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Abstract

We obtain new a priori estimates for spatially inhomogeneous solutions of a
kinetic equation for granular media, as first proposed in [3] and, more recently,
studied in [1]. In particular, we show that a family of convex functionals on the
phase space is non-increasing along the flow of such equations, and we deduce
consequences on the asymptotic behaviour of solutions. Furthermore, using an
additional assumption on the interaction kernel and a “potential for interaction”,
we prove a global entropy estimate in the one-dimensional case.
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1 Introduction

We are concerned with kinetic models of granular media as derived in [3, 4, 1]. More
precisely, let d ≥ 1 be an integer, and consider a system of N identical particles (e.g.,
grains) moving in R

d. Assume that the particles move freely up to an instant when
two of them occupy the same position; then they collide (inelastically) at this position
according to an interaction rule to be defined later. After collision, they acquire new
velocities, and then continue to move freely until another collision occurs. Let xi(t) ∈ R

d

and vi(t) ∈ R
d denote the respective position and velocity of particle i ∈ {1, 2, · · · , N} at

time t ∈ [0,∞), and let (x0i , v
0
i ) be its initial position and velocity. Then (very formally)

the motion of the N particles is described by the system of ODE’s considered in [3]





ẋi(t) = vi(t)

v̇i(t) = α
∑N

j=1 δ(xi − xj)∇W (vj − vi)

xi(0) = x0i ; vi(0) = v0i

(1.1)
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where W is an interaction potential describing the interaction rule between particles,
and α > 0 is a constant measuring the degree of the inelasticity of the collisions between
particles. Here δ denotes the Dirac measure centered at the origin. The second equation
in (1.1), having a measure in the right-hand side, does not really make sense. A reason-
able way to correct this conceptual error from [3] is to replace the Dirac measure δ by a
C∞

c (Rd) approximation ξε, where eventually ε → 0 (see [4]). The mollified equation of
(1.1) then becomes






ẋi(t) = vi(t)

v̇i(t) = α
∑N

j=1 ξε(xi − xj)∇W (vj − vi)

xi(0) = x0i ; vi(0) = v0i .

(1.2)

The mollified system (1.2) expresses the fact that collisions between particles occur
when they are within a distance ε > 0 to each other, as opposed to (1.1) where collisions
are only allowed when the particles are exactly at the same position.

Since the number of particles is assumed to be very large, N → ∞, it is reasonable
to describe the system with a kinetic equation. In this case, following the arguments in
[3, 4, 1], one can show that when N → ∞ and α → 0 with the scaling limit assumption
Nα → λ, where λ > 0 is a parameter, the kinetic equation corresponding to the system
(1.2) is

∂tf + v · ∇xf = λ divv [(Gε ⋆ f)f ] , f |t=0 = f0 (1.3)

where
Gε(x, v) = ξε(x)∇W (v)

and the convolution Gε ⋆ f is with respect to both variables x and v, i.e.,

[Gε ⋆ f ](t, x, v) =

∫

Rd×Rd

Gε(x− y, v − u)f(t, y, u) dy du

=

∫

Rd×Rd

ξε(x− y)∇W (v − u)f(t, y, u) dy du. (1.4)

Here, f(t, x, v) denotes the one-particle distribution function, that is, the probability
density of particles which at time t > 0 occupy a position x ∈ R

d and move with a
velocity v ∈ R

d, and f0(x, v) is the corresponding initial probability density. In fact,
f(t, x, v) (resp. f0(x, v)) can be viewed as the limit of the discrete probability measure
µt =

1
N

∑N
j=1 δ(xj(t),vj (t)) (resp. µ0 =

1
N

∑N
j=1 δ(x0

j
,v0

j )
) as the number of particles N → ∞,

where (xj(t), vj(t)) solves (1.2) for j = 1, 2, · · · , N , (see [15]).
Finally, sending ε→ 0 in (1.4), we formally have,

lim
ε→0

[Gε ⋆ f ](t, x, v) =

∫

Rd

∇W (v − u)f(t, x, u) du = (∇W ∗v f)(t, x, v)

so that the kinetic equation associated with the discrete system (1.1) is the limiting
equation of (1.3) as ε → 0, which reads

∂tf + v · ∇xf = λ divv

(
(∇W ∗v f)f

)
, f |t=0 = f0, (1.5)

where the convolution ∇W ∗v f is with respect to the velocity variable only i.e. (∇W ∗v
f)(x, v) =

∫
Rd ∇W (v − u)f(x, u)du. Throughout the paper, we will assume that
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• the Cauchy datum f0 is a bounded probability density on the phase space (x, v) ∈
R

d ×R
d, f0 ∈ L1 ∩ L∞(Rd ×R

d), f0 ≥ 0,
∫
Rd×Rd f0(x, v)dxdv = 1, it is compactly

supported i.e. there exist R1 > 0 and R2 > 0 such that

supp(f0) ⊂ BR1 × BR2 ⊂ BR ×BR with R := max(R1, R2), (1.6)

which in particular implies:
∫

Rd×Rd

(|x|2 + |v|2)f0(x, v)dxdv < +∞. (1.7)

• the interaction potential W : Rd → [0,∞) is strictly convex, C2, and radially
symmetric, i.e.,

W (z) = w(|z|), (1.8)

where w : [0,∞) → [0,∞) is a strictly convex, non-decreasing C2 function with
w′(0) = 0.

