on the type
of graph.
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Figure : Gains and losses of the edges in the MSA class, whose dynamics
is given in (21). Circled number on each flow corresponds to the such
numbered term in (21). Flows 2, 3, and 4 represent gains and losses due
to recovery of a buyer on one end of an edge; flows 8, 9, and 10 represent
the gains and losses due to the conversion of a susceptible to a buyer by
advertisement; the other flows represent conversion by word-of-mouth.
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The full model contains more equations for edges (for MSB ,MAB,

etc. In summary, the full model consists of the following equations:

MS =
∞∑
k=0

kSk ; E =

∑∞
j=1(j − 1)jSj

MS
; (22a)

d

dt
Sk =− βApAkSk − βBpBkSk − αASk − αBSk + γ(Nk − Sk) ;

(22b)

d

dt
A =βAMSA − γA + αAS ; (22c)

d

dt
B =βBMSB − γB + αBS ; (22d)

d

dt
MA =βApA

∑
k

k2Sk + αAMS − γMA ; (22e)

d

dt
MB =βBpB

∑
k

k2Sk + αBMS − γMB ; (22f)
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d

dt
MSA =− βAMSA − γMSA + γ(MA −MSA)

+ βAEpAMSS − βBEpBMSA − βAEpAMSA

+ αAMSS − αAMSA − αBMSA; (23a)

d

dt
MSB =− βBMSB − γMSB + γ(MB −MSB)

+ βBEpBMSS − βAEpAMSB − βBEpBMSB

+ αBMSS − αBMSB − αAMSB (23b)

d

dt
MAB =− 2γMAB + βAEpAMSB + βBEpBMSA

+ αBMSA + αAMSB . (23c)
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A few simulations:
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Figure : The comparison of the ensemble average of 100 stochastic
simulations (symbols) and the solution of the ODE model (lines) on a
Poisson network with average degree 〈k〉 = 5, and a scale-free network
with exponent r = 3 and minimum degree 2 (to avoid isolated pairs).
Both networks have 104 nodes. The parameters are βA = βB = 1, γ = 1,
αA = 0.01, αB = 0.02.
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A warning:
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Figure : The comparison of 100 stochastic simulations on two scale-free
networks. Both networks contain 104 nodes, and have minimum degree 2
to avoid isolated components. The exponents of the power-law degree
distributions are r = 2 and r = 3 respectively. The marketing parameters
are the same as in Figure 5.
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Figure : The time evolution of market shares of products A and B, with
βA = 1, βB = 0.7, αA = 0.02, and αB = 0.01. The networks are the
same as in Figure 7.
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The homogeneous mixing limit is

S ′ = −λA
AS

N
− λB

BS

N
− αAS − αBS + γA + γB, (24a)

A′ = λA
AS

N
+ αAS − γA, (24b)

B ′ = λB
BS

N
+ αBS − γB. (24c)

where λA = βA(N − 1),MSA = SA, etc.
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We have additional analytical results regarding market share, and
many more numerical tests. The greatest weakness is in the
assumptions on the pA, pB .
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On Edge Chaos

Our model is closed by using the edge chaos assumption and we
checked the validity of this assumption.

Check whether the probability that a neighbour of a susceptible is
susceptible (or a buyer) depends on the degree of the source node,
i.e., whether pS = MSS/MS , pA = MSA/MS and pB = MSB/MS

will in microscopic simulations depend on the degree of the source
node (and hence contradict the edge chaos assumption: the
independence of k of these terms is a necessary, but not sufficient
conditions for edge chaos).
To do so, we compute the average fraction of susceptible
neighbours across all susceptible nodes with a degree k , namely,

pS(k) = M
(k)
SS /(kSk) where M

(k)
SS is the total number of susceptible

neighbours of degree-k susceptible nodes.
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Time evolution of pS(k) in microscopic simulations is shown in
Figure 8. As the diffusion process reaches equilibrium, pS(k)
decreases with the degree k , i.e., there is an anti-correlation
between the degree of a susceptible source node and the
probability that its neighbour is susceptible.
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Figure : The time evolution of pS as a function of the degree of the
source node, for the simulations shown in Figure 5. Each curve represents
pS(k) at a specific time.
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Figure 9 shows pS(k) for the older SIR model. Here, edge chaos
assumption is valid for all time. Thus, repeat purchase will
gradually introduce correlation between the degree of a susceptible
node and the probability that its neighbours are susceptible.
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Figure : The time evolution of pS as a function of the degree of the
source node, for the SIR model. Each curve represents pS(k) at a specific
time. Marketing parameters and the networks are identical to Figure 5,
except that γ = 0.
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Thank You Very Much
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