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Abstract. We show that a smooth, small enough Cauchy datum launches
a unique classical solution of the relativistic Vlasov-Darwin (RVD) system

globally in time. A similar result is claimed in [15] following the work in [13].

Our proof does not require estimates derived from the conservation of the total
energy, nor those previously given on the transverse component of the electric

field. These estimates are crucial in the references cited above. Instead, we

exploit the formulation of the RVD system in terms of the generalized space
and momentum variables. By doing so, we produce a simple a-priori estimate

on the transverse component of the electric field. We widen the functional

space required for the Cauchy datum to extend the solution globally in time,
and we improve decay estimates given in [15] on the electromagnetic field and

its space derivatives. Our method extends the constructive proof presented in
[14] to solve the Cauchy problem for the Vlasov-Poisson system with a small

initial datum.

1. Introduction

The relativistic Vlasov-Darwin (RVD) system can be obtained from the Vlasov-
Maxwell system by neglecting the transverse component of the displacement current
in the Maxwell-Ampère equation. Precisely, consider an ensemble of single species
charged particles interacting through the self-induced electromagnetic field. Let
f(t, x, p) denote the number of particles per unit volume of the phase-space at a
time t ∈ ]0,∞[, where x ∈ R3 is position and p ∈ R3 denotes momentum. In the
regime in which collisions among the particles can be neglected, the time evolution
of the distribution function f is given by the Vlasov equation

(1.1) ∂tf + v · ∇xf +
(
E + c−1v ×B

)
· ∇pf = 0, v =

p√
1 + c−2 |p|2

,

where v is the relativistic velocity and c the speed of light. Here the mass and
charge of the particles have been set to one. E = E(t, x) and B = B(t, x) denote
the self-induced electric and magnetic fields, given by the Maxwell equations

∇×B − c−1∂tE = 4πc−1j, ∇ ·B = 0,(1.2)

∇× E + c−1∂tB = 0, ∇ · E = 4πρ.(1.3)
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The Vlasov and Maxwell equations are then coupled via the charge and current
densities

(1.4) ρ =

∫
R3

fdp and j =

∫
R3

vfdp.

Equations (1.1)-(1.4) are known as the relativistic Vlasov-Maxwell (RVM) sys-
tem, which is essential in the study of dilute hot plasmas. Details and an abundant
bibliography on this system can be found, for instance, in [6].

We further decompose the electric field into E = EL+ET , where the longitudinal
EL and transverse ET components of the electric field satisfy, respectively

(1.5) ∇× EL = 0 and ∇ · ET = 0.

If we now neglect the transverse component of the displacement current ∂tET in the
evolution equation (1.2) -the so-called Maxwell-Ampère equation-, then the RVM
system reduces to

(1.6) ∂tf + v · ∇xf +
(
EL + ET + c−1v ×B

)
· ∇pf = 0, v =

p√
1 + c−2 |p|2

,

coupled with

∇×B − c−1∂tEL = 4πc−1j, ∇ ·B = 0,(1.7)

∇× ET + c−1∂tB = 0, ∇ · EL = 4πρ,(1.8)

by means of (1.4). Equations (1.4)-(1.8) are the RVD system. From the phys-
ical point of view, the Darwin approximation is valid when the evolution of the
electromagnetic field is ‘slower’ than the speed of light.

In this paper we are concerned with the Cauchy problem for (1.4)-(1.8). Global
existence of weak solutions was shown in [2] for small initial data. The smallness
assumption was later removed in [13], where the existence and uniqueness of local
in time classical solutions was also proved. In [15], it is shown that solutions having
the same regularity as the initial data (which is not the case in [13]), can be extended
globally in time provided the initial data is small. At the present time, the existence
of global in time classical solutions for arbitrary data remains unsolved. Here, we
provide a constructive and somewhat simplified proof to the local in time existence
and uniqueness result for classical solutions of the RVD system, and we show that
the solutions can be extended for all times if the initial data are sufficiently small.

The main difficulty when dealing with the RVD system has been to find an a-
priori estimate on the transverse component of the electric field ET . In contrast
to the RVM system, the component ET does not contribute to the energy of the
electromagnetic field, and thus the law for the conservation of the total energy does
not provide any control on the L2-norm of ET . Indeed, the total energy of the RVD
system reads∫

R3

∫
R3

c2
√

1 + c−2 |p|2f(t, x, p)dpdx+
1

8π

∫
R3

[
|EL(t, x)|2 + |B(t, x)|2

]
dx.

Hence, by virtue of the underlying elliptic structure of the Darwin equations, duality
type arguments and variational methods have previously been used to estimate ET .
Here, we take advantage of the formulation of the RVD system in terms of the
generalized variables -defined later on-, and we produce an L2-bound on ρ1/2ET
instead. This estimate is at the core of our results, and is given in Lemma 8. It is
remarkable that by pursuing such an estimate we have obtained, ‘almost for free’,
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an L2-bound on ∂xET as well. In contrast to the results cited above, the law for
the conservation of the total energy is not used in our proofs at all.

The structure of the paper is as follows. In Section 2, we present the scalar and
vector potentials and introduce the generalized position and momentum variables.
We then recast the Vlasov and Darwin equations in terms of the new variables, and
treat them as uncoupled linear equations. A representation for the Darwin vector
potential is given, and some standard a-priori bounds are obtained as well. Then,
in Section 3 we couple both Vlasov and Darwin equations and introduce the RVD
system in terms of the potentials. The estimates on the transverse component of
the electric field and its space derivative are produced in Subsection 3.1. Finally,
we study the Cauchy problem for the RVD system in Section 4. First, we produce
the local in time existence result in Subsection 4.1 and then, in Subsection 4.2,
we extend local solutions globally in time under the smallness assumption on the
Cauchy data. We conclude with an Appendix.

We remark that the RVD is actually an hybrid system, since we are considering
relativistic charged particles whose interaction with the electromagnetic field they
induce is an order-(v/c)2 approximation [10, 9]. Yet, the RVD system is interesting
in its own right, in particular for numerical simulations, since it contains an underly-
ing elliptic feature while preserving a fully coupled magnetic field. This is in contrast
to the more involved RVM system, whose hyperbolic structure yields both analyt-
ical and numerical challenges. Also, the tools used here are likely to be adapted to
the ‘proper’ physical system, which is (1.4)-(1.8) with v = p

(
1− c−2p2/2

)
instead.

The following notations will be used in the paper. As usual, Ck,α(X;Y ) denotes
the space of functions f : X → Y of class Ck whose k-th derivatives are Hölder
continuous with exponent α ∈ (0, 1). Ck0 (X;Y ), resp. Ckb (X;Y ), are the spaces of
Ck(X;Y )-functions with compact support, resp. bounded. W 1,∞(X;Y ) stands for
the Sobolev space of L∞(X;Y )-functions whose weak first order partial derivatives
belong to L∞(X;Y ). If I is an interval in R, then by g ∈ C1

(
I, Ck(X);Y

)
, we

mean that g : I ×X → Y , g = g(t, x), and for all t ∈ I, g(t) ∈ Ck(X;Y ) and the
function t 7→ g(t) ∈ Ck(X;Y ) is of class C1 on I. For such a function, we sometimes
write (by abuse of notations) g ∈ Ck(X;Y ) to mean that g(t) ∈ Ck(X;Y ) for all
t ∈ I. Similarly, the norm of g(t), say the Lq-norm ‖g(t)‖Lqx , will sometimes be
denoted by ‖g‖Lqx . All other notations in the paper are standard, and the constants
may change values from line to line.

2. The Potential Representation

From classical electrodynamics it is known that an electromagnetic field (E,B) :
R × R3 → R3 × R3 that is a smooth solution of the Maxwell equations (1.2)-(1.3)
can be represented by a set of potentials (Φ, A) : (0,∞)× R3 → R× R3 according
to the expressions

E(t, x) = −∇Φ(t, x)− c−1∂tA(t, x),(2.1)

B(t, x) = ∇×A(t, x).(2.2)

These relations can easily be obtained from the two homogeneous Maxwell equa-
tions in (1.2)-(1.3). In particular (2.2) follows from the vanishing divergence of
the magnetic field, while (2.1) follows after inserting (2.2) into the remaining ho-
mogeneous equation. Since for any smooth scalar function Λ we have the identity
∇×∇Λ ≡ 0, it is clear that such potentials are not uniquely determined. We may
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find another pair given by

(2.3) (Φ′, A′) =
(
Φ− c−1∂tΛ, A+∇Λ

)
which also satisfies (2.1)-(2.2). The two sets of potentials are fully equivalent, in
the sense that they produce the same electric and magnetic fields.

This lack of uniqueness allows to impose a condition on the potentials that
ultimately determines their dynamical equations. Even after doing so, some arbi-
trariness remains that can be avoided by imposing an additional restriction on Λ.
The resulting restricted class is called a gauge, and all potentials within this class
satisfy the same gauge condition. Commonly, the Lorentz gauge condition

(2.4) ∇ ·A+ c−1∂tΦ = 0,

or the Coulomb gauge condition

(2.5) ∇ ·A = 0

is used. The former is relativistically covariant and leads to a class of scalar and
vector potentials that satisfy wave equations. This is a natural choice when dealing
with the RVM system. It was used in [3] to study the smoothing effect resulting
from a coupling of a wave and transport equations. It was also used in [4] to produce
an alternative proof of the celebrated result by Glassey and Strauss on the RVM
system [7]. On the other hand, the Coulomb gauge condition leads to scalar and
vector potentials that satisfy a Poisson and a wave equation, respectively. As we
shall see in Subsection 2.2 below, this is the correct choice to introduce the potential
representation of the RVD system. In a way, both the Lorentz and Coulomb gauges
can be seen as limit cases of a more general class known as the velocity gauge, in
which the scalar potential propagates with an arbitrary speed [9].

2.1. The Vlasov Equation. We now introduce the generalized variables, which
permit to rewrite the Vlasov equation (1.1) in terms of the scalar and vector po-
tentials in a very convenient way. The resulting transport equation is shown to
be determined by an incompressible vector field irrespective of the gauge chosen.
Thus, we can count on the usual a-priori estimates on the distribution function -see
Lemma 2 below- no matter which gauge we decide to work in.

To start with, let I ⊂ [0,∞[ such that 0 ∈ I. Assume that the pair (Φ, A) ∈
C1(I, C2(R3);R×R3) is given, and so in view of (2.1)-(2.2) the electromagnetic field
is given as well. Denote z := (x, p) and write (X,P )(s) instead of (X,P )(s, t, z) to
ease notation. Then, by virtue of (2.1)-(2.2), the characteristic system associated
to the Vlasov equation (1.1) reads

Ẋ(s) = v(P (s)),(2.6)

Ṗ (s) =
[
−∇Φ− c−1∂sA+ c−1v × (∇×A)

]
(s,X(s), P (s)).(2.7)

Hence, since
Ȧ(s,X(s)) = [∂sA+ (v · ∇)A] (s,X(s)),

the equation (2.7) can be rewritten as

(2.8) Ṗ (s) =
[
−c−1Ȧ−∇Φ + c−1v × (∇×A) + c−1 (v · ∇)A

]
(s,X(s), P (s)).