Typical examples of such interaction potentials are W (v) = |v|p/p where p ≥ 2, see
[3, 4, 16]. We are interested in global estimates for solutions to the kinetic equation (1.5).
Let us remark that the spatially homogeneous case (i.e. f depending on t and v only)
associated with (1.5) has been very much studied (see [3, 8, 9, 14, 6, 10] and the references
therein), and existence, uniqueness and long-time behavior are well understood in this
case. In fact, the spatially homogeneous version of (1.5) can be seen as the Wasserstein
gradient flow of the interaction energy associated to λW , and then well-posedness results
can be viewed as a consequence of the powerful theory of Wasserstein gradient flows (see
[2]).

In contrast, for the spatially inhomogeneous kinetic equation (1.5), very few existence
results are available in the literature. Understanding under which conditions one can
hope for global existence or on the contrary expect explosion in finite time is an open
question. Regarding the question of existence of solutions to the kinetic equation (1.5),
local existence and uniqueness of a classical solution was proved in one dimension in [3]
for the potential W (v) = |v|3/3 when the initial datum f0 is a non-negative integrable
function satisfying f0 ∈ C1∩W 1,∞(R×R) with compact support in the velocity space. As
for global existence of solutions to (1.5), it was also proved in [3] again in one dimension
and for the cubic potential, for a compactly (in position and velocity) suppported f0
and under an additional smallness assumption on the parameter λ, i.e. λ < λ0 for
some λ0 = λ0 (f0) depending on the support and L∞ norm of the initial datum f0. The
global existence proof of [3] uses the method of characteristics, a fixed point argument
and an a priori L∞ bound. We will show in section 2.1 that this L∞ a priori bound
naturally extends to any dimension d ≥ 1, and to any interaction potential of the form
W (v) = |v|p/p, provided p > 3− d.

In [1], the first author has extended the local existence result of [3] to more general
interaction potentials W and to any dimension, d ≥ 1. More precisely, he proved that
when W satisfies the assumptions imposed above, and 0 ≤ f0 ∈ L1 ∩ L∞(Rd × R

d)
with compact support in the velocity space, then (1.5) has a weak solution in some time
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interval [0, T0), where T0 =
1

C‖f0‖L∞

and C is a constant that depends on the dimension

d and the velocity support of f0. The proof given in [1] is based on a splitting of the
kinetic equation (1.5) into a free transport equation in x, and a collision equation in
v that is interpreted as the gradient flow of a convex interaction energy with respect
to the quadratic Wasserstein distance. The splitting scheme of [1] just requires an L∞

bound on f0, so as soon as one has an L∞ bound up to some time T ≥ T0, one can
extend the solution after time T . One can therefore define maximal solutions on some
interval [0, T ∗) with T ∗ ∈ [T0,+∞] and in case where such solutions are not global i.e.
T ∗ < +∞, ‖ft‖L∞ necessarily tends to +∞ as t→ T ∗. As for the long-time behavior of
solutions when T ∗ = +∞, to our knowledge, there were no results in the literature.

Still, the general global existence/non existence question is mainly open: what hap-
pens for other values of the parameter λ > 0? Do solutions still exist globally in time, or
do they concentrate in finite time (i.e., is there a formation of a Dirac in finite time)?
Answering this question in full generality is clearly very difficult, and we cannot provide
an answer in this note. However, we are able to provide some a priori estimates which
shed some light on these issues. As we shall see later, our a priori estimates seem to
suggest that the global in time existence or eventually finite-time blow-up of solutions
to (1.5) depends on the nature of the interaction potential W .

Section 2 is devoted to preliminary results. In section 3, we observe that integrals
of convex functions of (x − tv, v) are nonincreasing along the flow of (1.5) and deduce
various consequences from this observation, in particular the asymptotic behavior of
solutions to (1.5). In section 4, we obtain, in dimension one, a global entropy bound
under the assumption that W ′′ is subquadratic near zero and show, considering the
quadratic kernel, that this bound cannot be true in general.

