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1 Introduction.

We are concerned with controllability issues for linear and nonlinear Schrödinger
and Hartree equations. The purpose of our article is threefold:

• to give a general overview on the concepts of exact and approximate control-
lability, and review (some of) the existing literature.

• to present a selection of results on non-controllability. This appears to be
a rather generic scenario, and given that controls tend to be of particular
type (consistent with physical or engineering limitations), it is not surprising
that (exact) controllability seems to be the exception rather than the rule.
These results are first steps towards the long–term goal of identifying the set
of reachable states. They are also of interest in terms of the methodology
developed to prove them.
We emphasize that the focus of this paper is exact (and approximate) control-
lability which is a rather ambitious control objective. Many of the equations
considered in this paper which are found not to be exactly or approximately
controllable may still be amenable to optimal control.

• to prove a few positive results, mostly for the linear case, and, in the nonlinear
case, for the small data and small target case. Most of these results are new,
though we use or adapt standard methodology.

We will distinguish two different types of control: additive control, where a con-
trol function, usually localized in time and space, appears as an inhomogeneity.
The application of this type of control is for example meaningful in the nonlinear
Schrödinger equation as it arises in nonlinear optics. The other type of control is
known as bilinear control, and this is the control arising in quantum applications
of Schrödinger equations. Here, the control function should be thought of as a
(temporarily localized) modification of the external potential, and it will therefore
multiply the wave function.

More detailed definitions of these types of controls are given in Section 1.1 below.
There we also present the main types of Schrödinger equations to be considered,
review well–known criteria for controllability, and list some basic classical results to
be used later. In Section 1.3 we present a brief literature review.

Section 2 is devoted to results on non-controllability. First, in subsection 2.1 we
focus on linear Schrödinger equations with a general potential and give two different
proofs for non-controllability with additive control (one based on a criterion from
the book [47], the other a direct proof).

Subsection 2.2 contains our main results. Using as our point of departure an opti-
mal control result for the nonlinear Hartree equation of quantum chemistry due to
Cancès, LeBris, and Pilot [13], we give a proof (based on the Fourier transformation
and on Hardy–Littlewood–Sobolev inequalities) that the standard bilinear control
function (E(t) · x) does not allow exact or approximate control in finite time (cf.
Theorem 4). In addition, motivated by a general noncontrollability theorem for
linear systems with bounded bilinear control due to Ball, Marsden, and Slemrod
[3] (see Theorem 2 below), we study the sets of reachable and non–reachable states
for the Hartree equation for infinite control time. We prove that these sets are of
first and second category, respectively (cf. Theorem 5). In particular, the set of
non–reachable states turns out to be a dense subset of the state space, which makes
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our result analogous to the one by Ball, Marsden, and Slemrod. We conjecture that
the set of reachable states is a non–dense subset of the state space, i.e., that the
Hartree equation with control (E(t) · x) is not approximately controllable, even if
the control time is allowed to become arbitrarily large.

In section 2.3 we briefly turn to the controllability of Schrödinger equations with
quadratic potentials such as the Gross–Pitaevskii equation with a quadratic trap.
Utilizing a generalized WKB ansatz, we make the observation that the manifold of
reachable states is actually finite–dimensional. Thus the system is very “far from”
being controllable.

Section 3 contains what positive results we were able to prove. First, in subsection
3.1, we consider a standard control problem for the linear Schrödinger equation
with additive control. The control function there is of the type g(t)h(x) with a
fixed spatial profile h(x). This form of the control arises when the full bilinear
control problem is linearized. We are able to verify the approximate controllability
criteria from [47] if the operator A = −∆ + V (x) possesses an orthonormal basis
of eigenfunctions ϕn in L2(Ω), the corresponding eigenvalues satisfy a certain “gap
condition,” and the control profile h(x) has non–vanishing inner products with
every ϕn. Obviously, these conditions are rather strong1, and it would be desirable
to relax them to be able to treat operators A with continuous spectra etc. Having
said that, we view our results as initial steps in developing a control theory for
infinite–dimensional quantum systems – most of the known results deal with finite–
dimensional quantum systems. The principal tool in the proofs of these results is
the well–known Lemma of Ingham [22, 46]. The proofs thus directly exploit the
Schrödinger form of the equations. For real–valued control functions we need a real
version of this lemma, for which we provide direct proof. Finally, in subsection 3.2
we state a result on exact additive distributed control for the nonlinear Schrödinger
equation with nonlinear term −α|u|2u, sufficiently small data and target states in
H1. This result (with a sketch of the proof) was presented in Ref. [21].

We begin by fixing the terminology.

1.1 The terminology

Let x ∈ Rd, where d is the dimension (usually d = 1, 2 or 3). The complex-valued
function u = u(t, x) is the state (or wave) function satisfying a (rescaled) generalized
Schrödinger equation

iut = Au−N(u) +B(g, u) (1)

with initial value u(0, .) = u0(·). Here ut denotes the time–derivative of u,
A = −∆ + V (x) and V is a potential function. N is a nonlinear function (or
functional) and B is the control operator which depends on a usually real–valued
function g = g(t, x), and possibly on u itself.

We distinguish the linear case

N(u) = 0 (2)

and nonlinear cases, for example

N(u) = −f(|u|2)u (3)

1However, the important case of the anharmonic oscillator A = − d2

dx2 + x2 + λx4 is included.
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Of particular interest is the case f(s) = s, which produces the cubic nonlinearity.

As for the control operator, we consider (for example) the case where B is indepen-
dent of u, and

B(g) = g(t)h(x), (4)

where h is given and fixed; we call this additive control. Usually h(x) = χω(x)
with some fixed open domain ω ⊂ Rd. This case is known as distributed control
(as opposed to boundary control where B is some boundary operator acting on the
boundary of Ω).

As mentioned earlier, this type of control is feasible for the Schrödinger equation
as encountered in fiber optics, and the variable t is then the longitudinal spatial
variable.

Other controls of different physical relevance (namely in quantum physics) are

B(g, u) = g(t)B̃u (5)

with a given linear operator B̃, and finally

B(g, u) =
r∑

j=1

gj(t)Hju (6)

We repeat that we will refer to (4) as additive control and to (5-6) as bilinear control
(or quantum control). The Hj are linear, usually Hamiltonian, operators.

Throughout this paper we assume that Eqn. (1) admits strong or mild solutions on
the given time interval [0, T ]; for a given initial value u0, u(t) = u(t;u0, g) denotes
the solution assuming u0 initially and being driven by the control g. We think of
t 7→ u(t) as a continuous function taking values in some complex Hilbert space (such
as H = L2(Rd), H = H1(Rd), or H = H2(Rd)). The control g : [0, T ] → X takes
values in another Hilbert space X.