The structure of (2.8) suggests that we can define a generalized momentum variable
π = p+ c−1A such that the above equation can be reduced to

Π̇(s) =
[
−∇Φ + c−1v × (∇×A) + c−1 (v · ∇)A

]
(s,X(s), P (s)).
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Here we have denoted Π(s) = P (s) + c−1A(s,X(s)). On the other hand, the
relativistic velocity written in terms of the generalized momentum is

(2.9) vA =
π − c−1A√

1 + c−2 |π − c−1A|2
.

Therefore, by using the elementary identity

vA × (∇×A) + (vA · ∇)A ≡ viA∇Ai,
we can reformulate the characteristic system (2.6)-(2.7) in terms of the generalized
variables ξ = (x, π) as

Ẋ(s, t, ξ) = vA(s,X(s, t, ξ),Π(s, t, ξ)),(2.10)

Π̇(s, t, ξ) = −
[
∇Φ− c−1viA∇Ai

]
(s,X(s, t, ξ),Π(s, t, ξ)).(2.11)

As usual, repeated index means summation. Now, standard results in the theory of
first order ordinary differential equations imply that for every fixed t ∈ I and ξ ∈ R6

there exists a unique local solution Ξ = (X,Π)(s, t, ξ) of (2.10)-(2.11) satisfying
Ξ(t, t, ξ) = ξ; see [8, Chapters II and V]. Moreover, Ξ ∈ C1

(
I × I × R6;R6

)
. In

turn, uniqueness implies that

Z = (X,Π− c−1A)(s, t, x, π − c−1A)

is the unique solution of (2.6)-(2.7) with initial data Z(t, t, z) = (x, π − c−1A), so
by having the characteristic curves in the generalized phase space we can recover
the characteristic curves in the usual phase space.

As the following lemma shows, the field resulting in the right-hand side of the
system of equations (2.10)-(2.11) is an incompressible vector field:

Lemma 1. For vA given by (2.9), we have

∇x · vA +∇π ·
(
−∇Φ + c−1viA∇Ai

)
= 0.

Proof. Since trivially ∇π · ∇Φ = 0, the result is a consequence of the elementary
relation

c−1∇π ·
(
viA∇Ai

)
= c−1∇ ·A− viA (vA · ∇)Ai√

1 + c−2 |π − c−1A|
= −∇x · vA.

�

As a result, solutions of the characteristic system (2.10)-(2.11) satisfy the volume
preserving property. Specifically, for any fixed s, t ∈ I, the map Ξ(s, t, ·) : R6 → R6

is a C1-diffeomorphism with inverse Ξ−1(s, t, ξ) = Ξ(t, s, ξ) and Jacobian determi-
nant; see [8, Corollary V.3.1]

det JΞs,t(ξ) =
∂Ξ(s, t, ξ)

∂ξ
= 1.

These properties of the characteristic flow lead to the following result:

Lemma 2. Let (Φ, A) ∈ C(I, C2(R3);R × R3) be given in some gauge and let vA
be given by (2.9). Assume that ∇Φ and ∇Ai, i = 1, 2, 3 are bounded on J ×R3 for
every compact subinterval J ⊂ I. Let f0 ∈ C1

(
R6;R

)
and denote by Ξ = (X,Π) the

characteristic flow solving (2.10)-(2.11). Then, the function f(t, ξ) = f0(Ξ(0, t, ξ))
defined on I × R6 is the unique C1 solution of the Cauchy problem for

(2.12) ∂tf + vA · ∇xf −
[
∇Φ− c−1viA∇Ai

]
· ∇πf = 0.
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Moreover, if f0 ≥ 0 then f ≥ 0. Also, for t ∈ I we have that

suppf(t) = Ξ(t, 0, suppf0),

and for each 1 ≤ q ≤ ∞, t ∈ I we have

‖f(t)‖Lqx,π = ‖f0‖Lqx,π .

Conversely, if f is a C1 solution of the Cauchy problem for (2.12), then f is
constant along each solution of the characteristic system (2.10)-(2.11).

Remark 1. In addition, if (Φ, A) (t) ∈ C2,α(R3;R × R3), 0 < α < 1, t ∈ I, and
f0 ∈ C1,α

(
R6;R

)
, then the unique C1 solution f(t, ξ) = f0(Ξ(0, t, ξ)) of the Cauchy

problem for (2.12) satisfies f(t) ∈ C1,α(R6;R) for every t ∈ I.

Proof of Lemma 2. In view of Lemma 1, the proof follows by the standard Cauchy’s
method of characteristics; see [8, Chapter VI]. In particular, the properties of f are
a direct consequence of the properties of the characteristic flow discussed above. �

We point out that (2.12) is the proper Hamiltonian representation of the Vlasov
equation (1.1) in terms of the potentials, since the characteristic equations (2.10)-
(2.11) are Hamilton’s equations for the Hamiltonian

(2.13) H(t, x, π) = c2
√

1 + c−2 |π − c−1A(t, x)|2 + Φ(t, x)

of a relativistic charged particle under the influence of an electromagnetic field of
potentials (Φ, A). As before, in (2.13) the charge and mass of the particle have
been set to one.

2.2. The Darwin Potentials. To determine the dynamical equations satisfied
by the potentials we shall impose the Coulomb gauge condition, since it leads to
the Darwin approximation of the Maxwell equations and ultimately to the RVD
system. Throughout this section, unless we specify otherwise, we assume that both
the charge and current densities ρ and j are smooth and given, and they satisfy the
continuity equation

(2.14) ∂tρ+∇ · j = 0.

Formally, if we substitute the electric and magnetic fields in (2.1)-(2.2) into the
non-homogeneous Maxwell equations in (1.2)-(1.3), we find that Φ and A satisfy

∆Φ = −4πρ− c−1∂t (∇ ·A) ,(2.15)

∆A− c−2∂2
tA = −c−14πj +∇

(
∇ ·A+ c−1∂tΦ

)
.(2.16)

Therefore, in the Coulomb gauge (2.5), the potentials satisfy

∆Φ = −4πρ,(2.17)

∆A− c−2∂2
tA = −c−14πj + c−1∇∂tΦ.(2.18)

On the other hand, any smooth solution (Φ, A) of the above system that satisfies the
Coulomb gauge condition initially, will continue to do so for all times, and therefore
the induced electromagnetic field will solve (1.2)-(1.3). Indeed, if (Φ, A) is a smooth
solution of (2.17)-(2.18) that satisfies ∇ ·A|t=0 = 0 and ∂t(∇ ·A)|t=0 = 0, then
gC = ∇ ·A is the solution of

∆gC − c−2∂2
t gC = −4πc−1 (∇ · j + ∂tρ) = 0,

gC |t=0 = 0, ∂tgC |t=0 = 0,
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and the claim follows. Hence, the system of equations (2.17)-(2.18) complemented
with (2.5) is fully equivalent to the set of Maxwell equations (1.2)-(1.3).

We define the Darwin approximation of the Maxwell equations as the quasi-static
limit of the system (2.17)-(2.18):

Definition 1. Let (ρ, j) : I × R3 → R × R3 be given and satisfy the continuity
equation (2.14). The set of potentials (Φ, A) is called a classical solution of the
Darwin equations if Φ ∈ C1(I, C2(R3);R), A ∈ C(I, C2(R3);R3) and, on I × R3,

∆Φ = −4πρ,(2.19)

∆A = −c−14πj + c−1∇∂tΦ.(2.20)

The system (2.19)-(2.20) has the following explicit solution, as proved below:

Definition 2. For the charge and current densities (ρ, j) : I × R3 → R × R3 we
formally define the set of Darwin potentials (ΦD, AD) : I × R3 → R3 × R3 by

ΦD(t, x) =

∫
R3

ρ(t, y)
dy

|y − x|
,(2.21)

AD(t, x) =
1

2c

∫
R3

[id + ω ⊗ ω] j(t, y)
dy

|y − x|
,(2.22)

where ω = (y − x) / |y − x| and id denotes the identity matrix.

Lemma 3. Let ρ ∈ C1(I, Cα0 (R3);R) and j ∈ C(I, C1,α
0 (R3);R3), 0 < α < 1, be

given -they do not need to satisfy the continuity equation (2.14)-. Define the field

(2.23) Pj(t, x) = j(t, x) +
1

4π
∇
∫
R3

∇ · j(t, y)
dy

|y − x|
, t ∈ I, x ∈ R3.

Then the following holds:

(a): The scalar potential ΦD is the unique solution in C1(I, C2,α(R3);R) of

(2.24) ∆Φ(t, x) = −4πρ(t, x), lim
|x|→∞

Φ(t, x) = 0.

It satisfies

∇ΦD(t, x) =

∫
R3

ρ(t, y)
ωdy

|y − x|2
.

(b): Pj ∈ C(I, C1,α(R3);R3). It satisfies ∇·Pj = 0 (i.e., Pj is the transverse

component of the current density j), and Pj(x) = O(|x|−2
) for |x| → ∞.

(c): The vector potential AD is the unique solution in C(I, C3,α(R3);R3) of

(2.25) ∆A(t, x) = −4πc−1Pj(t, x), lim
|x|→∞

|A(t, x)| = 0.

It satisfies

(2.26) ∂xAD(t, x) =
1

2c

∫
R3

{ω ⊗ j − j ⊗ ω + [3ω ⊗ ω − id] (j · ω)} dy

|y − x|2
,

with j = j(t, y). In particular,

∇ ·AD(t, x) = 0 and ∇×AD(t, x) =
1

c

∫
R3

ω × j(t, y)
dy

|y − x|2
.
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Corollary 1. If ρ and j, as given in Lemma 3, satisfy the continuity equation
(2.14), then

Pj(t, x) = j(t, x)− 1

4π
∇∂tΦD(t, x), t ∈ I, x ∈ R3,

and thus the Darwin potentials (2.21)-(2.22) are the unique classical solution of the
Darwin equations (2.19)-(2.20).

Proof of Lemma 3. Without loss of generality we omit the time dependence.
The proof of (a) is a standard result for the Poisson equation. Existence (in

a much weaker sense) can be found, for instance, in [11, Theorem 6.21] while the
regularity of the solution is given in [11, Theorem 10.3]. Uniqueness is known as
Liouville’s theorem [12, Theorem 7 Section 4.2].

To prove (b), notice that ∇ · j ∈ Cα0 (R3;R). Hence, as in (a), the integral in the
right-hand side of (2.23) is the C2,α-solution of the Poisson equation ∆u = −4π∇·j,
lim|x|→∞ u(x) = 0. That ∇u(x) = O(|x|−2

) for |x| → ∞ is well known, which in
turn provides the decay for Pj, since j has compact support. Moreover,

∇ · Pj(x) = ∇ · j(x) +
1

4π
∆

∫
R3

∇ · j(y)
dy

|y − x|
= 0.

As for (c), we first prove the following lemma:

Lemma 4. The Darwin potential AD in (2.22) has the equivalent representation

(2.27) AD(x) =
1

c

∫
R3

j(y)
dy

|y − x|
+

1

2c

∫
R3

∇ · j(y)
y − x
|y − x|

dy.