2 Preliminaries

The following notations will be used in the paper. For a Borel set B ⊂ R
d, |B| will

denote the Lebesgue measure of B, and 1B will be the characteristic function of B. The
support of a function f will be denoted by supp(f), and BR (resp. BR(x)) will stand
for the closed ball in R

d centered at the origin (resp. at x) with radius R. Throughout
the paper C will denote a positive constant that may change values from one line to
another. In what follows f will denote a solution of (1.5) defined on a maximal time
interval [0, T ∗) with T ∗ ∈ (0,+∞]. We shall sometimes denote f(t, x, v) as ft(x, v)
and f(t, ., .) as ft, and for convenience, we sometimes omit the volume elements in the
integrals.

We start by recalling some properties of the kinetic equation (1.5); we refer to [1]
for the proofs.

• Mass conservation: the total mass,
∫
Rd×Rd f(t, x, v) dxdv, is conserved along

(1.5): ∫

Rd×Rd

f(t, x, v) dx dv =

∫

Rd×Rd

f0(x, v) dxdv ∀ t ∈ [0, T ∗), (2.1)

so ft are probability densities since we have assumed that f0 has total mass 1.
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• Momentum conservation: the momentum,
∫
Rd×Rd vf(t, x, v) dxdv, is conserved

along (1.5):

∫

Rd×Rd

vf(t, x, v) dx dv =

∫

Rd×Rd

vf0(x, v) dxdv ∀ t ∈ [0, T ∗). (2.2)

• Decrease of moments of order p ≥ 2: all the p-moments in v for p ≥ 2,∫
Rd×Rd |v|

pf(t, x, v) dx dv, decrease along (1.5). This implies (letting p→ ∞) that
the velocity support of a solution f(t, x, v) to (1.5) stays compactly supported for
all times [1],

supp (f(t, x, .)) ⊂ BR2 ∀ x ∈ R
d, t ∈ [0, T ∗). (2.3)

And since the equation satisfied by x in the characteristic system associated with
(1.5) is

ẋ(t) = v(t) ∈ BR2 , x(0) = x0 ∈ BR1 ,

it easily follows that
supp (ft) ⊂ BR1+tR2 × BR2 . (2.4)

In fact, we shall actually see in remark 3.2 in section 3 a slightly more precise
result:

supp (ft) ⊂ Q(t) := {(x, v) : (x− tv, v) ∈ BR1 × BR2}, (2.5)

which in particular implies that

supp (ft(x, .)) ⊂ S(x, t) := BR1
t

(x
t

)
∩BR2 , (2.6)

and then also

| supp (ft(x, .)) | ≤ ωd

(
min(

R1

t
, R2)

)d
, diam(supp (ft(x, .))) ≤ 2min(

R1

t
, R2),

(2.7)
where ωd := |B1|.

2.1 L∞ a priori bound in R
d for potentials W (v) = |v|p/p

Assume here thatW (v) = |v|p/p with p > 3−d. Following [3, section 3], we also assume
that (1.5) has a classical solution f ∈ C1

(
[0,+∞)× R

d × R
d
)
. We have the following

L∞ a priori bound on ft, t ∈ [0,∞).

Lemma 2.1. If λ < λ0 :=
1

4Cγ‖f0‖L∞

, where C > 0 is a constant depending on d, p and

R = max(R1, R2), and γ =
∫∞

0
h(t)p+d−2 dt <∞ with h(t) := min(R,R/t), then

sup
t∈[0,∞)

‖ft‖L∞ ≤ 2‖f0‖L∞ . (2.8)
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Proof. Denoting F = −∇W ∗v f , the characteristic system associated with (1.5) is

Ẋ(t, x, v) = V (t, x, v) V̇ (t, x, v) = λF (t, X(t, x, v), V (t, x, v))

X(0, x, v) = x, V (0, x, v) = v.

Then rewriting (1.5) as

∂tf + v · ∇xf + λF · ∇vf = λf(∆W ∗v f), f |t=0 = f0,

we have along the characteristics, that f solves

d

dt
[f (t, X(t), V (t))] = λ [f(∆W ∗v f)] (t, X(t), V (t)) .

Integration over [0, t] yields

f (t, X(t), V (t)) = f0(x, v) + λ

∫ t

0

[f(∆W ∗v f)] (s,X(s), V (s)) ds. (2.9)

Now, we estimate f(t, x, v) (∆W ∗v f) (t, x, v). First recall that from (2.6), supp (f(t, ·, x)) ⊂
S(x, t) = BR1

t

(x
t
) ∩ BR2 . Since S(x, t) has diameter less than 2h(t) and measure less

than ωdh(t)
d, and using ∆W (u) = (p+ d− 2)|u|p−2 we get:

f(t, x, v) (∆W ∗v f) (t, x, v) ≤ ‖ft‖L∞1S(x,t)(v)

∫

S(x,t)

∆W (v − u)ft(x, u)du

≤ C‖ft‖
2
L∞|S(x, t)| diam(S(x, t))p−2 ≤ C‖ft‖

2
L∞h(t)p+d−2.

Combining the previous inequality with (2.9), integrating over time and setting δ :=
supt∈[0,∞) ‖ft‖L∞ , we thus have

δ ≤ ‖f0‖L∞ + λCγδ2. (2.10)

Then using the continuity of t 7→ ft, we conclude (2.8) provided λ < λ0 :=
1

4Cγ‖f0‖L∞

.