Given an arbitrary “target” state uT , the objective is to find a control g such that
u(t;u0, g) = uT . The set of target states which are reachable from u0 in time T > 0
is given by

RT (u0) = {u(T̃ ;u0, g)|g ∈ L2(0, T̃ ;X), 0 < T̃ ≤ T}.

The set of all reachable states is defined as

R(u0) :=
⋃

T>0

RT (u0).

Definition 1 Equation (1) is called exactly controllable [in time T > 0] if, for all
u0 ∈ H,

R(u0) = H [RT (u0) = H].

Remark 1 Exact controllability in finite time is also known as strong complete
controllability and the property R(u0) = H (∀u0 ∈ H) is sometimes called complete
controllability, see e.g. [19, 14].
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A slightly weaker notion of controllability is approximate controllability.

Definition 2 We call equation (1) approximately controllable [in time T > 0] if,
for all u0 ∈ H,

R(u0) = H [RT (u0) = H].

Remark 2 It is sometimes necessary to restrict the state space to a submanifold
S of H to reflect certain a–priori constraints on the control problem at hand. For
instance, in many quantum applications the appropriate state space is given by

S = {h ∈ H | ‖h‖L2 = 1}.

In these cases, the definitions above should be modified by replacing H with S,
where appropriate.

In the sequel we will always assume that the linear operator A : D(A) ⊂ H → H
generates a continuous semi-group S(t), t ≥ 0 on H.

We begin our discussion by listing a controllability criterion for additive control as
presented in [47] for the problem

ut = Au−N(u) +Bg (7)
u(0) = u0,

where the (u–independent) control operator is a bounded linear operator X → H
and g : [0, T ] → X.

Theorem 1 (see, e.g., [47]) The problem (7) is exactly controllable at T > 0
if and only if the bounded linear operator B∗S(t)∗ : H → L2(0, T ;X) is positive
definite, i.e., there is a C > 0 such that for all h ∈ H∫ T

0

‖B∗S(t)∗h‖2 dt ≥ C‖h‖2.

Furthermore, (7) is approximately controllable at T > 0 if and only if the identity
B∗S(t)∗h = 0, for almost all t ∈ [0, T ], implies that h ≡ 0.

In the bilinear control case (B(g, u) = g(t)B̃u) there is a strong negative result due
to Ball, Marsden and Slemrod [3].

Theorem 2 (Ball, Marsden and Slemrod, 1982) Let dimH = ∞, and sup-
pose that B̃ : X → H is linear and bounded. Then, for any u0 ∈ H the set R(u0) is
contained in a countable union of compact subsets of H, and the set of non–reachable
elements H \R(u0) is dense in H.
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Remark 3

(i) It should be noted that this “No–go” theorem does not exclude the possibility
of the system being approximately controllable. In fact, Ball, Marsden and
Slemrod do present conditions under which the set of reachable states R(u0)
will be dense (for suitable choices of the initial state u0). Their conditions are
applicable to certain (classical) bilinear control problems associate with the
wave and rod equations subject to various boundary conditions. For details,
see [3], Sections 5 and 6.

(ii) G. Turinici adapted the theorem to the quantum situation (linear Schrödinger
equation with bounded bilinear control). His version [44, 45] reads: Let H =
H2(Rd) and u0 ∈ S := {h ∈ H | ‖h‖L2 = 1}. Then the set of reachable
states is contained in a countable sets of (relatively) compact subsets of S. In
particular, the set of non–reachable states is a (relatively) dense subset of S.

(iii) It should be pointed out that the controllability of partial differential equations
may depend sensitively on the regularity of the states and controls. Non–
controllability may be the result of a poor choice of the state space w.r.t. to
the space of controls; controllability may be recovered by working in a different
(higher–regularity) state space. This phenomenon occurs in two recent papers
by Beauchard and Coron [8, 9]. The bilinear control problem considered there
falls in the scope of the noncontrollabilty result by Turinici if the state space
is chosen to be H2. However, the authors show that the problem is locally
controllable if the state space is altered to H7. (We are grateful to one of the
referees for pointing these papers out to us.)

(iv) There is a another fundamental result on the infinite–dimensional quantum
control problem due to Huang, Tarn and Clark [19, 14] who consider the linear
case (N(u) = 0 in (1)) with a control operator of the form (6). Using ideas
from geometric control theory, the controllability criterion is formulated in
terms of various Lie algebras generated by the Hamiltonians involved. One
consequence of the “HTC Theorem,” as it is known, can be formulated as
follows [19]. If the Lie algebra generated by the operators A,H1, . . . ,Hr is
finite–dimensional and admits an analytic domain2 D ⊂ H, then equation (1)
is not analytically controllable on S; i.e., R(u0) 6= S ∩D (u0 ∈ S ∩D).

These theorems set the stage for our discussion of controllability issues for Schrödinger
equations. Before we present our observations and results, we list a few of the stan-
dard examples and give a brief overview over the literature.

1.2 Examples

(i) The interaction of a quantum system with its environment can be modelled
by a Schrödinger equation of the form3

iut = H0u+Hint(t)u,

where H0 is the (time–independent) Hamiltonian of the unperturbed quantum
system – typically, H0 = −∆+V (x) – and the (time–dependent) Hamiltonian

2This means that D is a dense subset of H which is invariant w.r.t. the operators A, H1, . . . , Hr

and on which the solutions to the Schrödinger equation (1) can be expressed globally in exponential
form [19, 14].

3All physical constants have been set to 1.

6



Hint(t) describes the interaction. In control applications the interaction oper-
ator Hext(t) is given by the R.H.S. of (6), where the functions gj(t) represent
classical fields by means of which the quantum system is manipulated. The
interaction Hamiltonian in the dipole approximation is given by the operator
E(t) ·x; i.e., gj(t) = Ej(t) and Hj = xj , where E(t) = (E1(t), E2(t), E3(t)) de-
notes the (classical) electric field of a laser, say.4 For more details, see [10, 39]
and the literature therein. (For alternate choices of the operators Hj see also
[14, 25].) A large amount of literature exists on the controllability of finite–
dimensional quantum systems. (A number of important references may be
found in [41], for example.). Specific infinite–dimensional quantum systems
are treated in [36] and [25] which deal with the control of the quantum–
harmonic oscillator and the hydrogen atom, respectively.

(ii) The particle–particle interaction in many–body quantum systems is often
modelled by a nonlinear, self–consistent, potential, which leads to the Hartree
equation; the corresponding control problem with dipole term for these models
takes the form

iut = −∆u+ V (x)u+ α

(
|u|2 ∗ 1

|x|

)
u+ (E(t) · x)u

(α ∈ R). In quantum–chemistry applications (control of molecular processes)
V (x) is typically given by the Coulomb potential Z

|x| ; in the theory of semi–
conductors V (x) may be a periodic or confining potential.