Proof. The current density j has compact support, so standard arguments can
show that the right-hand side (RHS) of the above expression is well defined. The
divergence theorem then yields,

RHS =
1

c

∫
R3

j(y)
dy

|y − x|
− 1

2c

∫
R3

(j(y) · ∇)ωdy

=
1

c

∫
R3

{
j(y)− 1

2
[j(y)− ω (j(y) · ω)]

}
dy

|y − x|

=
1

2c

∫
R3

[j(y) + ω (j(y) · ω)]
dy

|y − x|
,

which is precisely the Darwin potential AD in (2.22). The use of the divergence
theorem is justified by the following standard argument: remove a small ball about
x ∈ R3 in the domain of integration so we can avoid the singularity at y = x, then
use the divergence theorem and note that the boundary term corresponding to the
small ball vanishes as its radii tends to 0. �

We shall now deduce by direct computation from (2.27), the Poisson equation
given by (2.25). To this end, we first recall that just as in part (a),

(2.28) ∆

{
1

c

∫
R3

j(y)
dy

|y − x|

}
= −4π

c
j(x).

The integral in curly brackets is in C3,α(R3;R3), due to the regularity of j. Next,
we show that the following equality holds in the sense of distribution,

(2.29) ∂xk

{∫
R3

∇ · j(y)ωidy

}
= −

∫
R3

∇ · j(y)
[
δik − ωiωk

] dy

|y − x|
.
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Let r = |y − x| > 0. First, note that ∂xkω
i = −r−1

[
δik − ωiωk

]
, and that the

integral on the right-hand side of (2.29) is well defined for almost all x ∈ R3, since
∇·j ∈ Cα0 (R3,R) and the kernel is bounded from above by r−1. For φ ∈ C∞0 (R3;R),
the function (x, y) 7→ ∂xkφ(x)∇ · j(y)ωi is integrable on R3 × R3. Hence, we can
use Fubini’s theorem to find that∫

R3

∂xkφ(x)

{∫
R3

∇ · j(y)ωidy

}
dx =

∫
R3

{∫
R3

(∂xkφ(x))ωidx

}
∇ · j(y)dy

= −
∫
R3

{∫
R3

φ(x)∂xkω
idx

}
∇ · j(y)dy,

where the second equality is justified by a standard limiting process and integrations
by parts, similar to the argument at the end of the proof of Lemma 4. Then, another
use of Fubini’s theorem yields (2.29) in the sense of distribution, as claimed.

Actually, the equality in (2.29) holds in the classical sense. By the standard
theory of the Poisson equation, the right-hand side of (2.29) is a function in
C2,α(R3;R); see [11, Theorem 10.3]. Therefore, in view of the theorem for the
equivalence of classical and distributional derivatives, the integral in curly brackets
on the left-hand side of (2.29) is in C3,α(R3;R); see [11, Theorem 6.10].

Now, since ∂xkr
−1 = r−2ωk and ωk

[
δik − ωiωk

]
≡ 0, we have

∂xk
{
r−1

[
δik − ωiωk

]}
= −r−1ωi∂xkω

k = 2r−2ωi.

Therefore, similar arguments to those used above yield

∂xk

{
−
∫
R3

∇ · j(y)
[
δik − ωiωk

] dy

|y − x|

}
= −2

∫
R3

∇ · j(y)
ωidy

|y − x|2
= −2∂xi

∫
R3

∇ · j(y)
dy

|y − x|
.(2.30)

Hence, since ∆ ≡ ∇ · ∇, we can combine (2.29) and (2.30) to find that

∆

{
1

2c

∫
R3

∇ · j(y)
y − x
|y − x|

dy

}
= −1

c
∇
∫
R3

∇ · j(y)
dy

|y − x|
.(2.31)

Then, we add (2.28) and (2.31) to conclude that ∆AD = −4πc−1Pj holds on R3,
and so AD is a C3,α solution of (2.25). This solution is unique in view of the
Liouville’s theorem [12, Theorem 7 Section 4.2].

The representation (2.26) of ∂xA can be proved as follows. Since jA is regular
enough, we shift the x-variable into the argument of jA and differentiate (2.22)
under the integral. Then, we move the derivative to the kernel of (2.22) helped by
the same standard argument at the end of the proof of Lemma 4. In doing so, we
notice that for r > 0, the imk-th entry of ∂xK is

∂xk
{
r−1

[
δim + ωiωm

]}
= r−2

[
δimω

k − δkmωi − δikωm + 3ωiωkωm
]
,

which leads to (2.26). Finally, it is not difficult to check that

∇ ·AD = Trace(∂xAD) = 0 and (∇×AD)
i

=
1

2

(
∂xAD − (∂xAD)T

)
kl
,

where (∂xAD)T denotes the transpose of ∂xAD, and i, k, l ∈ {1, 2, 3} are given
according to the cyclic index-permutation. �
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It is easy to check that the Darwin equations in Definition 1 are formally equiv-
alent to the equations (1.5) and (1.7)-(1.8) given in the Introduction. To see this
let us define

EL = −∇ΦD, ET = −c−1∂tAD, B = ∇×AD.
We have to show that (EL, ET , B) formally solves (1.7)-(1.8) provided that the
charge and current densities satisfy the continuity equation. Clearly ∇·B = 0, and
since ∇ ·AD = 0, we have

∇×B = ∇ (∇ ·AD)−∆AD = 4πc−1j − c−1∂t∇ΦD = 4πc−1j + c−1∂tEL,

which is (1.7). Easy computations yield (1.5) and (1.8), and the claim follows.
We conclude this section with a-priori estimates on the potentials and their space

derivatives. For simplicity and without loss of generality, we shall neglect the time
dependence.

Lemma 5. For 1 ≤ m < 3 set r0 = 3/(3 − m) and let r < r0 < s. Then there
exists a positive constant C = C(m, r, s) such that for any Ψ ∈ Lr ∩ Ls(R3;R)∥∥∥∥∫

Rn
Ψ(y)

dy

|y − ·|m
∥∥∥∥
L∞x

≤ C(m, r, s) ‖Ψ‖1−λLrx
‖Ψ‖λLsx , where λ =

1− r/r0

1− r/s
.

In particular, C(m, 1,∞) = 3 (4π/m)
m/3

/ (3−m).

Proof. cf. [13, Lemma 2.7]. �

Lemma 6. For ρ and j as given in Lemma 3, the Darwin vector potential (2.22)
satisfy the estimates:

(2.32) ‖AD‖L∞x ≤ C ‖j‖
2/3
L1
x
‖j‖1/3L∞x

and ‖∂xAD‖L∞x ≤ C ‖j‖
1/3
L1
x
‖j‖2/3L∞x

.

Moreover, for any 0 < h ≤ R we have∥∥∂2
xAD

∥∥
L∞x
≤ C

[
R−3 ‖j‖L1

x
+ h ‖∂xj‖L∞x + (1 + ln (R/h)) ‖j‖L∞x

]
,

where C > 0 is independent of h, R, ρ and j. In particular,

(2.33)
∥∥∂2

xAD
∥∥
L∞x
≤ C

[
‖j‖L1

x
+
(

1 + ‖j‖L∞x
)(

1 + ln+ ‖∂xj‖L∞x
)]
.

The same estimates hold for the scalar potential ΦD, with j replaced by ρ.

Proof. The estimates corresponding to ΦD are well known from the study of the
Vlasov-Poisson system. These results can be found, for instance, in [14, Lemma P1]
and [1, Propositions 1 and 2]. Here, we shall produce the estimates for the vector
potential AD only. The proof is actually rather similar.

Let K(y, x) = |y − x|−1
[id + ω ⊗ ω]. Clearly, |K(y, x)| ≤ C |y − x|−1

. Then, the
estimates in (2.32) are a straightforward consequence of Lemma 5. To produce the
estimates for the second derivatives, consider

∂l∂kA
i
D ≡ 1

2c

{
∂l

∫
R3

[
δimω

k − δkmωi − δikωm
]
jm(y)

dy

|y − x|2

3∂l

∫
R3

jm
ωmωiωkdy

|y − x|2

}

=
1

2c
(I1 + 3I2) .
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Here we have introduced the notation ∂k = ∂xk , k = 1, 2, 3; see Lemma 3(c) for the
matrix representation of the integrand of ∂xA. Now, the integral I1 can in turn be
split into three integrals, each one essentially the same as the integral corresponding
to ∂l∂kΦD. Thus, I1 satisfies the expected estimates, as ∂l∂kΦD does. Therefore,
we are led to estimate I2. To this end, we set r = |y − x|, and for r > 0 we denote
by Γmikl(y − x)

∂yl

[
ωmωiωk

r2

]
=

1

r3

[
δmlω

iωk + δilω
kωm + δklω

iωm − 5ωiωkωlωm
]
.

This kernel is too singular to use Lemma 5. However, since yiykym |y|−5
is homo-

geneous of degree −2, for every 0 < R1 < R2 we have∫
R1<|y|<R2

Γmikl(y)dy =

∫
|y|=R2

yl

R2

yiykym

|y|5
dSy −

∫
|y|=R1

yl

R1

yiykym

|y|5
dSy = 0.

Thus, for any h > 0, we can rewrite I2 as

I2 =

∫
|y−x|>h

Γmikl(y − x)jm(y)dy + jm(x)

∫
|ω|=1

ωiωkωlωmdω

+

∫
|y−x|≤h

Γmikl(y − x) [jm(y)− jm(x)] dy.

The singularity in the last integral at r = 0 is now avoided by the difference
jm(y)− jm(x). Indeed, for 0 ≤ h ≤ R we produce

I2 ≤ C

{
‖j‖L∞x

∫
h<|y−x|≤R

dy

|y − x|3
+

∫
|y−x|>R

|j(y)| dy

|y − x|3

‖∂xj‖L∞x

∫
|y−x|≤h

dy

|y − x|2
+ |j(x)|

}
≤ C

[
ln(R/h) ‖j‖L∞x +R−3 ‖j‖L1

x
+ h ‖∂xj‖L∞x + ‖j‖L∞x

]
.

This yields the first estimate on
∥∥∂2

xAD
∥∥
L∞x

. Then, by setting R = 1 and letting

h = ‖∂xj‖−1
L∞x

if ‖∂xj‖−1
L∞x
≥ 1, otherwise h = 1, the estimate (2.33) follows as well.

This completes the proof of the lemma. �

3. The RVD System

If we now combine (2.12) and (2.21)-(2.22) by means of (1.4), then we obtain
the following equivalent representation of the RVD system:

∂tf + vA · ∇xf −
[
∇Φ− c−1viA∇Ai

]
· ∇pf = 0,(3.1)

coupled with

Φ(t, x) =

∫
R3

∫
R3

f(t, y, p)
dpdy

|y − x|
,(3.2)

A(t, x) =
1

2c

∫
R3

∫
R3

[id + ω ⊗ ω] vAf(t, y, p)
dpdy

|y − x|
,(3.3)

where

(3.4) vA =
p− c−1A√

1 + c−2 |p− c−1A|2
.
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For the sake of notation, we have written p instead of π when referring to the
generalized momentum variable. We will continue to do so for the rest of the paper.
We shall also set c = 1 for the speed of light. The goal is to prove that a small
enough Cauchy datum launches a unique classical solution of the system (3.1)-(3.4)
globally in time. We shall prove this in Subsections 4.1 and 4.2 below, but first
we center our attention on (3.3). If f is given, then (3.3) is a nonlinear integral
equation of unknown A.