Remark 2.2. As explained in the proof of [3, Theorem 3.2], the above L∞ a priori-bound
is the main step to obtain the global existence of a classical solution to (1.5), provided
the parameter λ is small enough, λ < λ0, as defined in Lemma 2.1. One could of course
rephrase the previous result in terms of smallness of the initial datum instead of the
parameter λ: the previous L∞ bound similarly holds if λ = 1 and ‖f0‖L∞ < 1

4Cγ
.

For simplicity, we assume from now on that λ = 1, otherwise we just replace the
interaction potential W by λW . Then the kinetic equation (1.5) becomes

∂tf + v · ∇xf = divv

(
(∇W ∗v f)f

)
, f |t=0 = f0. (2.11)
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2.2 A reverse H-theorem

The fact that solutions of (2.11) obey a reverse H-theorem was first observed in [3]; more
precisely, the following was established in [1].

Lemma 2.3. If U : [0,∞) → R is C1(0,∞), convex and satisfies U(0) = 0, then the
functional U(f)(t) :=

∫
Rd×Rd U (f(t, x, v)) dxdv is nondecreasing along (2.11):

dU(f)

dt
=

∫

Rd×Rd×Rd

∆W (v − u) [PU(f)] (t, x, v)f(t, x, u) dxdudv ≥ 0, (2.12)

where PU(r) = rU ′(r)− U(r) denotes the pressure associated with U .
In particular if U(r) = r ln r, then the entropy satisfies

d

dt

∫

Rd×Rd

ft ln ft dxdv =

∫

Rd×Rd×Rd

∆W (v − u)f(t, x, v)f(t, x, u) dxdu dv ≥ 0. (2.13)

Proof. Since U is convex and U(0) = 0, then PU(r) ≥ 0 for all r > 0. Also since
U(0) = 0, we have that U (f(t, x, v)) = 0 on the subset of (x, v) ∈ R

d×R
d where f(t, x, v)

vanishes; so the internal energy can be written as U(f)(t) :=
∫
[f>0]

U (f(t, x, v)) dx dv.

Therefore, we can assume w.l.o.g. that f > 0 in U(f)(t). Integrating by parts, we have

dU(f)

dt
=

∫

Rd×Rd

U ′(f) divv (f(∇W ∗v f)) dx dv −

∫

Rd×Rd

U ′(f) divx(vf) dx dv

=

∫

Rd×Rd

fU ′(f) divv (∇W ∗v f) dx dv +

∫

Rd×Rd

U ′(f)∇vf · (∇W ∗v f) dx dv

+

∫

Rd×Rd

f∇x (U
′(f)) · v dx dv

=

∫

Rd×Rd

fU ′(f) divv (∇W ∗v f) dx dv +

∫

Rd×Rd

∇v (U(f)) · (∇W ∗v f) dx dv

+

∫

Rd×Rd

∇x (PU(f)) · v dx dv

=

∫

Rd×Rd

PU(f) divv (∇W ∗v f) dx dv,

that is (2.12). If U(r) = r ln r, then PU(r) = r and (2.13) follows.

Note in particular that all Lp norms of ft are nondecreasing in t, by choosing U(r) =
rp in Lemma 2.3.

3 Asymptotics

Let us define the density gt (solution evaluated on the free flow) by
∫

Rd×Rd

ϕ(y, v)gt(y, v)dydv =

∫

Rd×Rd

ϕ(x− tv, v)ft(x, v)dxdv, ∀ϕ ∈ Cc(R
d × R

d)
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so that g0 = f0 and gt(y, v) = ft(y + tv, v). Denoting by Cb(R
d × R

d) the space of
continuous and bounded functions on R

d × R
d, we then have the following result; the

key step in the proof is an adaptation of an argument of Illner and Rein [13]:

Theorem 3.1. Let ft be a solution of (2.11) globally defined on the time interval [0, T ∗),
and gt be the density defined as above. Then we have

1. for every ϕ convex on R
d × R

d, the map

t ∈ [0, T ∗) 7→

∫

Rd×Rd

ϕ(y, v)gt(y, v)dydv =

∫

Rd×Rd

ϕ(x− tv, v)ft(x, v)dxdv

is nonincreasing,

2. there exists a probability measure g∗ on R
d × R

d such that gt converges weakly to
g∗ as t→ T ∗ i.e.

lim
t→T ∗

∫

Rd×Rd

ϕ(y, v)gt(y, v)dydv =

∫

Rd×Rd

ϕ(y, v)dg∗(y, v) (3.1)

for every ϕ ∈ Cb(R
d × R

d).