(iii) The Gross–Pitaevskii equation

iut = −∆u+ V (x)u+ α|u|2u

describes a Bose–Einstein condensate in a mean field approximation. Here
V (x) is the magnetic trap holding the condensate; typically V (x) is a quadratic
function of x. In this paper we consider the case where the control is again
given by the dipole term E(t) · x (see, e.g., [18]). However, other parameters,
such as trap frequency and scattering length, can also be influenced and tuned
in the laboratory. It is therefore interesting to study the effects of these
additional control “knobs” as well [1].

(iv) It is well known that nonlinear Schrödinger equations have important ap-
plications in nonlinear optics. The controls in these systems are provided
by holding or pump beams; the appropriate mathematical form is therefore
given by the additive control term. The “fixed–profile” form (4) considered
in Section 3.1 arises when only the strength of the holding beam is varied.

1.3 A brief literature review

As opposed to the massive available body of knowledge on controllability of finite
and infinite–dimensional classical systems, only a limited amount of literature on
exact and optimal control of Schrödinger equations is available.

An excellent introduction to control questions for Schrödinger equations is [48].
Results on distributed and/or boundary control for linear Schrödinger equations
are the subjects of Refs. [30, 26, 34, 35, 37, 29, 28]; local exact controllability for
the linear Schrödinger equation with bilinear control is shown in [8, 9]. A small–
data result on distributed exact control for the nonlinear Schrödinger equation was

4In practice the unbounded operator x is often replaced with a bounded one.
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presented in [21] (for completeness, this result is listed in Section 3 below). Refs.
[5, 7, 13] present optimal control results for the (nonlinear) Hartree equation and
bilinear controls. Our Theorem 4 complements these results.

For comprehensive surveys on the control of quantum systems and the relevant
literature we refer the reader to the two recent monographs [10] and [39] as well
as [44]. Computational aspects of Quantum Chemistry are the subject of [32].
The articles [19, 14] contain the result on bilinear control of infinite–dimensional
quantum systems described in Remark 3 (iii) above.

Many introductory texts on control theory are available; we only mention [47]
which also contains results on infinite–dimensional systems (see Theorem 1 above).
Standard references on control theory for partial differential equations include e.g.
[40, 33, 4, 27]. Finally, the general “No–go” Theorems by Ball, Marsden, Slemrod
(Theorem 2) and Turinici (Remark 3 (ii)) have already been cited.

2 Results on non–controllability

2.1 Linear Schrödinger equations

We prove the impossibility of exact controllability for a whole class of linear Schrödinger
equations with additive control.

We recall the controllability criteria as presented in the introduction [47] for the
problem

ut = Au+Bg (8)
u(0) = u0

where B : X → H is a linear operator acting on the controls g : [0, T ] → X.

By Theorem 1 eq. (8) is exactly controllable at T > 0 if and only if the bounded
linear operator B∗S(t)∗ : H → L2(0, T ;X) is positive definite, i.e., there is a C > 0
such that for all ϕ ∈ H ∫ T

0

‖B∗S(t)∗ϕ‖2 dt ≥ C‖ϕ‖2.

We consider Schrödinger equations of the type

iut = −∆u+ V (x)u+ χω(x)g(t, x) (9)
u(0, x) = u0(x)

in the internally distributed additive control form, with open subsets ω ⊂ Ω ⊂ Rd,
H = L2(Ω) and a real potential V ; Ω may be Rd itself, but ω should be bounded.

In the sequel we state two conditions each one of which implies the impossibility of
exact controllability for (9).
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(i) −i(−∆ + V ) generates a group (the appropriate Schrödinger group) S(t)t∈R
such that an L1 − L∞ estimate of the type

‖S(t)‖L1→L∞ ≤ C|t|−d/2 (∀t 6= 0) (10)

applies; or,

(ii) −∆ + V has a discrete spectrum {λn}n∈N of eigenvalues with eigenfunctions
{ϕn} such that {ϕn} is an orthonormal basis of H = L2(Ω), and∫

ω

|ϕn|2dx = o(1) as n→∞ (11)

We remark that the first condition is satisfied in the free case (V = 0) or if the
real potential V is such that the multiplication operator defined by multiplication
with (1 + |x|)1/2V (x) maps Hs(Rd) into itself (s > 0), and V̂ ∈ L1(Rd) (if Ω = Rd)
(see [23]). The second criterion is, for example, satisfied for the harmonic oscillator
V (x) = x2 on Ω = Rd, as discussed in [21].

Theorem 3 If either of the above conditions is satisfied, then (9) is not exactly
controllable.

Proof. Suppose the first condition applies. For simplicity we only discuss the case
Ω = Rd and V ≡ 0 (the “free” case; the general case is quite similar).

Let ψε be a set of regularizing functions on Rd such that

ψε ∈ C∞0 , ψε ≥ 0,∫
ψεdx = 1, suppψε = {x; |x| ≤ ε},

and ∫
|ψε|2dx = Cε−d (12)

Let S(t) denote the free Schrödinger group, given explicitly by

(S(t)ϕ)(x) = (4πit)−d/2

∫
exp

(
i
|x− y|2

4t

)
ϕ(y) dy (13)

(defined for ϕ ∈ L1(Rd)). Then, set ϕε := S(2T )ψε. We observe that

‖ϕε‖2L2 = ‖S(2T )ψε‖2L2 = ‖ψε‖2L2 = Cε−d.

If we now assume exact controllability of (9), it would follow from Theorem 1 that
there is a constant CT > 0 such that

Cε−d = ‖ϕε‖2L2 ≤ CT

∫ T

0

∫
|χωS(−t)ϕε|2dx dt

= CT

∫ T

0

∫
ω

1 · |S(2T − t)ψε|2 dx dt ≤ C̃T |ω|
∫ T

0

dt

(2T − t)d
(
∫
ψεdy)2

≤ C0(T, ω, d) <∞,
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and this gives a contradiction for small ε.

We turn to the second criterion above. In this case we have for any ϕ ∈ L2(Ω)

(S(t)ϕ)(x) =
∑
k∈N

e−iλkt(ϕ,ϕk)L2(Ω)ϕk(x).

As ‖ϕn‖L2(Ω) = 1 and S(−t)ϕn = eiλntϕn, we have∫ T

0

∫
Ω

|χωS(−t)ϕn|2dxdt = T

∫
ω

|ϕn|2dx = o(1)

for n → ∞. Therefore the operator B∗S(−t) cannot be positive definite from
L2(0, T ;L2(Ω)) to L2(Ω), i.e., (9) is not exactly controllable. �

Remark 4 The theorem may also be proved in a more direct way without reference
to Theorem 1, using the notion of observable controllability: define

OT,C(u0) := {uT = u(T ;u0, g) | ‖g‖L2(0,T ;L2(Rd)) ≤ C(‖u0‖L2 + ‖uT ‖L2)};

i.e.,
RT (u0) =

⋃
C>0

OT,C(u0).