Lemma 7. Fix t ∈ I and let f(t) ∈ C1,α
0 (R6;R), 0 < α < 1, be given. Then, there

exists an A(t) ∈ Cb ∩ C2,α(R3;R3) satisfying (3.3)-(3.4).

Proof. Without loss of generality we shall omit the dependence in time. Let C̄ be
a constant that may depend on f , to be fixed later on. Define the set

DC̄ =
{
A ∈ Cb(R3;R3) : ‖A‖L∞x ≤ C̄

}
.

First, we show that there exists an A∞ ∈ DC̄ which solves (3.3)-(3.4). To this end,

denote the kernel K(x, y) = |y − x|−1
[id + ω ⊗ ω] and let A ∈ DC̄ . Consider the

mapping A 7→ T [A] defined by

T [A](x) =
1

2

∫
R3

∫
R3

K(x, y)vAf(y, p)dpdy, vA =
p−A√

1 + |p−A|2
.

We claim that T [A] ∈ DC̄ . Indeed, let (K)ij(x, y) be the ij-entry of K(x, y). For
some u1, u2 and u3 on the line segment between x and z, the mean value theorem
implies∣∣∣(K)ij (x, y)− (K)ij (z, y)

∣∣∣ ≤ ∣∣∣∣ 1

|y − x|
− 1

|y − z|

∣∣∣∣+

∣∣∣∣∣ yi − xi|y − x|2
− yi − zi

|y − z|2

∣∣∣∣∣
+

∣∣∣∣∣ yj − xj|y − x|2
− yj − zj

|y − z|2

∣∣∣∣∣
≤ C |x− z|

(
1

|y − u1|2
+

1

|y − u2|2
+

1

|y − u3|2

)
.

Hence, since |vA| ≤ 1, a use of Lemma 6 produces

|T [A](x)− T [A](z)| ≤ 1

2

∫
R3

|K(x, y)−K(z, y)| ρ(y)dy

≤ C |x− z|

∥∥∥∥∥
∫
R3

ρ(y)
dy

|y − ·|2

∥∥∥∥∥
L∞x

≤ C(f) |x− z| .(3.5)

Thus, T [A] is a continuous vector valued function. Also, by Lemma 6

(3.6) ‖T [A]‖L∞x ≤ 3/2(π/2)1/3 ‖ρ‖2/3L1
x
‖ρ‖1/3L∞x

≡ C̄.

Therefore, T [A] ∈ DC̄ as claimed.
We now show that T has a fixed point A∞ ∈ DC̄ . By virtue of the Schauder

fixed point theorem [12, Theorem 3 Section 9.1], it suffices to show that T is a
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continuous mapping and that the closure of the image of T is compact in DC̄ . To
show the continuity of T , we see that if Ak → A in DC̄ , then by Lemma 6

|T [Ak](x)− T [A](x)| ≤ C

∫
R3

∫
R3

|vAk − vA| f(y, p)
dpdy

|y − x|
≤ C(f) ‖Ak −A‖L∞x .

To show that TDC̄ ⊂ DC̄ is compact, we first notice that for A ∈ DC̄

(3.7) |T [A] (x)| ≤ ‖ρ‖L∞x

∫
suppf

dy

|x− y|
≤ C(f)

1

1 + |x|
.

Now consider the sequence {Bn} ⊂ TDC̄ . Let R > 0 be fixed. By (3.6) and (3.5),
the restriction

{Bn}|{x∈R3:|x|≤R}

is clearly bounded and equicontinuous. Then, by Arzelà-Ascoli and a standard
diagonal argument we can find a subsequence {Bnk} and a continuous, bounded
limit vector field B such that {Bnk} → B uniformly on compact sets, and in
particular pointwise. Clearly, ‖B‖L∞x ≤ C̄, and since {Bnk} satisfies the estimate

(3.7), so does B. We only need to show that the convergence {Bnk} → B is uniform.
To this end, let ε > 0. Choose R > 0 such that the right-hand side of (3.7) is less
than ε/2 for |x| > R. Then, for all k we have |Bnk(x)−B(x)| < ε for |x| > R, and
we can find a k0 = k0(R, ε) such that for all k > k0

sup
|x|≤R

|Bnk(x)−B(x)| < ε.

This proves uniform convergence. Hence, all the hypotheses for the Schauder fixed
point theorem are fulfilled, and thus T has a fixed point A∞ in DC̄ .

Next, we have to show that A∞ has the required regularity. To this end, define
vA∞ and then jA∞ according to (3.4) and (1.4), respectively. The vector field A∞
has the form of a Darwin potential (2.22) with current density jA∞ ∈ C0(R3;R3).

Clearly, the kernel of (2.22) satisfies |K(x, y)| ≤ C |y − x|−1
and the derivative

estimate |∂xK(x, y)| ≤ C |y − x|−2
. Hence, we can use the standard theory for the

Poisson equation to find that A∞ ∈ C1(R3;R3); see, for instance, [5, Lemma 4.1] or
[11, Theorem 10.2 (iii)]. But such a regularity of A∞ implies that jA∞ ∈ C1

0 (R3;R3).
Thus, we also have jA∞ ∈ Cα0 (R3;R3), 0 < α < 1 and so A∞ ∈ C2,α(R3;R3), as
desired. For the latter implication see, for instance, [11, Theorem 10.3]. �

Remark 2. If we consider the time dependence in Lemma 7, and assume that f is
C1 with respect to t ∈ I, then A is also C1 in t ∈ I as a consequence of the Implicit
Function Theorem in Banach spaces; see [16].

3.1. Estimates on ∂tA and its space derivative. We now turn to the estimates
on the time derivative of the vector potential (i.e., the transverse component of the
electric field), and its space derivatives.

Throughout this section, we shall assume that the triplet (f,Φ, A) satisfies (3.1)-
(3.4) on I×R3×R3 with f(t) having compact support on R3×R3. For f as given,
define t 7→ Z̄(t) by

(3.8) Z̄(t) = sup {|(x, p)| : ∃0 ≤ s ≤ t : f(s, x, p) 6= 0} .
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The function Z̄(t) is a non-decreasing function of t, which by the compact support
of f is bounded on any finite subinterval of I. The following lemma is essential to
our results:

Lemma 8. Let f ∈ C1(I, C1,α
0 (R6);R) and (Φ, A) ∈ C1(I, C2,α(R3);R3×R3), with

f ≥ 0 and 0 < α < 1, satisfy (3.1)-(3.4). Define ρ and Z̄(t) according to (1.4) and
(3.8), respectively. There exists a positive C(t) = C(Z̄(t), ‖f(t)‖L∞x,p) such that

‖∂t∂xA(t)‖L2
x

+
∥∥∥ρ1/2(t)∂tA(t)

∥∥∥
L2
x

≤ C(t), t ∈ I.

Remark 3. For t ∈ I, Lemma 6 and the assumption on the support of f imply
|p−A| ≤ C(Z̄(t), ‖f(t)‖L∞x,p) <∞ and so |vA| < 1 strictly on suppf(t).

Proof of Lemma 8. For vA as given in (3.4) define the current density

jA(t, x) =

∫
R3

vAf(t, x, p)dp.

By Lemma 3(c), the components Ai, i = 1, 2, 3 of the vector potential satisfy

(3.9) ∆Ai(t, x) = −4πjiA(t, x)− ∂xi
∫
R3

∇ · jA(t, y)
dy

|y − x|
.

Take the partial time derivative on both sides of the above equation and multiply
by ∂tA

i. After integration by parts, dropping the 4π and using the definition of jA,∫
R3

∣∣∇∂tAi∣∣2 (t, x)dx =

∫
R3

∫
R3

∂tA
i(t, x)∂t

(
viAf

)
(t, x, p)dpdx

−
∫
R3

∫
R3

∂t∂xiA
i(t, x)∇ · ∂tjA(t, y)

dxdy

|y − x|
.(3.10)

Note that the boundary terms vanish. Indeed, since f has a compact support,
so does jA and the boundary term corresponding to the first term on the right-
hand side of the above equation is zero. On the other hand, it follows by standard
arguments that ∂tA

i(x) has at least a decay O(|x|−1
) and ∇∂tAi(x) = O(|x|−2

).

Moreover, the integral I(x) on the right-hand side of (3.9) has a decay O(|x|−2
) and

so does ∂tI(x). Therefore, ∂tA
i∇∂tAi(x) = O(|x|−3

) and ∂tA
i∂tI(x) = O(|x|−3

),
which suffice for the boundary terms to vanish.

Now we add the equations (3.10) for each component of A. We find∫
R3

|∂x∂tA|2 =

∫
R3

∫
R3

f (∂tA · ∂tvA) +

∫
R3

∫
R3

(∂tA · vA) ∂tf

−∂t
∫
R3

∫
R3

1

r
(∇ ·A) (∇ · ∂tjA)

= I1 + I2 + I3.(3.11)

But I3 ≡ 0 since the vector potential satisfies the Coulomb gauge condition; see
Lemma 3(c). Also, by using the representation of the derivatives of the velocity
given in the Appendix, the integral I1 can be written as

I1 = −
∫
R3

∫
R3

f√
1 + g2

(
|∂tA|2 − |vA · ∂tA|2

)
,
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where we have denoted g = |p−A|. We shall also denote K = −∇Φ + viA∇Ai.
Hence, after sending I1 to the left-hand side of (3.11), and by using the Vlasov
equation (3.1) in I2, we find that∫

R3

|∂x∂tA|2 +

∫
R3

∫
R3

f√
1 + g2

(
|∂tA|2 − |vA · ∂tA|2

)
= −

∫
R3

∫
R3

(vA · ∂tA) [∇x · (vAf) +∇p · (Kf)]

=

∫
R3

∫
R3

f∂tA
i
(
vA · ∇xviA

)
+

∫
R3

∫
R3

fviA
(
vA · ∇x∂tAi

)
+

∫
R3

∫
R3

f∂tA
i
(
K · ∇pviA

)
.(3.12)

Notice the integration by parts and the use of the product rule in the last equality.
We claim that the left-hand side of the above equality has a positive lower bound
for every time t. Indeed, we have that

|∂tA|2 − |vA · ∂tA|2 ≥ |∂tA|2 − |vA|2 |∂tA|2 =
(

1− |vA|2
)
|∂tA|2 .

Also, by Remark 3 there exists a gmax(t) = gmax(Z̄(t), ‖f(t)‖L∞x,p) <∞ so that

(3.13)
1− |vA|2√

1 + g2
≡ 1

(1 + g2)
3/2
≥ 1

(1 + g2
max)

3/2
≡ Cmin > 0.

Therefore, the left-hand side of (3.12) satisfies

(3.14) LHS ≥ Cmin(t)

(
‖∂x∂tA(t)‖2L2

x
+
∥∥∥ρ1/2(t)∂tA(t)

∥∥∥2

L2
x

)
.