Proof. 1. Let ϕ = ϕ(y, v) be some (smooth, say) convex function. Following [13], we
have,

d

dt

(∫

Rd×Rd

ϕ(x− tv, v)ft(x, v)dxdv
)
= −

∫

Rd×Rd

∇yϕ(x− tv, v) · vft(x, v)dxdv

+

∫

Rd×Rd

ϕ(x− tv, v)∂tft(x, v)dxdv.

To compute the second term, we set ψt(x, v) := ϕ(x − tv, v), use (2.11) and perform
integrations by parts (recall that ft is compactly supported thanks to (2.4)), to get:

d

dt

(∫

Rd×Rd

ϕ(x− tv, v)ft(x, v)dxdv
)

= −

∫

Rd×Rd

∇yϕ(x− tv, v) · vft(x, v)dxdv

+

∫

Rd×Rd

∇yϕ(x− tv, v) · vft(x, v)dxdv

−

∫

Rd×Rd

∇vψt(x, v)(∇W ∗v ft)(x, v)ft(x, v)dxdv

= −

∫

Rd×Rd×Rd

∇W (v − u) · ∇vψt(x, v)ft(x, u)ft(x, v)dxdudv

= −

∫

Rd×Rd×Rd

∇W (u− v) · ∇vψt(x, u)ft(x, v)ft(x, u)dxdvdu,

and then using the fact that ∇W is odd, we get

d

dt

∫

Rd×Rd

ϕgt dxdv = −
1

2

∫

R3d

∇W (u−v)·(∇uψt(x, u)−∇vψt(x, v))ft(x, v)ft(x, u)dxdvdu.

(3.2)
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We finally use the radial symmetry of W :

∇W (u− v) = w′(|u− v|)
u− v

|u− v|

and the convexity of ψt(x, .) to deduce that the right hand side of (3.2) is nonpositive.
The case of a general not necessarily smooth convex ϕ follows by standard approximation
arguments.

2. Applying 1. to ϕ(y, v) := |y|2 + |v|2 we see that

sup
t∈[0,T ∗)

∫

R2d

(|y|2 + |v|2)gt(y, v)dydv ≤

∫

R2d

(|x|2 + |v|2)f0(x, v)dxdv. (3.3)

In particular the family of probability measures (gt)t∈[0,T ∗) is tight. Thanks to Prokhorov’s
theorem, this implies that there exists a probability measure g∗ on R

d ×R
d (with finite

second moment) and a sequence tn converging to T ∗ such

∫

Rd×Rd

ϕ(y, v)gtn(y, v)dydv →

∫

Rd×Rd

ϕ(y, v)dg∗(y, v), ∀ϕ ∈ Cb(R
d × R

d). (3.4)

Now we shall use assertion 1. to prove that the whole family gt converges weakly to g∗

as t→ T ∗. Let us first take a convex function ϕ such that for some C ≥ 0, one has

−C ≤ ϕ(y, v) ≤ C(1 + |y|+ |v|), ∀(y, v) ∈ R
d × R

d. (3.5)

We know from assertion 1. that
∫
Rd×Rd ϕgt dxdv is nonincreasing. Since it is also

bounded from below, it converges as t → T ∗. We shall now prove that it necessar-
ily converges to

∫
Rd×Rd ϕdg

∗(x, v). For R > 0, let χR be some smooth cutoff function:
0 ≤ χR ≤ 1 with χR = 1 on BR ×BR and χR = 0 outside of BR+1 ×BR+1. Then on the
one hand, thanks to (3.3), we have for some constant M and every t ∈ [0, T ∗)

∫

Rd×Rd

|ϕ|(1− χR)d(gt + g∗)(x, v) ≤
M

1 +R
.

On the other hand, thanks to (3.4), for any R > 0,

lim
n→∞

∫

Rd×Rd

χRϕgtndxdv =

∫

Rd×Rd

χRϕdg
∗(x, v).

Since we have
∣∣∣∣
∫

Rd×Rd

ϕgtndxdv −

∫

Rd×Rd

ϕdg∗(x, v)

∣∣∣∣ ≤
∣∣∣∣
∫

Rd×Rd

χRϕgtn −

∫

Rd×Rd

χRϕdg
∗

∣∣∣∣

+

∫

Rd×Rd

|ϕ|(1− χR)d(gtn + g∗)

≤

∣∣∣∣
∫

Rd×Rd

χRϕgtn −

∫

Rd×Rd

χRϕdg
∗

∣∣∣∣+
M

1 +R
,
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we deduce that
∫
Rd×Rd ϕgtndxdv converges to

∫
Rd×Rd ϕdg

∗(x, v). Using the monotonicity

of t 7→
∫
Rd×Rd ϕgtdxdv, we deduce that

∫
Rd×Rd ϕgtdxdv converges to

∫
Rd ϕdg

∗(x, v) as
t→ T ∗.