We will show that for all u0 ∈ L2(Ω) and any C > 0 there is a target state uT such
that uT /∈ OT,C(u0), which will obviously imply that the equation is not exactly
controllable. To show this, fix u0 and C > 0 and assume that ϕε ∈ OT,C(u0) for all
ε > 0. Then there exist controls gε ∈ L2(0, T ;L2(Rd)) ⊂ L1(0, T ;L2(Rd)) such that

‖gε‖L2(0,T ;L2(ω)) ≤ C{‖u0‖L2 + ‖ϕε‖L2}

and ϕε = u(T ;u0, gε). Hence

ϕε = S(T )u0 − i

∫ T

0

S(T − t)(χωgε)dt,

and

Cε−d = (S(T )u0, S(2T )ψε)L2(Rd) −
∫ T

0

∫
ω

gε(x, t)S(T + t)ψεdx,

which, using (10), implies

Cε−d ≤ ‖u0‖L2‖ψε‖L2 + C
∫ T

0
dt

(T−t)d/2

∫
ω
|gε(t, x)|dx

≤ C‖u0‖L2ε−d/2 + C(T, d, ω)‖gε‖L2(ω) (14)

≤ C‖u0‖L2ε−d/2 + C̃{‖u0‖+ Cε−d/2}. (15)

By multiplying with ε−d/2 one arrives at a contradiction for small enough ε.

In the case of assumption (11) we argue in a similar manner: let u0, and C be
fixed and assume that ϕn ∈ OT,C(u0) for all n; denote by gn ∈ L2(0, T ;L2(Ω)) the
appropriate control. Then

ϕn = S(T )u0 − i

∫ T

0

∑
k∈N

e−iλk(T−t)(χωgn(t, ·), ϕk)ϕkdt,
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and therefore

1 = (S(T )u0, ϕn)L2(Ω) − i

∫ T

0

e−iλk(T−t)(gn(t, ·), ϕn)L2(ω)dt.

This leads to an estimate

1 ≤ |(S(T )u0, ϕn)L2(Ω)|+ C{‖u0‖+ 1}{
∫

ω

|ϕn|2dx}1/2.

This gives a contradiction for large n because (ϕn) converges weakly to 0, and, by
assumption, we know that

∫
ω
|ϕn|2dx→ 0 as n→∞.

2.2 The Hartree equation

In this section we prove two noncontrollability results (Theorems 4 and 5) for the
nonlinear Hartree equation of quantum chemistry (see equation (16) below). The
first theorem deals with control in finite time and is motivated by an optimal control
result due to Cancès, LeBris, and Pilot [13] who proved that optimal control problem

inf
E∈L2(0,T ;R3)

J(E) = inf
E∈L2(0,T ;R3)

(
‖u(T ;u0, E)− uT ‖2L2(R3) + ‖E‖2L2(0,T )

)
has a solution E ∈ L2(0, T ; R3) for every u0 ∈ H2,1(R3) := {f ∈ H2(R3) |
(1 + |x|2)1/2f ∈ L2(R3)} and uT ∈ L2(R3).

In view of this result, a natural question to ask is whether the distance ‖u(T ;u0, E)−
uT ‖L2 between the attainable states u(T ;u0, E) and the target state uT can be made
small (possibly at the cost of large controls E(t))5. Theorem 4 and Remark 5 (ii)
show that this is impossible in general.

In the second theorem we consider the infinite–time control problem for (16). Here
the question is whether the results on the noncontrollability of linear systems with
bounded bilinear control by Ball, Marsden, Slemrod and Turinici (see Theorem 2
and Remark 3 (ii)) have an analogue for the nonlinear Hartree equation with the
unbounded dipole control term. In Theorem 5 we show that this is indeed the case.

The equation under consideration has the normalized form

iut = −∆u− 1
|x|
u+

(
|u|2 ∗ 1

|x|

)
u+ (E(t) · x)u (16)

(x ∈ R3, t ∈ [0, T ]), u(0, x) = u0(x). Here the real-valued field vector E(t) =
(E1(t), E2(t), E3(t))T is the control function. It can be seen from [12, 13, 6] that
equation (16) is globally well–posed in H := H2(R3), with

u ∈ C([0, T ],H) ∩ C1([0, T ], L2,−1(R3)),

where
L2,−1(R3) := {f ∈ L2

loc(R3) | (1 + |x|2)−1/2f ∈ L2(R3)}.
5One could introduce a parameter (α > 0, say) in front of the “fluence” term ‖E‖2

L2(0,T )
(i.e.

replace ‖E‖2
L2(0,T )

in the functional J with α‖E‖2
L2(0,T )

) and try to “solve” the exact control

problem by taking the limit α → 0.
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To formulate our results, we recall the definitions of the sets of reachable states in
finite time, RT (u0) = {u(T̃ ;u0, g)|g ∈ L2(0, T̃ ;X), 0 < T̃ ≤ T}, and infinite time,
R(u0) :=

⋃
T>0RT (u0), and we define the sets

S := {h ∈ H | ‖h‖L2 = 1}
NRT (u0) := CRT (u0)
UT (u0) := {h ∈ S | sup0<T̃≤T supE∈L2(0,T̃ ;R3) | < u(T̃ ;u0, E), h >L2 | < 1}

ΣT (u0) := {h ∈ S | sup0<T̃≤T supE∈L2(0,T̃ ;R3) | < u(T̃ ;u0, E), h >L2 | = 1}

Note that
UT (u0) = CΣT ⊂ NRT (u0) and RT (u0) ⊂ ΣT (17)

We regard S as a complete metric space with the the metric d(g, h) = ‖g − h‖H2 .
The subsets of S are topological spaces w.r.t. the relative topology; C and (.) denote
the (set–theoretic) complement and the topological closure in S, respectively.

Lemma 1 Let u0 ∈ S and T > 0. Then the set UT (u0) is a dense and open subset
of S.

The following theorem is now a direct consequence of (17).

Theorem 4 Let u0 ∈ S and T > 0. Then RT (u0) 6= S; i.e., the equation (16) is
not approximately controllable in time T . Moreover, the set of non–reachable states,
NRT (u0), contains a dense and open subset of S.

Before proving the lemma, we make a few comments.