On the other hand, the known bounds on the derivatives of the potentials given in
Lemma 6 lead to

‖∂xvA(t)‖L∞x,p + ‖∂pvA(t)‖L∞x,p + ‖K(t)‖L∞x,p ≤ C(t) ≡ C(Z̄(t), ‖f(t)‖L∞x,p);

see the Appendix for an explicit representation of the derivatives of the velocity.
Hence, after a use of the Cauchy-Schwarz inequality and again the use of the com-
pact support of f , the right-hand side of (3.12) can be estimated as

(3.15) RHS ≤ C(t)

(
‖∂x∂tA(t)‖L2

x
+
∥∥∥ρ1/2(t)∂tA(t)

∥∥∥
L2
x

)
.

Finally, since (a+ b)
2 ≤ 2

(
a2 + b2

)
, the result follows from (3.14)-(3.15). �

Lemma 9. Under the assumptions of Lemma 8, we have that

‖∂tA(t)‖L∞x ≤ C
[
‖ρ(t)‖1/3L1

x
‖ρ(t)‖2/3L∞x

(
1 + ‖ρ(t)‖2/3L1

x
‖ρ(t)‖1/3L∞x

)
+ ‖ρ(t)‖1/6L1

x
‖ρ(t)‖1/3L∞x

∥∥∥ρ1/2(t)∂tA(t)
∥∥∥
L2
x

]
, t ∈ I.

Corollary 2. Under the assumptions of Lemma 8, we have that

‖∂tA(t)‖L∞x ≤ C(t), t ∈ I,

for some positive C(t) = C(Z̄(t), ‖f(t)‖L∞x,p).
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Proof of Lemma 9. Consider the integral representation (3.3) for the vector poten-
tial, and take the partial time derivative on both sides of this equation. Denoting
the kernel by K(x, y) and dropping the multiple 1/2, we have

∂tA(t, x) =

∫
R3

∫
R3

K(x, y) [vA∂tf + ∂tvAf ] (t, y, p)dpdy

= I1 + I2.

Set K = −∇Φ + viA∇Ai. A use of the Vlasov equation yields

I1 = −
∫
R3

∫
R3

K(x, y)vA∇y · (vAf)−
∫
R3

∫
R3

K(x, y)vA∇p · (Kf)

=

∫
R3

∫
R3

fvA · [∂yK(x, y)vA +K(x, y)∂yvA] +

∫
R3

∫
R3

fK · K(x, y)∂pvA.

Therefore, since |vA| ≤ 1, also |∂xK(x, y)| ≤ C |y − x|2 (see Lemma 3(c)), and
|∂xvA| ≤ C |∂xA| and |∂pvA| ≤ C (see Appendix), we have

I1 ≤ C

{∫
R3

ρ(t, y)
dy

|y − x|2
+
(
‖∂xΦ(t)‖L∞x + ‖∂xA(t)‖L∞x

)∫
R3

ρ(t, y)
dy

|y − x|

}
≤ C ‖ρ(t)‖1/3L1

x
‖ρ(t)‖2/3L∞x

(
1 + ‖ρ(t)‖2/3L1

x
‖ρ(t)‖1/3L∞x

)
,(3.16)

where in the last inequality we used the estimates from Lemmas 5 and 6.
On the other hand, since |∂tvA| ≤ C |∂tA| (see Appendix), the integral I2 can

be estimated as

I2 ≤ C

∫
R3

ρ(t, y) |∂tA(t, y)| dy

|y − x|
≤ C ‖ρ(t)∂tA(t)‖1/3L1

x
‖ρ(t)∂tA(t)‖2/3L2

x
,

where the second inequality is a consequence of Lemma 5. Hence, the Cauchy-
Schwarz inequality and a direct estimate lead to

I2 ≤ C ‖ρ(t)‖1/6L1
x
‖ρ(t)‖1/3L∞x

∥∥∥ρ1/2(t)∂tA(t)
∥∥∥
L2
x

.(3.17)

The lemma then follows from (3.16) and (3.17). �

Lemma 10. Under the assumptions of Lemma 8, we also have

‖∂t∂xA(t)‖L∞x ≤ C(t)
(
‖∂tf(t)‖L∞x,p + ‖ρ(t)‖1/3L1

x
‖ρ(t)‖2/3L∞x

‖∂tA(t)‖L∞x
)
, t ∈ I.

for some C(t) = C(Z̄(t)).

Corollary 3. Under the assumptions of Lemma 8, we have that

‖∂t∂xA(t)‖L∞x ≤ C(t), t ∈ I,

for some positive C(t) = C(Z̄(t), ‖f(t)‖L∞x,p , ‖∂tf(t)‖L∞x,p).
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Proof of Lemma 10. Consider

∂t∂xA(t, x) =

∫
R3

∫
R3

∂xK(x, y) [vA∂tf + ∂tvAf ] (t, y, p)dpdy

= I1 + I2,(3.18)

where |∂xK(x, y)| ≤ C |y − x|−2
. Hence, by Lemma 5, we obtain

I1 ≤ C(Z̄(t)) ‖∂tf(t)‖L∞x,p and I2 ≤ C ‖∂tA(t)‖L∞x ‖ρ(t)‖1/3L1
x
‖ρ(t)‖2/3L∞x

,

where |∂tvA| ≤ C |∂tA| has been used. The result readily follows. �

4. The Cauchy Problem for the RVD System

A noticeable advantage of writing the RVD system in terms of the generalized
variables and potentials is that it resembles, to some extent, the well-known Vlasov-
Poisson (VP) system. Actually, the latter can be formally obtained from (3.1)-(3.4)
by letting c→∞, so that terms involving the vector potential are no longer present.
This resemblance allows to adapt previous techniques used for the VP system to
the Darwin case. Below, the proofs we present are in the same vein as those given
in [14] for the VP system. Obviously, several non-trivial difficulties arise due to the
inclusion of the vector potential in the system equations, not present in the Poisson
case. Incidentally, we expect that a global in time existence result to the relativistic
Vlasov-Poisson system for unrestricted Cauchy data, which is still unsolved, will
lead to an analogous result for the RVD system.

4.1. Local Solutions. In this section we shall produce a local in time existence
and uniqueness result for classical solutions of the RVD system.

Definition 3. Let f0 be given. We call f a classical solution of the RVD system
if f ∈ C1(I × R6;R); it induces the potentials (Φ, A) ∈ C1(I, C2(R3);R × R3) via
(3.2)-(3.3); for every compact interval J̄ ⊂ I the fields ∇Φ and viA∇Ai are bounded
on J̄×R3 and J̄×R3×R3 respectively; and the triplet (f,Φ, A) satisfies the system
(3.1)-(3.4) on I × R3 × R3. Moreover, we say that f is a classical solution of the
Cauchy problem if f |t=0 = f0.

Theorem 1. Let f0 ∈ C1,α
0 (R6;R), 0 < α < 1, f0 ≥ 0. For some T > 0, there

exists a unique classical solution f on [0, T [ of the Cauchy problem for the RVD
system. Moreover, for each 0 ≤ t < T , the function f(t) is in C1,α(R6;R), it is
non-negative and has compact support. In addition, if T > 0 is the life span of f ,
then

sup
{
|p| : ∃0 ≤ t < T, x ∈ R3 : f(t, x, p) 6= 0

}
<∞

implies that the solution is global in time, i.e., T =∞.

Uniqueness. Consider two solutions (f1,Φ1, A1) and (f2,Φ2, A2) of the RVD sys-
tem as given by Theorem 1. The Vlasov equation yields

∂t (f1 − f2)
2

+ vA1
· ∇x (f1 − f2)

2
+K1 · ∇p (f1 − f2)

2

= 2 (f1 − f2) [(vA2
− vA1

) · ∇xf2 + (K2 −K1) · ∇pf2]

where K1 = −∇Φ1 + viA1
∇Ai1 and analogously for K2. In view of the compact

support of the solutions f1 and f2, we set R > 0 such that

suppf1(t) ∪ suppf2(t) ⊂ BR ×BR, t ∈ [0, T̄ ] ⊂ [0, T [.
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Let Q(t) = ‖f1(t)− f2(t)‖2L2
x,p

. Since f2 ∈ C1([0, T [×R6;R) has compact support,

‖∇xf2(t)‖L∞x,p +‖∇pf2(t)‖L∞x,p ≤ CR. Also, we have |vA1 − vA2 | ≤ C |A1 −A2| and,

by Lemma 6, ‖∂x(A1, A2)‖L∞x ≤ CR. Then, it is not difficult to check that

dQ(t)

dt
≤ CRQ

1/2(t)
[
‖∂xΦ1(t)− ∂xΦ2(t)‖L2

x(BR)

+ ‖A1(t)−A2(t)‖L2
x(BR) + ‖∂xA1(t)− ∂xA2(t)‖L2

x(BR)

]
.(4.1)

From the Poisson equation satisfied by the scalar potentials we deduce∫
R3

|∂xΦ1(t, x)|2 dx = 4π

∫
R3

∫
R3

ρ1(t, x)ρ1(t, y)
dxdy

|y − x|
,

and analogously for Φ2. Linearity, the Hardy-Littlewood-Sobolev inequality and
Jensen’s inequality yield

(4.2) ‖∂xΦ1(t)− ∂xΦ2(t)‖L2
x
≤ C ‖ρ1(t)− ρ2(t)‖

L
6/5
x
≤ CRQ1/2(t).

On the other hand, in order to estimate the terms involving the vector potential,
we proceed as follows. Define fλ = λf1 + (1− λ) f2 for 0 ≤ λ ≤ 1. Clearly fλ ≥ 0
has compact support and satisfies ∂λfλ = f1 − f2. Let Aλ be the Darwin vector
potential induced by fλ. In view of Lemma 3 we have

∆Aλ(t, x) = −4π

∫
BR

vAλfλ(t, x, p)dp−∇
∫
BR

∫
BR

∇ · (vAλfλ) (t, y, p)
dpdy

|y − x|
,

and ∇ · Aλ = 0. Notice that A1 (resp. A2) solves the above equation when λ = 1
(resp. λ = 0). By virtue of Remark 2 (where t is replaced by λ), we can use the
arguments in the proof of Lemma 8 to find∫

R3

|∂λ∂xAλ|2 +

∫
BR

∫
BR

fλ√
1 + gλ

(
|∂λAλ|2 − |vAλ · ∂λAλ|

2
)

=

∫
BR

∫
BR

(∂λAλ · vAλ) ∂λfλ.(4.3)

The analogous expression in Lemma 8 is the first equality in (3.12) with the right-
hand side replaced by the expression of I2 in (3.11). Note the integration over
BR × BR in view of the compact support of ∂λfλ. Hence, since |vAλ | < 1 by
Remark 3, we can use again the arguments in Lemma 8 and the Cauchy-Schwarz
inequality on the right-hand side of (4.3) to obtain