Let us now take ϕ ∈ C2
c (R

d × R
d) supported on BR × BR, and let Φ be a convex

nonnegative function on R
d × R

d which satisfies (3.5) for some C and coincides with
|y|2 + |v|2 on BR+1 × BR+1. Then for M such that M ≥ ‖D2ϕ‖L∞ , MΦ − ϕ is convex
(and obeys a sublinear estimate of type (3.5)). Since ϕ is the difference of the two convex
functions (with at most linear growth) MΦ and MΦ−ϕ, the previous step implies that
(3.1) holds for any ϕ ∈ C2

c (R
d ×R

d). Passing from C2
c (R

d ×R
d) to Cb(R

d ×R
d) in (3.1)

then follows from (3.3) and classical truncation/mollification arguments.

The previous result has a certain number of straightforward but useful consequences.

Remark 3.2. If f0 = g0 has a support included in a compact and convex set K then
taking dist(., K) as convex test function in assertion 1, we deduce that

∫

Rd×Rd

dist((y, v), K)gt(y, v)dydv ≤

∫

Rd×Rd

dist((x, v), K)f0(x, v)dxdv = 0

so that supp(gt) ⊂ K for every t hence supp(ft) ⊂ {(x, v) : (x − tv, v) ∈ K}. In
particular taking K = BR1 × BR2 we exactly obtain (2.5).

Remark 3.3. Taking ϕ(y, v) = |y|2, we immediately deduce from assertion 1. that
∫

Rd×Rd

|x− tv|2ft(x, v)dxdv ≤

∫

Rd×Rd

|x|2f0(x, v)dxdv

and then ∫

Rd×Rd

|
x

t
− v|2ft(x, v)dxdv ≤

1

t2

∫

Rd×Rd

|x|2f0(x, v)dxdv. (3.6)

Remark 3.4. The marginals of gt converge weakly as t → T ∗ to the corresponding
marginals of g∗; in particular the v-marginal of ft weakly converges to that of g∗ as
t→ T ∗ (and not only up to a subsequence) which we shall denote η∗ i.e.

lim
t→T ∗

∫

Rd×Rd

ϕ(v)ft(x, v)dxdv =

∫

Rd

ϕ(v)dη∗(v), ∀ϕ ∈ Cb(R
d). (3.7)

Remark 3.5. Identity (3.2) actually tells us more than just the fact that
∫
R2d ϕgtdydv

is nonincreasing in t since it also implies that the right-hand side of (3.2) is integrable
with respect to t. Taking for instance ϕ(y, v) = |y|2, we actually get

∫ T ∗

0

t2
∫

R3d

∇W (v − u) · (v − u)ft(x, v)ft(x, u)dxdvdudt < +∞ (3.8)
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which as soon as W is strictly convex will also imply that for every δ > 0 one has

∫ T ∗

0

t2
∫

{(x,u,v)∈R3d : |u−v|≥δ}

ft(x, v)ft(x, u)dxdvdudt < +∞. (3.9)

In the special case (as considered in [3]) where W (z) = 1
3
|z|3, the previous estimate

(3.8) becomes

∫ T ∗

0

t2
(∫

R3d

|u− v|3ft(x, u)ft(x, v)dxdudv
)
dt < +∞. (3.10)

When W (z) = 1
3
|z|3, taking as convex test function ϕ(y, v) = |y|q with q > 2, we

similarly obtain

t

∫

R3d

|u− v|(u− v) · (|x− tu|q−2(tu− x)− |x− tv|q−2(tv − x))ft(x, u)ft(x, v)dxdudv

is integrable with respect to t. First, using homogeneity, and setting a := u − x/t,
b = v − x/t, we can rewrite

t(u− v) · (|x− tu|q−2(tu− x)− |x− tv|q−2(tv − x)) = tq(a− b) · (|a|q−2a− |b|q−2b).

Then we use the well-known inequality (see for instance Lemma 4.4 in [12]):

(a− b) · (|a|q−2a− |b|q−2b) ≥ µ|a− b|q

which holds for any (a, b) ∈ R
d × R

d and for a positive constant µ depending on q > 2
and d, to deduce that

∫ T ∗

0

tq
(∫

R3d

|u− v|q+1ft(x, u)ft(x, v)dxdudv
)
dt < +∞.