Remark 5

(i) Although the observation that equation (16) is not approximately controllable
in finite time may come as no surprise, given the special form of the control
term (E(t) · x)u, the theorem is interesting for several reasons: a) the control
term arises naturally in the theory of light–matter interaction (dipole approx-
imation)6 b) equation (16) is optimally controllable as mentioned above –
the theorem therefore says that the states u(T ;u0, E) can in general not be
made arbitrarily close to the target state uT even if the “fluence” ‖E‖2L2(0,T )

of the control E is allowed to become arbitrarily large. (See also Remark (ii)
below.); c) the dependence of the “degree of controllability” on the external
potential is highly non–trivial. For instance, if the Coulomb potential is re-
placed by the harmonic oscillator potential, the set of reachable states turns
out to be finite–dimensional (cf. Section 2.3), which, however, it is clearly not
in the Coulomb case; d) the method for proving the theorem is of independent
interest.

(ii) As mentioned in the introduction to this section, our main motivation for the
theorem has been to interpret the optimal control result by Cancés, LeBris,
and Pilot cited above in the context of exact control. In this regard, we have
that

{uT ∈ S | inf
0<T̃≤T

inf
E∈L2(0,T̃ )

‖u(T̃ ;u0, E)− uT ‖L2 ≥ α} 6= ∅

for all α ∈ (0,
√

2), which illustrates the “gap” between exact and optimal
controllability for the Hartree equation.

6In quantum–chemistry computations the unbounded operator x may be replaced with a
bounded one by, for instance, applying a cut–off at infinity.
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(iii) The theorem also holds and is of independent interest in the linear case
(hydrogen atom).

(iv) We will make use of the Hardy–Littlewood–Sobolev inequality in the following
form: Let 0 < α < d, and for f ∈ Lp(Rd) define the Riesz potential Rα(f)(x)
by

Rα(f)(x) :=
∫

f(y)
|x− y|α

dy

Then there exists a constant C = Cα,d > 0 such that for all exponents p, q
with 1 ≤ p < q <∞, 1

q = 1
p + α

d − 1,and all f ∈ Lp(Rd) the estimate

‖Rα(f)‖Lq ≤ C‖f‖Lp (18)

holds. We will use (18) for the case d = 3, q = 2, α = 2 and p = 6/5.

(v) We will use the following formula for the Fourier transform of 1
|x| (see, for

example, [43]): (̂
1
|x|

)
(ξ) = λd

(
1
|ξ|

)d−1

, (19)

with λd = π
1−d
2 Γ

(
α−1

2

)
(vi) As mentioned in Remark 3 (iii), varying the state space may change the con-

trollability properties dramatically. Here, however, it is not the regularity of
the states which is the obstacle to controllability. Rather, the decay properties
at infinity seem to be more important. Our proof, in its present form, does
not extend to the space H2,1(R3), which is the natural solution space for eqn.
(16).

Proof of Lemma 1.

Step 1. Construction of special elements of UT (u0). Consider the sequence (gn)n∈N ⊂
S of functions gn defined by

gn(x) := n−3/2g
(x
n

)
where g ∈ C∞(R3) is an arbitrary function such that ‖g‖L2 = 1. Then

‖gn‖L2 = ‖g‖L2 = 1 and ‖ĝn‖L6/5 = n−1‖ĝ‖L6/5

for all n ∈ N.

Let u = u(.;u0, E) ∈ C(0, T ;H) be the unique solution of{
iut = −∆u− 1

|x|u+ (|u|2 ∗ 1
|x| )u+ (E(t) · x)u

u(0, x) = u0(x).

}
(20)

We claim that gn ∈ UT for n large enough; more precisely, we will show that

| < u(T̃ ;u0, E), gn >L2 | −→ 0 (n→∞)
uniformly in T̃ ∈ (0, T ] and E ∈ L2(0, T̃ )

(21)

We start by noting that the L2 norm of u is conserved,

‖u(t, .)‖L2 = ‖u0‖L2 = ‖u(T ;u0, E)‖L2 (0 ≤ t ≤ T ). (22)

13



Moreover, taking the Fourier transform of (20) and using

[(E(t) · x)u]̂(ξ) = iE(t) · ∇ξû and f̂ · g = (2π)−d/2f̂ ∗ ĝ,

results in the transport equation

ût − E(t) · ∇ξû = −iξ2û+ ic0(
1
|ξ|2

∗ û)− ic1(W (u) ∗ û), (23)

where W (u) := V̂ (u), V (u) := 1
|x| ∗ |u|

2, c1 := (2π)−3/2, c0 := λ3c1 (the constant
λ3 is defined in Remark 5 (v) above). The homogeneous equation associated with
equation (23) (i.e. equation (23) without the last two terms on the right–hand side)
has the solution

û0(ξ +H(t)) · exp
[
−i

∫ t

0

(ξ +H(t)−H(s))2ds
]
, (24)

where H(t) :=
∫ t

0
E(τ)dτ . Using the Duhamel Principle, a representation of the

solution of (23) can be obtained:

û(t, ξ) = û0(ξ +H(t))e−i
R t
0 (ξ+H(t)−H(s))2ds +

+i
∫ t

0

(
c0(

1
|ξ|2

∗ û)− c1(W (u) ∗ û)
)

(s, ξ) · e−i
R t

s
(ξ+H(t)−H(σ))2dσds, (25)

Thus

û(T, ξ) = û0(ξ +H(T ))e−i
R T
0 (ξ+H(T )−H(s))2ds +

+i
∫ T

0

(
c0(

1
|ξ|2

∗ û)− c1(W (u) ∗ û)
)

(s, ξ) · e−i
R T

s
(ξ+H(T )−H(σ))2dσds

=: I1 + I2 + I3, (26)

where

I1 := û0(ξ +H(T ))e−i
R T
0 (ξ+H(T )−H(s))2ds (27)

I2 := ic0

∫ T

0

(
1
|ξ|2

∗ û)(s, ξ) · e−i
R T

s
(ξ+H(T )−H(σ))2dσds (28)

I3 := −ic1
∫ T

0

(W (u) ∗ û)(s, ξ) · e−i
R T

s
(ξ+H(T )−H(σ))2dσds (29)

Now we multiply equation (26) by ĝn, and integrate over R3.

To estimate the first term in

< u(T ;u0, E), gn >L2=< I1, ĝn >L2 + < I2, ĝn >L2 + < I3, ĝn >L2 ,

we first assume that û0 ∈ L6(R3), and get by Hölder’s inequality,

| < I1, ĝn >L2 | ≤ ‖I1‖L6‖ĝn‖L6/5 ≤ ‖û0‖L6‖ĝn‖L6/5 ≤ n−1‖û0‖L6‖ĝ‖L6/5 −→ 0.