‖∂λ∂xAλ(t)‖2L2
x

+
∥∥∥ρ1/2

λ (t)∂λAλ(t)
∥∥∥2

L2
x

≤ CR ‖∂λAλ(t)‖L2
x(BR) ‖∂λfλ(t)‖L2

x,p
,

which implies that

(4.4) ‖∂λ∂xAλ(t)‖2L2
x
≤ CR ‖∂λAλ(t)‖L2

x(BR)Q
1/2(t)

for some CR > 0 and all 0 ≤ λ ≤ 1. Poincaré’s inequality and (4.4) then yield

‖∂λAλ(t)‖2L2
x(BR) ≤ C̃R ‖∂x∂λAλ(t)‖2L2

x
≤ CR ‖∂λAλ(t)‖L2

x(BR)Q
1/2(t),

and thus,

(4.5) ‖∂λAλ(t)‖L2
x(BR) ≤ CRQ

1/2(t)

for all 0 ≤ λ ≤ 1. Inserting (4.5) into (4.4), we also have for all 0 ≤ λ ≤ 1

(4.6) ‖∂λ∂xAλ(t)‖L2
x
≤ CRQ1/2(t).
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Now, we observe that by Jensen’s inequality,∫
R3

|∂xA1(t, x)− ∂xA2(t, x)|2 dx =

∫
R3

∣∣∣∣∫ 1

0

∂λ∂xAλ(t, x)dλ

∣∣∣∣2 dx
≤

∫ 1

0

∫
R3

|∂λ∂xAλ(t, x)|2 dxdλ

≤ sup
0≤λ≤1

∫
R3

|∂λ∂xAλ(t, x)|2 dx,

and similarly for ‖A1(t)−A2(t)‖L2
x
. Then, we use (4.5) and (4.6) to derive the

estimate

(4.7) ‖A1(t)−A2(t)‖L2
x(BR) + ‖∂xA1(t)− ∂xA2(t)‖L2

x
≤ CRQ1/2(t).

Finally, we combine (4.1), (4.2) and (4.7) to conclude that

dQ(t)

dt
≤ CRQ(t).

Uniqueness then follows as a trivial consequence of Gronwall’s lemma. �

Proof of Theorem 1. Let f0 ∈ C1,α
0 (R6;R), f0 ≥ 0. Fix X̄0 > 0 and P̄0 > 0 such

that f0(x, p) = 0 for |x| > X̄0 or |p| > P̄0. We introduce the following iterative
scheme. For t ∈ I and z = (x, p) ∈ R3 × R3, define

f0(t, z) = f0(z).

For n ∈ N, assume that fn : I × R6 → R is given and define

Φn(t, x) =

∫
R3

∫
R3

fn(t, y, p)
dpdy

|y − x|
(4.8)

An(t, x) =
1

2

∫
R3

∫
R3

[id + ω ⊗ ω] vAnf
n(t, y, p)

dpdy

|y − x|
,(4.9)

where

vAn =
p−An√

1 + |p−An|2
.

Denote by Zn = (Xn, Pn)(s, t, z) the solution of the characteristic system

Ẋn(s, t, z) = vAn(s,Xn(s, t, z), Pn(s, t, z))(4.10)

Ṗn(s, t, z) = −
[
∇Φn − viAn∇A

i
n

]
(s,Xn(s, t, z), Pn(s, t, z))(4.11)

with Zn(t, t, z) = z. We define the (n+ 1)-th iterate of the distribution function by

fn+1(t, z) = f0(Zn(0, t, z)).

For convenience we shall also define the sequences

ρn(t, x) =

∫
R3

fn(t, x, p)dp and jn(t, x) =

∫
R3

vAnf
n(t, x, p)dp.

Step 1: In view of the Lemmas and Remarks in Section 2, and Lemma 7 in Section
3, the sequence {(fn,Φn, An)} is well defined. In particular, fn ∈ C1(I, C1,α(R6);R),
fn ≥ 0, and (Φn, An) ∈ C1(I, C2,α(R3);R×R3). For each n, the regularity in time
of the potentials is the one of fn. This is trivial for Φn. As for An, see Remark 2.
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For t ∈ I set P̄0(t) = P̄0 and for n ∈ N define

P̄n(t) =
{
|p| : ∃0 ≤ s ≤ t, x ∈ R3 : fn(s, x, p) 6= 0

}
≡ {|Pn−1(s, 0, z)| : 0 ≤ s ≤ t, z ∈ suppf0}

It is clear that suppfn(t) ⊆
{

(x, p) ∈ R3 × R3 : |x| ≤ X̄0 + t, |p| ≤ P̄n(t)
}

. Also,

‖fn(t)‖Lqz = ‖f0‖Lqz , 1 ≤ q ≤ ∞, t ∈ I, n ∈ N

and we have the estimate

‖ρn(t)‖L∞x ≤
4

3
π ‖f0‖L∞z P̄ 3

n(t).

Since |jn| ≤ |ρn|, the known estimates on the potentials imply that

‖Φn(t)‖L∞x + ‖An(t)‖L∞x ≤ C(f0)P̄n(t),

and finally

(4.12) ‖∂xΦn(t)‖L∞x + ‖∂xAn(t)‖L∞x ≤ C(f0)P̄ 2
n(t).

Step 2: For some T > 0 there is a non-negative, non-decreasing P ∈ C([0, T [;R)
depending on the Cauchy datum only, such that for all n ∈ N ∪ {0} and 0 ≤ t < T

P̄n(t) ≤ P(t).

Indeed, for n ∈ N the characteristic equation (4.11) and the estimate (4.12) imply

|Pn(s, 0, z)| ≤ |p|+
∫ s

0

(
‖∂xΦn(τ)‖L∞x + ‖∂xAn(τ)‖L∞x

)
dτ

≤ P̄0 + C(f0)

∫ t

0

P̄ 2
n(τ)dτ.(4.13)

Let T > 0 be the life span of the solution of the integral equation

(4.14) P(t) = P̄0 + C(f0)

∫ t

0

P2(τ)dτ.

Hence, P̄0(t) ≤ P(t). Suppose P̄n(t) ≤ P(t) for some n ∈ N. Then, in view of
(4.13), this estimate also holds for P̄n+1(t), which proves the claim. As a result, all
estimates in Step 1 are uniform in n on any subinterval [0, T̄ ] ⊂ [0, T [. In particular,
for all n ∈ N and 0 ≤ t < T , we have

(4.15) ‖ρn(t)‖L∞x + ‖jn(t)‖L∞x + ‖∂xΦn(t)‖L∞x + ‖∂xAn(t)‖L∞x ≤ C
0
T̄ ≡ C(T̄ , f0).

For future use, we notice that the maximal solution of (4.14) is given by

(4.16) P(t) = P̄0

(
1− C(f0)P̄0t

)−1
, 0 ≤ t < T ≡

(
C(f0)P̄0

)−1
,

with C(f0) = 3(2π)2/3 ‖f0‖1/3L1
x,p
‖f0‖2/3L∞x,p

.

Step 3: We claim that for every fixed 0 ≤ T̄ < T

(4.17) ‖∂xρn(t)‖L∞x + ‖∂xjn(t)‖L∞x +
∥∥∂2

xΦn(t)
∥∥
L∞x

+
∥∥∂2

xAn(t)
∥∥
L∞x
≤ C0

T̄ ,

for all n ∈ N and 0 ≤ t ≤ T̄ .
To start with, we estimate the space derivatives of the characteristic curves. To

ease notation, we write (Xn, Pn)(s) ≡ (Xn, Pn)(s, t, x, p). Recall

vAn(s,Xn(s), Pn(s)) ≡ v(Pn(s), An(s,Xn(s))),
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where v is C∞b in its argument. Hence, since (by abuse of notation) we have
(∂xXn(t), ∂xPn(t)) = (1, 0), the uniform bounds in (4.15) lead to

|∂xXn(s)| ≤ |∂xXn(t)|+
∫ t

s

|∂x [v(Pn(τ), An(τ,Xn(τ)))]| dτ

≤ 1 + C0
T

∫ t

0

(|∂xXn(τ)|+ |∂xPn(τ)|) dτ.

Similarly,

|∂xPn(s)| ≤ |∂xPn(t)|+
∫ t

s

∣∣∂x [∇Φ− viAn∇A
i
n

]
(τ,Xn(τ), Pn(τ))

∣∣ dτ
≤ C0

T

∫ t

0

(
1 +

∥∥∂2
xΦn(τ)

∥∥
L∞x

+
∥∥∂2

xAn(τ)
∥∥
L∞x

)
×
(
|∂xXn(τ)|+ |∂xPn(τ)|

)
dτ.

These two estimates and the Gronwall’s lemma yield

|∂xXn(s)| + |∂xPn(s)|

≤ exp

{
C0
T

∫ t

0

(
1 +

∥∥∂2
xΦn(τ)

∥∥
L∞x

+
∥∥∂2

xAn(τ)
∥∥
L∞x

)
dτ

}
.

As a result, we also have∣∣∂xρn+1(t, x)
∣∣ ≤ ∫

|p|≤P(t)

|∂x [f0(Zn(0, t, x, p))]| dp

≤ C0
T̄ exp

{
C0
T

∫ t

0

(
1 +

∥∥∂2
xΦn(τ)

∥∥
L∞x

+
∥∥∂2

xAn(τ)
∥∥
L∞x

)
dτ

}
.

Similarly, after using the product rule and the known estimates, there exists a
sufficiently large constant C0

T̄
such that

|∂xjn+1(t, x)| ≤
∫
|p|≤P(t)

|∂x [v(p,An+1(t, x))f0(Zn(0, t, x, p))]| dp

≤ C0
T̄ exp

{
C0
T̄

∫ t

0

(
1 +

∥∥∂2
xΦn(τ)

∥∥
L∞x

+
∥∥∂2

xAn(τ)
∥∥
L∞x

)
dτ

}
.

Hence, in view of Lemma 6, we have for all 0 ≤ t ≤ T̄ that∥∥∂2
xΦn+1(t)

∥∥
L∞x

+
∥∥∂2

xAn+1(t)
∥∥
L∞x

≤ C0
T̄

(
1 + ln+

∥∥∂xρn+1(t)
∥∥
L∞x

+ ln+ ‖∂xjn+1(t)‖L∞x
)

≤ C0
T̄ + C0

T̄

∫ t

0

(∥∥∂2
xΦn(τ)

∥∥
L∞x

+
∥∥∂2

xAn(τ)
∥∥
L∞x

)
dτ.