This implies that for every δ > 0

∫ T ∗

0

tq
(∫

{(x,u,v)∈R3d : |u−v|≥δ}

ft(x, u)ft(x, v)dxdudv
)
dt < +∞. (3.11)

Inequalities like (3.6)-(3.10)-(3.11) indicate that in some sense, conditionally on the
position, the velocity distribution concentrates on a single velocity. To give a meaning
to this, we shall rescale the position by dividing it by t. More precisely, under the as-
sumption that global in time solutions exist (T ∗ = ∞), we have the following asymptotic
result:

Proposition 3.6. Assume that there is global existence i.e. T ∗ = +∞, and let g∗ be as
in Theorem 3.1 and η∗ be the v-marginal of g∗. Then

lim
t→∞

∫

Rd×Rd

ϕ
(x
t
, v
)
ft(x, v)dxdv =

∫

Rd

ϕ(v, v)dη∗(v)

for every ϕ ∈ Cb(R
d × R

d).
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Proof. Clearly (setting ϕ̃(y, v) = ϕ(y+v, v)), the desired result amounts to proving that

lim
t→∞

∫

Rd×Rd

ϕ̃
(y
t
, v
)
gt(y, v)dydv =

∫

Rd×Rd

ϕ̃(0, v)dg∗(y, v) =

∫

Rd

ϕ̃(0, v)dη∗(v).

Introducing the cutoff function χR as in the proof of Theorem 3.1, we have

∣∣∣∣
∫

Rd×Rd

ϕ̃
(y
t
, v
)
gt(y, v)dydv −

∫

Rd×Rd

ϕ̃(0, v)dg∗(y, v)

∣∣∣∣

≤

∫

Rd×Rd

χR

∣∣∣ϕ̃
(y
t
, v
)
− ϕ̃(0, v)

∣∣∣ gt(y, v)dydv

+ 2 sup |ϕ̃|

∫

Rd×Rd

(1− χR)gt

+

∣∣∣∣
∫

Rd×Rd

ϕ̃(0, v)gt(y, v)dydv −

∫

Rd×Rd

ϕ̃(0, v)dg∗(y, v)

∣∣∣∣ .

Thanks to the moment bound (3.3), we have

∫

Rd×Rd

(1− χR)gt ≤

∫

{(x,v)∈R2d : |x|2+|v|2≥R2}

gt ≤
1

R2

∫

Rd×Rd

(|x|2 + |v|2)f0(x, v)dxdv.

Let ε > 0 and choose R > 0 such that the right-hand side of the inequality above is less
than ε/3. Using Theorem 3.1, we know that for t large enough,

∣∣∣∣
∫

Rd×Rd

ϕ̃(0, v)gt(y, v)dydv −

∫

Rd×Rd

ϕ̃(0, v)dg∗(y, v)

∣∣∣∣ ≤
ε

3
.

Since ϕ̃ is uniformly continuous on compact sets, for t large enough, we also have

∫

Rd×Rd

χR

∣∣∣ϕ̃
(y
t
, v
)
− ϕ̃(0, v)

∣∣∣ gt(y, v)dydv ≤ sup
|v|≤R, |z|≤R/t

|ϕ̃(z, v)− ϕ̃(0, v)| ≤
ε

3
.

All this proves the desired result.

4 Entropy bounds in dimension one

For this section, we further assume that d = 1. In this one-dimensional geometry, the
“potential for interaction” first used by Bony (see ([7, 11, 5]) provides additional control.

Lemma 4.1. The following estimate holds

∫ T ∗

0

∫

R3

(u− v)2ft(x, u)ft(x, v)dxdudvdt < +∞ (4.1)
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Proof. For t ∈ [0, T ∗), define

I(t) :=

∫

R4

(u− v)1{x<y}ft(x, u)ft(y, v)dxdudydv

(where 1{x<y} = 1 if x < y and 0 otherwise). By our bound on the velocity support, I
is bounded. To compute the time derivative of I, it is convenient to observe that (2.11)
can be rewritten as

∂tf + v∂xf = F (4.2)

where F = ∂v(f(W
′ ∗v f)) satisfies

∫

R

F (x, v)dv = 0,

∫

R

vF (x, v)dv = 0 (4.3)

(the first equality comes from the fact that f(x, .)(W ′ ∗v f(x, .)) has compact support,
the second one is obtained by an integration by parts and using the fact thatW ′ is odd).
We then have

dI

dt
(t) =

∫

R4

(u− v)1{x<y}(∂tft(x, u)ft(y, v) + ft(x, u)∂tft(y, v))dxdudydv

=

∫

R4

(u− v)1{x<y}(−u∂xft(x, u) + Ft(x, u))ft(y, v))dxdudydv

+

∫

R4

(u− v)1{x<y}(−v∂xft(y, v) + Ft(y, v))ft(x, u))dxdudydv.

Thanks to (4.3), the integrals containing F are zero, and using
∫

R

∂xf(x, u)1{x<y}dx = f(y, u) and

∫

R

∂xf(y, u)1{x<y}dy = −f(x, u),

we are left with
dI

dt
(t) = −

∫

R3

(u− v)2ft(x, u)ft(x, v)dxdudv.

The bound (4.1) is then obtained by integration and using the fact that I is bounded
from below.