Now the the general case can be dealt with by a simple density argument.
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Using the Remark 5 (v) and (vi) as well as the conservation law (22), we estimate

| < I2, ĝn >L2 | = c0

∣∣∣∣∣
∫ T

0

∫
R3

∫
R3

û(s, η)e−i
R T

s
(ξ+H(T )−H(σ))2dσ

|ξ − η|2
ĝn(ξ) dηdξds

∣∣∣∣∣
≤ c0

∫ T

0

∫
R3

(∫
R3

|ĝn(ξ)|
|ξ − η|2

dξ

)
|û(s, η)|dηds

= c0

∫ T

0

∫
R3
R2(|ĝn|)(η) · |û(s, η)|dηds

≤ c0‖R2(|ĝn|)‖L2

∫ T

0

‖u(s, .)‖L2ds = C‖R2(|ĝn|)‖L2

≤ C ′‖ĝn‖L6/5 ≤ C ′n−1‖ĝ‖L6/5 −→ 0.

(The constant C ′ depends linearly on T .) The term | < I3, ĝn >L2 | can be treated
in a similar manner:

| < I3, ĝn >L2 | ≤ C ′′
(∫

R3
|u(s, y)|2dy

)
· | < û(s, .), R2(ĝn) >L2 | ≤ C ′′n−1‖ĝ‖L6/5 ,

where we have used | |̂u|2 | ≤ ‖u‖2L2 . This completes the proof of (21).

Step 2. UT (u0) is a dense subset of S. Let uT ∈ S and δ > 0. We will show that
the state

ũT,n :=
uT + εgn

‖uT + εgn‖L2
∈ S

satisfies
‖ũT,n − uT ‖H2 < δ and ũT,n ∈ UT (u0) (30)

if ε > 0 and n ∈ N are suitably chosen numbers. To this end, we first observe that

‖gn‖H2 ≤ C,

where C = C(‖g‖H2) is a constant that only depends on the H2–norm of g. We
choose ε > 0 such that

ε√
1 + ε2/2

(‖uT ‖H2 + C) < δ.

Since
‖uT + εgn‖2L2 ≥ 1 + ε2 − 2| < uT , gn >L2 |.

and | < uT , gn >L2 | → 0, we may choose a number n1 ∈ N such that

‖uT + εgn‖2L2 ≥ 1 + ε2/2

for all n ≥ n1. Now

‖ũT,n − uT ‖H2 =
1

‖uT + εgn‖L2
·
∥∥∥uT (‖uT + εgn‖L2 − 1)− εgn

∥∥∥
H2

≤ 1√
1 + ε2/2

·
(∣∣∣‖uT + εgn‖L2 − ‖uT ‖L2

∣∣∣ · ‖uT ‖H2 + ε‖gn‖H2

)
≤ ε√

1 + ε2/2
(‖uT ‖H2 + ‖gn‖H2) < δ
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(for all n ≥ n1) and

| < u(T ;u0, E), ũT,n >L2 | =
1

‖uT + εgn‖L2

∣∣∣ < u(T ;u0, E), uT >L2

+ε < u(T ;u0, E), gn >L2

∣∣∣
≤ 1√

1 + ε2/2
(1 + ε| < u(T ;u0, E), gn >L2 |)

−→ 1√
1 + ε2/2

< 1,

since | < u(T ;u0, E), gn >L2 | → 0 (see (21)). This completes the proof of (30).

Step 3. UT (u0) is an open subset of S. Define the map φT : S → R,

φT (h) := sup
0<T̃≤T

sup
E∈L2(0,T̃ ;R3)

| < u(T ;u0, E), h >L2 |. (31)

This map is clearly continuous, since it is the restriction to S of the sublinear map
φ̃T : H → R, φ̃T (h) := sup0<T̃≤T supE∈L2(0,T̃ ;R3) | < u(T ;u0, E), h >L2 | which
satisfies

φ̃T (h) ≤ 1 (∀h ∈ H).

Thus, the set
UT = {h ∈ S | φT (h) < 1} (32)

is open by the continuity of φT , which completes the proof of Lemma 1. �

We now turn to the infinite–control–time result. (For information on first– and
secondary–category sets etc., we refer the reader to [2], e.g.)

Theorem 5 Let u0 ∈ S. Then

(i) The set of reachable states, R(u0), is of first category (“meagre”) in S.

(ii) The set of non–reachable states, NR(u0), is of second category (“fat”) in S.
In particular, NR(u0) is dense in S.

Remark 6

(i) It can be shown (using the convergence results in [13], Section 3.3) that the
sets RT,C(u0) := {u(T ;u0, E) | E ∈ L2(0, T ), ‖E‖L2(0,T ) ≤ C} are compact
subsets of L2(R3). The density of NR(u0) in the topology of L2(R3) (which
is obviously weaker than the H2(R3)–topology) may therefore also be shown
using this compactness property as the set of reachable states,

R(u0) =
⋃

n,N∈N
Rn,N (u0),

is a countable union of compact sets and thus has a (L2–)dense complement
NR(u0).

(ii) It seems likely that eqn. (16) is not approximately controllable; i.e. that
R(u0) 6= S, but at the present time we do not have a complete proof for this
conjecture.
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(iii) As before, we would also like to generalize the Theorem to include the topology
of H2,1(R3).

Proof of Theorem 5. As before, for each T > 0, we consider the map φT : S → R,
defined in (31) above. In addition to the set UT = {h ∈ S | φT (h) < 1} we will also
need the set

ΣT := {h ∈ S | φT (h) = 1}.

Evidently, UT is open and ΣT is closed by the continuity of φT .

(i) Clearly,

R(u0) =
⋃
n∈N

Rn(u0),

so it is sufficient to show that RT (u0) is nowhere dense for each T > 0. First, note
that

RT (u0) ⊂ ΣT .

It therefore suffices to show that

(ΣT )◦ = ∅.

To see this, let h ∈ ΣT . Then, thanks to Lemma 1, we have that h ∈ UT which
implies that any open neighbourhood of h contains elements of UT = CΣT . This
shows that the set ΣT does not contain any inner points; so its interior (ΣT )◦ is
empty.

(ii) The sets UT are open and dense and therefore of second category (“fat”). Thus

U :=
⋂
n∈N

Un

is a second–category set as a countable intersection of second–category sets. The
assertion now follows from U ⊂ NR(u0). �

2.3 Schrödinger equations with quadratic potentials

In this section we briefly consider the control problem for nonlinear Schrödinger
equations with quadratic potentials:

iut = −∆u+ (xT Ωx)u+ (E(t) · x)u+ f(|u|2)u (33)

(x ∈ R3, t ∈ [0, T ]), u(0, x) = u0(x). Here E has the same meaning as before; Ω
denotes a symmetric (d× d)–matrix; the nonlinearity f(|u|2) may be local or non-
local. Equation (33) thus encompasses the Gross–Pitaevskii (f(|u|2) = a|u|2) and
Hartree (f(|u|2) = V (u) = 1

|x| ∗ |u|
2) equations with quadratic exterior potentials.