Since the right-hand side is bounded for n = 0, induction in n yields∥∥∂2
xΦn(t)

∥∥
L∞x

+
∥∥∂2

xAn(t)
∥∥
L∞x
≤ C0

T̄ exp
{
C0
T̄ T̄
}
,

for all n ∈ N and 0 ≤ t ≤ T̄ . In turn, this provides a uniform bound on the
derivatives of the iterates for the current and density functions.
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Step 4: We show that {fn} is Cauchy in the uniform norm on [0, T̄ ]×R6. To start
with, notice that∣∣fn+1(t, z)− fn(t, z)

∣∣ = |f0(Zn(0, t, z))− f0(Zn−1(0, t, z))|
≤ C |Zn(0, t, z)− Zn−1(0, t, z)| .(4.18)

On the other hand, by using the estimates in the previous steps, it is not difficult
to check that the characteristics equations lead to

|Xn(s) − Xn−1(s)|

≤
∫ t

s

|v(Pn(τ), An(τ,Xn(τ)))− v(Pn−1(τ), An−1(τ,Xn−1(τ)))| dτ

≤ C

∫ t

s

(|Xn(τ)−Xn−1(τ)|+ |Pn(τ)− Pn−1(τ)|

+ ‖An(τ)−An−1(τ)‖L∞x
)
dτ,

and

|Pn(s) − Pn−1(s)|

≤
∫ t

s

( ∣∣∇Φn(τ,Xn(τ))−∇Φn−1(τ,Xn−1(τ))
∣∣

+
∣∣∣ (viAn∇Ain) (τ,Xn(τ), Pn(τ))

−
(
viAn−1

∇Ain−1

)
(τ,Xn−1(τ), Pn−1(τ))

∣∣∣) dτ
≤ C

∫ t

s

(
|Xn(τ)−Xn−1(τ)|+ |Pn(τ)− Pn−1(τ)|

+
∥∥∂xΦn(τ)− ∂xΦn−1(τ)

∥∥
L∞x

+ ‖An(τ)−An−1(τ)‖L∞x + ‖∂xAn(τ)− ∂xAn−1(τ)‖L∞x
)
dτ.

Therefore, after adding the above expressions, Gronwall’s inequality yields

|Zn(0, t, z) − Zn−1(0, t, z)| ≤ C
∫ t

0

(∥∥∂xΦn(τ)− ∂xΦn−1(τ)
∥∥
L∞x

+ ‖An(τ)−An−1(τ)‖L∞x + ‖∂xAn(τ)− ∂xAn−1(τ)‖L∞x
)
dτ.(4.19)

Now, to produce a Gronwall’s inequality resulting from (4.18) and (4.19), we
look for suitable estimates on the right-hand side of (4.19). To start with, let
R = max

{
X̄0 + T̄ ,P(T̄ )

}
. For all n ∈ N and 0 ≤ t ≤ T̄ we have

suppfn(t) ⊂ BR ×BR.

Linearity and Lemma 6 yield∥∥∂xΦn(τ)− ∂xΦn−1(τ)
∥∥
L∞x

≤ C
∥∥ρn(τ)− ρn−1(τ)

∥∥1/3

L1
x

∥∥ρn(τ)− ρn−1(τ)
∥∥2/3

L∞x

≤ CR
∥∥fn(τ)− fn−1(τ)

∥∥
L∞x,p

.(4.20)

To estimate the terms involving the vector potential, we proceed as follows. Ac-
cording to the definition of the iterates, it is clear that for each n ∈ N they satisfy

∂tf
n+1 + vAn · ∇xfn+1 −

[
∇Φn − viAn∇A

i
n

]
· ∇pfn+1 = 0.
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Hence, by the uniqueness proof now in terms of the iterates, (see (4.7)),

‖An(τ)−An−1(τ)‖L2
x(BR) ≤ CR

∥∥fn+1(τ)− fn(τ)
∥∥
L2
x,p
,

which can in turn be estimated in terms of
∥∥fn+1(τ)− fn(τ)

∥∥
L∞x,p

.

Also, if we write respectively fn − fn−1 and An − An−1 in Lemma 9 instead of
∂tf and ∂tA, it is easy to check that

‖An(τ) − An−1(τ)‖L∞x
≤ CR

(∥∥fn(τ)− fn−1(τ)
∥∥
L∞x,p

+ ‖An(τ)−An−1(τ)‖L2
x(BR)

)
.

Similarly, after a slight modification of the proof of Lemma 10 (it is actually simpler
here since the Vlasov equation is not used), we find

‖∂xAn(τ) − ∂xAn−1(τ)‖L∞x
≤ CR

(∥∥fn(τ)− fn−1(τ)
∥∥
L∞x,p

+ ‖(An(τ)−An−1(τ))‖L2
x(BR)

)
.

Therefore, the previous three estimates yield

‖An(τ) − An−1(τ)‖L∞x + ‖∂xAn(τ)− ∂xAn−1(τ)‖L∞x
≤ CR

(∥∥fn+1(t)− fn
∥∥
L∞x,p

+
∥∥fn(τ)− fn−1(τ)

∥∥
L∞x,p

)
.(4.21)

Hence, if we combine (4.18) and (4.19) with (4.20) and (4.21), a use of Gronwall’s
lemma gives ∥∥fn+1(t)− fn(t)

∥∥
L∞x,p
≤ C

∫ t

0

∥∥fn(τ)− fn−1(τ)
∥∥
L∞x,p

dτ,

which by induction, readily implies the claim. It follows that {fn} converges uni-
formly to some f ∈ C([0, T̄ ]× R6;R) and for all 0 ≤ t ≤ T̄ we have

suppf(t) ⊂ BR ×BR.

Finally, if we respectively define ρ, Φ and A according to (1.4), (3.2) and (3.3), we
have that ρ, Φ and A are Cb, and ρn → ρ, Φn → Φ and An → A hold uniformly
on [0, T̄ ] × R3. The latter follows from (4.21). The uniform limits vAn → vA and
vAnf

n → vAf can be easily checked, and therefore jn → jA uniformly on [0, T̄ ]×R3,
with jA ∈ Cb([0, T̄ ]× R3;R3) defined by (1.4).

Step 5: Actually f ∈ C1(I×R6;R), as we show next. Indeed, in view of Step 4 and,
respectively, (4.20) and (4.21), the sequences {∂xΦn} and {∂xAn} are uniformly
Cauchy on [0, T̄ ]× R3. Moreover, by Lemma 6 we have∥∥∂2

xAm(t) − ∂2
xAn(t)

∥∥ ≤ C [R−3 ‖jm(t)− jn(t)‖L1
x

+ h ‖∂xjm(t)− ∂xjn(t)‖L∞x +
(

1 + ln (R/h) ‖jm(t)− jn(t)‖L∞x
)]

and similarly for ∂2
xΦn(t). Hence, the known estimates and the fact that we can

choose h arbitrary small imply that
{
∂2
xΦn

}
and

{
∂2
xAn

}
are uniformly Cauchy on

[0, T̄ ]× R3 as well. Therefore, we have (with a slight abuse of notation)

(Φ, A), ∂x(Φ, A), ∂2
x(Φ, A) ∈ C([0, T̄ ]× R3;R× R3),
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and so the characteristic flow Z ∈ C1([0, T̄ ] × [0, T̄ ] × R6) induced by the limiting
field is in turn the limit of the sequence {Zn}. As a result, the function

f(t, z) = lim
n→∞

f0(Zn(0, t, z)) = f0(Z(0, t, z))

has the claimed regularity and the triplet (f,Φ, A) satisfies (3.1)-(3.4).

Step 6: We show that the potentials Φ and A have the required regularity in time.
Define fλ = λfm + (1− λ) fn, 0 ≤ λ ≤ 1. This definition is just like the one in the
uniqueness proof but in terms of any two elements of the sequence {fn}. Let Aλ
be the vector potential induced by fλ. Following the lines in the proof of Lemma
8, it is not difficult to check that (this is analogous to (3.11))∫

R3

|∂λ∂t∂xAλ|2 =

∫
BR

∫
BR

fλ∂λ∂tAλ · ∂λ∂tvAλ

+

∫
BR

∫
BR

∂λ∂tA · [∂λvAλ∂tfλ + ∂tvAλ∂λfλ + vAλ∂λ∂tfλ]

+ ∂λ∂t

∫
R3

∫
BR

1

r
(∇ ·Aλ) (∇ · ∂λ∂tjλ) .(4.22)

Since ∇ · Aλ = 0, the third integral in the right-hand side vanishes. On the other
hand, by using the notation of the Appendix, we have ∂λvAλ = −DvAλ∂λAλ, also
∂tvAλ = −DvAλ∂tAλ, and

∂λ∂tvAλ = −DvAλ∂λ∂tA−D2vAλ∂λAλ∂tAλ.

Therefore, since by Step 5 |∂tfλ| ≤ CR, and by Corollary 2 |∂tAλ| ≤ CR, we
obtain from (4.22) that∫

R3

|∂λ∂t∂xAλ|2 +

∫
BR

∫
BR

fλ√
1 + g2

λ

(
|∂λ∂tAλ|2 − |vAλ · ∂λ∂tAλ|

2
)

≤ CR

∫
BR

∫
BR

|∂λ∂tAλ| [|∂λAλ|+ |∂λfλ|+ |∂λ∂tfλ|]

≤ CR ‖∂λ∂tAλ(t)‖L2
x

[
‖∂λAλ(t)‖L2

x(BR) + ‖∂λfλ(t)‖L∞x,p + ‖∂λ∂tfλ(t)‖L∞x,p
]
.(4.23)

In the last step we have used the Cauchy-Schwarz inequality. Now, define

Gmn = sup
0≤t≤T̄

(
‖fn(t)− fm(t)‖L∞x,p + ‖∂tfn(t)− ∂tfm(t)‖L∞x,p

)
,

which in view of Steps 4 and 5 converges to zero as n,m→∞. If we use the estimate
(4.5) for the iterates, i.e. ‖∂λAλ(t)‖L2

x(BR) ≤ CR ‖∂λfλ(t)‖L2
x,p

, we find that the

expression in square brackets in the right-hand side of (4.23) can be estimated as

‖∂λAλ(t)‖L2
x(BR) + ‖∂λfλ(t)‖L∞x,p + ‖∂λ∂tfλ(t)‖L∞x,p

≤ CR

(
‖∂λfλ(t)‖L2

x,p
+ ‖∂λfλ(t)‖L∞x,p + ‖∂λ∂tfλ(t)‖L∞x,p

)
≤ CRGmn,

uniformly in λ. On the other hand, since |vAλ | < 1 strictly, we can reason as in the
proof of Lemma 8 to find a lower bound on the left-hand side of (4.23). This lower
bound can then be estimated as

‖∂λ∂t∂xAλ(t)‖2L2
x

+
∥∥∥ρ1/2

λ (t)∂λ∂tAλ(t)
∥∥∥2

L2
x(BR)

≤ CR ‖∂λ∂tAλ(t)‖L2
x(BR)Gmn.
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Consider the first term on the left-hand side. Poincaré’s inequality and the above
estimate imply that

‖∂λ∂tAλ(t)‖2L2
x(BR) ≤ CR ‖∂λ∂t∂xAλ(t)‖2L2

x
≤ CR ‖∂λ∂tAλ(t)‖L2

x(BR)Gmn.

Then, the last two estimates yield

(4.24) ‖∂λ∂tAλ(t)‖L2
x(BR) + ‖∂λ∂t∂xAλ(t)‖L2

x
≤ CRGmn.

On the other hand, by the definition of Aλ, we have

∂λ∂tAλ(t, x) =

∫
BR

∫
BR

K(x, y)∂λ∂t [vAλfλ(t, x, p)] dpdy.