We showed in Lemma 2.3 that the entropy is nondecreasing along the flow of (2.11).
However, the estimate of the previous lemma turns out to be useful to deduce an entropy
bound if the laplacian of the interaction kernel has subquadratic behavior near zero:

Proposition 4.2. Assume that there exist δ > 0 and M ≥ 0 such that the interaction
kernel W satisfies:

W ′′(ξ) ≤ Mξ2, ∀ξ ∈ [−δ, δ] (4.4)

and that
∫
R2 f0 ln(f0) < +∞. Then there exists C such that for a.e. t ∈ [0, T ∗), one has

∫

R2

ft(x, v) ln(ft(x, v))dxdv ≤ C. (4.5)
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Proof. The computation of the time-derivative of the entropy follows from Lemma 2.3:

d

dt

∫

R2

ft(x, v) ln(ft(x, v))dxdv =

∫

R3

W ′′(u− v)ft(x, u)ft(x, v)dxdudv.

Then we split the last integral in the right hand side into two parts, one on |u− v| ≤ δ
for which we use (4.4) and (4.1) to get

∫ T ∗

0

∫

R3

1{|u−v|≤δ}W
′′(v − u)ft(x, u)ft(x, v)dxdudvdt ≤ C,

and for the other part where |u − v| > δ, recalling that f(x, .) has a compact support
(say included in [−R,R]) uniformly in x and t, we bound W ′′(v − u) by its supremum
on [−2R, 2R] and use (3.9) to obtain

∫ T ∗

0

∫

R3

1{|u−v|>δ}W
′′(v − u)ft(x, u)ft(x, v)dxdudvdt ≤ C.

Those two estimates give the desired entropy bound (4.5).

Typical examples of interaction potentials satisfying (4.4) are W (v) = |v|p/p where
p ≥ 4.

We have seen in Theorem 3.1 that gt (defined as gt(y, v) = ft(y + tv, v)) converges
weakly to some limit g∗ as t→ T ∗ and also that as soon as f0 is compactly supported, so
is gt uniformly in t. Since obviously gt and ft have the same entropy, we deduce that if
W ′′ satisfies the subquadratic assumption (4.4) and f0 is compactly supported, then gt
is uniformly integrable and, thanks to the lower semicontinuity of the entropy, g∗ ∈ L1

and
∫
R2 g

∗(y, v) ln(g∗(y, v))dydv is finite. Denoting by η∗ the v-marginal of g∗ (which is
also the weak limit of the v-marginal of ft as t → T ∗), writing g∗(y, v) = η∗(v)g∗(y|v)
and denoting by [−R,R] a segment supporting g∗(., v) for every v, we then have

∫

R2

g∗(y, v) ln(g∗(y, v))dydv =

∫

R

η∗(v) ln(η∗(v))dv

+

∫

R

(∫

[−R,R]

g∗(y|v) ln(g∗(y|v))dy
)
η∗(v)dv

≥

∫

R

η∗(v) ln(η∗(v))dv −
2R

e

(where in the last line we have used infg>0 g ln(g) = −1
e
and the fact that η∗ is a

probability measure) so that η∗ also has a finite entropy.
The next result concerning the quadratic kernel (which does not satisfy (4.4)) shows

that additional assumptions on the kernel are necessary to derive global entropy bounds.
Applying Lemma 2.3 to the quadratic interaction potentialW (v) = v2/2 in one-dimension,
v ∈ R, we have:

Lemma 4.3. If W (v) = v2/2, v ∈ R, then ∀ t ∈ [0, T ∗),
∫

R×R

ft ln ft dxdv ≥

∫

R×R

f0 ln f0 dxdv +
1

2R
ln(1 + t). (4.6)
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Proof. Using W (v) = v2/2 and d = 1 in (2.13), we have ∆W (v) =W ′′(v) = 1, so that

d

dt

∫

R×R

ft ln ftdxdv =

∫

R

ρ(t, x)2 dx, ρ(t, x) :=

∫

R

f(t, x, v) dv.

Then thanks to (2.5), we can rewrite the above expression as

d

dt

∫

R×R

ft ln ft dxdv = 2(1+t)R

∫

R

ρ(t, x)2 dµ(x), where dµ(x) =
1

2(1 + t)R
1B(1+t)R

(x) dx,

which gives (by Jensen’s inequality)

d

dt

∫

R×R

ft ln ft dxdv ≥
1

2(1 + t)R

(∫

B(1+t)R

ρ(t, x) dx

)2

=
1

2(1 + t)R
.

Integration over [0, t] yields (4.6).

In case T ∗ = +∞, letting t → ∞ in (4.6), we have
∫
R×R

ft ln ft dxdv → ∞, which
shows that there can be no global entropy bound. Also note that the quadratic kernel
in dimension one does not satisfy the integrability requirement of Lemma 2.1.
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