The critical observation is that the control term can be removed from the equation
by a (generalized) WKB–type ansatz

u(t, x) = eiS(t,x)ψ(t, x− x̄(t)), (34)

where the function S is appropriately chosen and x̄(t) denotes the classical trajectory
associated with the classical Hamiltonian

H̄(p, x) = 1
2p

2 + xT Ωx+ E(t) · x.
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Transformations of this kind are known for the linear quantum–mechanical os-
cillator [20, 24] and have recently been utilized in the nonlinear case (for time–
independent “Stark potentials” E · x) as well [11]. The equation for ψ takes the
form

iψt = −∆ψ + (xT Ωx)ψ + f(|ψ|2)ψ, (35)

which is independent of the control E. We therefore draw the following conclusion.

Theorem 6 Let u0 ∈ H2,2(Rd) and T > 0. Then, for any control E ∈ L2(0, T ; Rd),
the solution u = u(.;u0, E) of equation (33) is given by (34), where ψ satisfies (35)
and ψ(0, x) = u0(x). In particular, the manifold of reachable states is given by

RT (u0) = {eiλeiπ·(x−ξ)ψ(T, x− ξ) | λ ∈ R;π, ξ ∈ Rd},

and is hence finite–dimensional.

This obviously means that the degree to which the system can be controlled is very
limited, as the state ψ(T, .) can be pre–computed independently of the control field
E. As a result, all that can be affected by the application of the control field is – up
to a phase factor – a shift of the state ψ(T, .). This limitation on the controllability
of (33) is particularly striking if the initial state u0 is chosen to be a nonlinear
eigenstate for (33); i.e., −∆u0 +(xT Ωx)u0 +f(|u0|2)u0 = µu0 (µ ∈ R). In this case,
the density of the controlled state, |u(T, x)|2 = |u0(x− x̄(T ))|2, remains unchanged
(up to the shift x̄(T )) by the application of the homogeneous control field E.

It is also interesting to compare Theorem 6 (in the linear case f ≡ 0) to the results in
[8, 9], which show that (local) controllability is recovered if the quadratic potential is
replaced with an “infinite” confining potential (“particle in a box”). This illustrates
the subtle dependence of the controllability properties on the external potential.

3 Controllability results

In this section we present two controllability results for Schrödinger equations.

3.1 Additive control for the linear Schrödinger equation

We begin with the problem{
iut = Au+ g(t)h(x) (x ∈ Ω, t ∈ [0, T ])
u(0) = u0

}
(36)

where A is a linear differential operator such as −∆ + V (x), h is a given function,
and Ω = Rd or Ω ⊂ Rd bounded and open subset of Rd (in the last case equation
(36) is to be understood subject to boundary conditions, such as u|(0,T )×∂Ω = 0).

Problems of the form (36) (where we distinguish between the real case =(g) = 0
and the complex case) are of interest since they appear as linearizations of bilinear
control situations7. Their solutions may therefore be an important step in obtaining
local controllability results for bilinear control problems. While we need strong as-
sumptions on the spectrum of the Hamiltonian (discreteness, gap condition), which

7The “fixed–profile” form of the control also appears in optics applications when the holding
beam has a fixed shape.

18



we would eventually like to be able to relax, our conditions do include important
examples such as the (one–dimensional) anharmonic oscillator − d2

dx2 + x2 + λx4

(λ ∈ R), whose eigenvalues are known to behave like (n + 1
2 )4/3λ1/3 [42]. The

proofs are based on the following result by Ingham (cf. [22, 46]) on nonharmonic
Fourier series, which seems to restrict the method to Schrödinger equations.

Lemma 2 Let f ∈ L2(0, T ; C) be given by

f(t) =
∞∑

k=1

cke
iλkt (37)

where ck ∈ C such that
∑∞

k=1 |ck|2 <∞ and (λk) ⊂ R.
If (λn) is a separated sequence of real numbers satisfying the gap condition

λn+1 − λn ≥ γ >
2π
T

(n ∈ Z), (38)

then the system {eiλnτ} is a Riesz–Fischer sequence in L2(0, T ); i.e., there exist
constants CT and C̃T such that

CT

∞∑
k=1

|ck|2 ≤
∫ T

0

|f(t)|2dt ≤ C̃T

∞∑
k=1

|ck|2 (39)

Remark 7 The inequalities in (39) imply that the collection of functions (eiλkt)k∈N
form a Riesz basis of L2(0, T ; C). Moreover, any function f of the form (37) is
uniquely determined by its coefficients if the gap condition (38) and the condition
T > 2π/γ are satisfied.

We also need a version of the uniqueness assertion of the previous lemma for real
numbers for which we provide a direct proof.

Lemma 3 Let (λn) ⊂ R \ {0} be a sequence of non-zero numbers that satisfies
the gap condition (38). Then there exists a number T0 > 3π/γ such that for every
T ≥ T0, (αn), (βn) ⊂ R s.t.

∑∞
n=1(|αn|+|βn|) <∞, the real non–harmonic Fourier

series

f(t) =
∞∑

n=1

{αn sin(λnt) + βn cos(λnt)} (t ∈ [0, T ]), (40)

associated with T , (αn), (βn), and (λn) satisfies the uniqueness property

∀t ∈ [0, T ] f(t) = 0 ⇒ ∀n ∈ N αn = βn = 0.

Proof. For simplicity we assume that λn > 0 for all n ∈ N. (Since the sequence
(λn) is increasing and satisfies λn ≥ (n − 1)γ + cλ1 for large enough n by the gap
condition (38), only a finite number of λn’s are negative. The proof is very similar
in this case.) The proof is based on the following inequalities due to Hilbert

∞∑
j,k=0

|ajbk|
j + k + 1

≤ π‖a‖`2‖b‖`2 (41)∣∣∣∣∣∣
∞∑

j 6=k

|ajbk|
j − k

∣∣∣∣∣∣ ≤ π‖a‖`2‖b‖`2 (42)
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where (ak)k=0,1,..., (bk)k=0,1,... ∈ `2; cf. [17]. It is also known that π is the optimal
constant in these inequalities. Since f(t) ≡ 0 in [0, T ], we have

∫ T

0
f2(t)dt = 0.

This, together with (40), implies

∞∑
n=1

α2
n

{
T

2
− sin(2λnT )

4λn

}
+

∞∑
n=1

β2
n

{
T

2
+

sin(2λnT )
4λn

}
=

∑
j 6=k

αjαk

{
sin((λj + λk)T )

2(λj + λk)
− sin((λj − λk)T )

2(λj − λk)

}

−
∑
j 6=k

βjβk

{
sin((λj + λk)T )

2(λj + λk)
+

sin((λj − λk)T )
2(λj − λk)

}

+ 2
∑
j 6=k

αjβk

{
1

2(λj + λk)
[1− cos((λj + λk)T )] +

1
2(λj − λk)

[1− cos((λj − λk)T )]
}

+ 2
∞∑

n=1

αnβn
1

4λn
[1− cos(2λnT )]

Set α :=
(∑∞

j=1 α
2
j

)1/2

and β :=
(∑∞

j=1 β
2
j

)1/2

. Then

T

2
(α2 + β2) ≤ 1

2λ1
(α2 + β2 + 2α · β)

+
1
2

∑
j 6=k

|αjαk|
λj + λk

+
∑
j 6=k

|αjαk|
|λj − λk|

+
∑
j 6=k

|βjβk|
λj + λk

+
∑
j 6=k

|βjβk|
|λj − λk|


+ 2

∑
j 6=k

|αjβk|
λj + λk

+
∑
j 6=k

|αjβk|
|λj − λk|


Thanks to (38) we have |λj −λk| ≥ γ|j−k| and λj +λk ≥ γ(j+k+1−3+ λ1

γ ). So,
assuming that −3 + λ1

γ ≥ 0 (this condition can always be satisfied by decreasing γ
if necessary) and using (41) & (42), we get

α2 + β2 ≤ 2
T

(
1
λ1

+
π

γ

)
(α2 + β2) +

4π
Tγ

α · β ≤ 2
T

(
1
λ1

+
3π
γ

)
(α2 + β2) (43)

Under the condition

2
T

(
1
λ1

+
3π
γ

)
< 1 ⇐⇒ T > T0 :=

1
λ1

+
3π
γ

the inequality (43) implies

α = β = 0 ⇐⇒ αn = βn = 0 (∀n ∈ N).

This concludes the proof.

Theorem 7 Assume that the operator A possesses an orthonormal basis (ϕn)n∈N
of eigenfunctions in L2(Ω) and denote by (λn)n∈N the corresponding eigenvalues.
Let h ∈ L2(Ω) be a non-trivial function. Then

(i) If equation (36) is approximately controllable, then

(h, ϕn)L2(Ω) 6= 0 for all n ∈ N (44)
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(ii) If (44) holds and, in addition, the sequence (λn)n∈N satisfies the gap condition
(38), then equation (36) is approximately controllable in the complex sense,
provided that the control time satisfies the condition T > 2π/γ.

(iii) If (44) holds and the sequence (λn)n∈N satisfies the gap condition (38) and, in
addition, the eigenvalues λn are all non–zero, then equation (36) is approx-
imately controllable in the real sense provided that the control time satisfies
the condition T ≥ T0, where T0 is the constant appearing in the assertion of
the previous lemma.

Proof. (i) Referring to the nomenclature of Section 1, the operator B : K → L2(Ω)
is defined by

Bg := g · h, (45)

where K = C (complex case) or K = R (real case). The adjoint operator B∗ :
L(Ω) → K is given by

B∗w =
{

(w, h)L2(Ω), complex case
−=(w, h)L2(Ω), real case (46)

The approximate controllability of (36) is equivalent to the following property:

∀t ∈ [0, T ] (S(−t)v, h)L2(Ω) = 0 ⇒ v ≡ 0, (47)

where S denotes the Schrödinger group which may be written as

S(t)v =
∞∑

n=1

e−iλnt(v, ϕn)L2(Ω)ϕn.

So if (h, ϕm)L2(Ω) was equal to zero for some index m ∈ N, we would get

(S(−t)ϕm, h)L2(Ω) = eiλmt(ϕm, h)L2(Ω) = 0 (∀t ∈ [0, T ]),

which is impossible in view of property (47), as v = ϕm 6= 0.
In the real case the approximate controllability of (36) is equivalent to the property

∀t ∈ [0, T ] =(S(−t)v, h)L2(Ω) = 0 ⇒ v ≡ 0, (48)

and the assumption (ϕm, h)L2(Ω) = 0 will again lead to a contradiction.

(ii) We want to show that condition (47) is satisfied. To this end, we assume that
(S(−t)u0, h)L2(Ω) = 0 for all t ∈ [0, T ]. Then the function ψ : [0, T ] → C, defined
by

ψ(t) = (S(−t)u0, h) =
∞∑

n=1

eiλnt(u0, ϕn)(ϕn, h) =:
∞∑

n=1

eiλntcn

(cn := (u0, ϕn)(ϕn, h)), is identically zero in [0, T ]. Note that (cn) ∈ `1 ∩ `2, since
(u0, ϕn), (ϕn, h) ∈ `2 and |(u0, ϕn)| ≤ ‖u0‖L2(Ω); in particular, we have ψ ∈ C[0, T ].
Now, if T > 2π/γ, applying Lemma 3.1 results in cn = 0 for all n ∈ N which in
turn implies u0 ≡ 0, as (ϕn, h) 6= 0 by (44).

(iii) The proof is similar to the proof of (ii): express f(t) := =ψ(t) as

f(t) =
∞∑

n=1

{αn sin(λnt) + βn cos(λnt)} (t ∈ [0, T ]).

Assuming f ≡ 0 and utilizing Lemma 3.2 will again imply u0 ≡ 0. This concludes
the proof of the theorem.
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3.2 Additive control for NLS

We consider the exact distributed control problem for the (free) nonlinear Schrödinger
equation{

iut = −uxx − α|u|2u+ χω(x) · h(t, x), x ∈ Ω ⊂ R, t ∈ [0, T ]
u(0, x) = u0(x), u(T, x) = u1(x)

(49)

which was presented in [21]. Here α ∈ R is a fixed parameter, Ω ⊂ R is an open
interval and χω denotes the characteristic function of an open and and bounded
subinterval ω ⊂ Ω of Ω. We consider equation (49) with periodic boundary condi-
tions on the interval Ω = [0, 1], i.e. we work in the function space H1

per(0, 1).

Theorem 8 Let T > 0, ω = (a, b) ⊂ [0, 1] an open interval. Then there exists a
constant C = C(T, ω) > 0 such that for all u0, u1 ∈ H1

per(0, 1) with

‖u0‖H1 + ‖u1‖H1 ≤ C

there exists a control function h ∈ C([0, 1],H1
per(0, 1)) and a control state u ∈

C([0, 1],H1
per(0, 1)) which is a H1–solution of (49). Furthermore there exists a

constant C̃ = C̃(T, ω) such that

sup
t∈[0,T ]

‖h(t, .)‖H1 ≤ C̃
[
‖u0‖H1 + ‖u1‖H1

]
.

Remark 8

(i) A proof for the theorem was given in [21]. The proof involves the following
steps: linearizing eq. (49) by freezing the nonlinearity; showing that the
linearized problem is exactly controllable by applying the Hilbert Uniqueness
Method due to J.L. Lions; and employing Schauder’s Fixed Point Theorem to
solve the nonlinear problem.

(ii) A generalized version of the theorem states that equation (49) is locally ap-
proximately controllable in the vicinity of stationary solutions. The details of
this result and its proof will appear elsewhere.
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