Therefore, after taking the product rule in the integrand, we may proceed as in
Lemma 9 to obtain the estimate

‖∂λ∂tAλ(t)‖L∞x ≤ CR
(
Gmn + ‖∂λ∂tAλ(t)‖L2

x(BR)

)
,(4.25)

where again we have used |∂tfλ| ≤ CR and |∂tAλ| ≤ CR. Similarly, since

∂λ∂t∂xAλ(t, x) =

∫
BR

∫
BR

∂xK(x, y)∂λ∂t [vAλfλ(t, x, p)] dpdy,

we can proceed as in Lemma 10 to find

‖∂λ∂t∂xAλ(t)‖L∞x ≤ CR
(
Gmn + ‖∂λ∂tAλ(t)‖L∞x (BR)

)
.(4.26)

Hence, since |∂tAm − ∂tAn| ≤
∫ 1

0
|∂λ∂tAλ| dλ ≤ supλ |∂λ∂tAλ| and similarly for

|∂t∂xAm − ∂t∂xAn|, we can gather the above estimates to find that

‖∂tAm(t)− ∂tAn(t)‖L∞x + ‖∂t∂xAm(t)− ∂t∂xAn(t)‖L∞x ≤ CRGmn.

Therefore, the sequences {∂tAn} and {∂t∂xAn} are uniformly Cauchy and we have
that ∂tAn → ∂tA and ∂t∂xAn → ∂t∂xA uniformly on [0, T̄ ]×R3. In turn, the former
limit and Steps 4 and 5 imply the uniform convergence ∂t(vAnf

n)→ ∂t(vAf), and
so ∂tjn → ∂tjA. Also, ∂tρ

n → ∂tρ. Hence, just as in Step 5, the sequences
{
∂t∂

2
xΦ
}

and
{
∂t∂

2
xA
}

are uniformly Cauchy on [0, T̄ ] × R3. Therefore, since trivially ∂tΦ

and ∂t∂xΦ are continuous on [0, T̄ ]× R3, we conclude that

∂t(Φ, A), ∂t∂x(Φ, A), ∂t∂
2
x(Φ, A) ∈ C([0, T̄ ]× R3).

Having proved the claim, and since 0 ≤ T̄ < T was arbitrary, we conclude that
f ∈ C1([0, T [×R6;R) is a classical solution of the relativistic Vlasov-Darwin system.

Step 7: Moreover, f(t) ∈ C1,α(R6;R), 0 < α < 1, for each 0 ≤ t < T . In
view of Remark 1, this holds if (Φ, A) (t) ∈ C2,α(R3;R × R3). But, since we have
(ρ, jA)(t) ∈ C1

0 (R3;R×R3) ⊂ Cα0 (R3;R×R3), the regularity needed for the poten-
tials is guaranteed (see the last lines in the proof of Lemma 7).

Step 8: The proof of the continuation criterion is as follows. Let f be the solution
of the RVD system previously obtained, which clearly satisfies f |t=0. As shown in

(4.16), the life span of f is T ≡
(
C(f0)P̄0

)−1
with

C(f0) = 3(2π)2/3 ‖f0‖1/3L1
x,p
‖f0‖2/3L∞x,p

.

Define P̄T = sup
{
|p| : ∃0 ≤ t < T, x ∈ R3 : f(t, x, p) 6= 0

}
and assume that P̄T <∞

but T <∞. We claim that this is a contradiction.
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Fix 0 < t0 < T and consider f(t0) as a Cauchy datum of the RVD system, which
is guaranteed by Step 7. Known estimates yield

‖f(t0)‖L1
x,p

= ‖f0‖L1
x,p
, ‖f(t0)‖L∞x,p = ‖f0‖L∞x,p .

Thus, C(f(t0)) = C(f0). Define ε =
(
C(f0)P̄T

)−1
, which does not depend on t0.

Steps 1-3 imply that all uniform estimates on the sequence of approximate solutions
induced by f(t0) hold on [t0, t0 + ε[. Then, f(t0) yields a unique classical solution
of the RVD system on that interval.

But we could have fixed t0 arbitrary close to the life span T < ∞ of f and so
extend this solution beyond T , which is a contradiction. Hence, we have shown
that P̄T < ∞ implies T = ∞. This, and the uniqueness result, conclude the proof
of Theorem 1. �

4.2. Global Solutions. If additional conditions are imposed on the Cauchy datum
in Theorem 1, then the local solution found in the previous section can be extended
globally in time. We prove this result next. We start by defining the set where the
Cauchy datum will be taken from. For X̄0 > 0 and P̄0 > 0 given let

D =
{
f ∈ C1,α(R6;R), 0 < α < 1 :

f ≥ 0, ‖f‖W 1,∞
x,p
≤ 1, suppf ⊂ BX̄0

×BP̄0

}
.

Theorem 2. There exists a δ > 0 such that, if f0 ∈ D with ‖f0‖L∞x,p ≤ δ, then the

classical solution of the RVD system (3.1)-(3.4) with Cauchy datum f0 is global in
time. Moreover, for t > 0 this solution satisfies the decay estimates

‖ρ(t)‖L∞x + ‖jA(t)‖L∞x ≤ Ct−3(4.27)

‖∂xΦ(t)‖L∞x + ‖∂xA(t)‖L∞x ≤ Ct−2(4.28) ∥∥∂2
xΦ(t)

∥∥
L∞x

+
∥∥∂2

xA(t)
∥∥
L∞x

≤ Ct−3 ln(1 + t)(4.29)

We first introduce some technical results and postpone the actual proof of The-
orem 2 to the end of this section. The following lemma shows that a sufficiently
small Cauchy datum leads to a classical solution of the RVD system which exists
on any given time interval and induces potentials whose derivatives can be made
as small as desired.

Lemma 11. Fix ε > 0 and T > 0. There exists δ = δ(ε, T ) > 0 such that, if f0 ∈ D
with ‖f0‖L∞x,p ≤ δ, then the classical solution of the RVD system with Cauchy datum

f0 exists on the time interval [0, T ] and induces potentials satisfying

(4.30) ‖∂tA(t)‖L∞x + ‖∂xA(t)‖L∞x + ‖∂xΦ(t)‖L∞x +
∥∥∂2

xA(t)
∥∥
L∞x

+
∥∥∂2

xΦ(t)
∥∥
L∞x

< ε

for all 0 ≤ t ≤ T .

Proof. In view of Lemma 6, and since |jA| ≤ ρ and

‖∂xρ(t)‖L∞x + ‖∂xjA(t)‖L∞x ≤ C
0
T , 0 ≤ t ≤ T

hold (the latter proved just as in Step 3 in Theorem 1, with the estimates applied
to the solution instead of the iterates), the space derivatives of A satisfy the same
estimates as the space derivatives of Φ. Hence, the proof is mutatis mutandis
the proof of [14, Lemma 4.2] for the Vlasov-Poisson system, as far as the space
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derivatives of the potentials are concerned. As for ∂tA, the result follows suit in
view of the estimates in Lemmas 8 and 9. �

To proceed, we now define the so-called free streaming condition for classical
solutions of the RVD system.

Definition 4. Fix β > 0 and a > 0. A classical solution of the RVD system is said
to satisfy the free streaming condition of parameter β (FSβ) on the time interval
[0, a], if it exists on [0, a] and induces potentials satisfying the estimates

‖∂tA(t)‖L∞x + ‖∂xA(t)‖L∞x + ‖∂xΦ(t)‖L∞x ≤ β(1 + t)−3/2,∥∥∂2
xA(t)

∥∥
L∞x

+
∥∥∂2

xΦ(t)
∥∥
L∞x

≤ β(1 + t)−5/2,

for all 0 ≤ t ≤ a.

Lemma 12. There exists δ > 0, β > 0 and a positive C = C(X̄0, P̄0) such that
any classical solution f of the RVD system having a Cauchy datum f0 ∈ D with
‖f0‖L∞x,p ≤ δ and satisfying (FSβ) on some interval [0, a], also satisfies the estimates

‖∂xΦ(t)‖L∞x + ‖∂xA(t)‖L∞x ≤ Ct−2,(4.31) ∥∥∂2
xΦ(t)

∥∥
L∞x

+
∥∥∂2

xA(t)
∥∥
L∞x

≤ Ct−3 ln(1 + t),(4.32)

for all 0 ≤ t ≤ a.

Proof. By virtue of Lemma 6, the following estimates hold

‖∂xΦ(t)‖L∞x + ‖∂xA(t)‖L∞x ≤ C ‖f0‖1/3L1
x,p
‖ρ(t)‖2/3L∞x

,∥∥∂2
xΦ(t)

∥∥
L∞x

+
∥∥∂2

xA(t)
∥∥
L∞x

≤ Ct−3
[
‖f0‖1/3L1

x,p
+ ‖∂xρ(t)‖L∞x + ‖∂xjA(t)‖L∞x

+
(
1 + ln t4

)
t3 ‖ρ(t)‖L∞x

]
, t > 1,

where the latter is a consequence of setting R = t and h = t−3 ≤ R in the cited
lemma. We claim that for some suitable constant C = C(X̄0, P̄0) > 0 the charge
and current densities satisfy

‖ρ(t)‖L∞x + ‖jA(t)‖L∞x ≤ Ct−3,(4.33)

‖∂xρ(t)‖L∞x + ‖∂xjA(t)‖L∞x ≤ C.(4.34)

If true, then the lemma follows. To prove the claim, we first introduce some tech-
nical results which we present as a sequence of steps.

Step 1: Let 0 ≤ s ≤ t ≤ a. Denote by (X,P )(s) = (X,P )(s, t, x, p) the solution of
the characteristic system

Ẋ(s) = vA(s,X(s), P (s))

Ṗ (s) = −
[
∇Φ + viA∇Ai

]
(s,X(s), P (s)),

with (X,P )(t) = (x, p). Denote also DvA(s) = DvA(P (s), A(s,X(s))), where the
matrix DvA is as given in the Appendix. Consider the system

ξ(s) = ∂pX(s)− (s− t)DvA(t)

η(s) = DvA(s)∂pP (s)−DvA(t).
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Notice that ξ(t) = η(t) = 0. We show that for some C = C(X̄0, P̄0) > 0

(4.35) |ξ(s)| ≤ βCeβC(t− s).

Indeed, on the characteristic curves, we have

ξ̇(s) = ∂pẊ(s)−DvA(t)

= DvA(s) [∂pP (s)− ∂xA(s,X(s))∂pX(s)]−DvA(t)

= η(s)−DvA(s)∂xA(s,X(s)) [ξ(s) + (s− t)DvA(t)] .

Therefore, since |DvA(s)| ≤ C, a use of (FSβ) yields

|ξ(s)| ≤
∫ t

s

|η(τ)| dτ + βC

∫ t

s

(1 + τ)
−3/2

[|ξ(τ)|+ (t− τ)] dτ

≤ βCeβC
(

(t− s) +

∫ t

s

|η(τ)| dτ
)
,(4.36)

where the Gronwall’s inequality has been used in the last step.
On the other hand, we have

η̇(s) = DvA(s)∂pṖ (s) +D2vA(s)
[
Ṗ (s)− Ȧ(s,X(s))

]
∂pP (s).

In view of the characteristic system, it is not difficult to check that∣∣∣∂pṖ (s)
∣∣∣ ≤ C

(∥∥∂2
xΦ(s)

∥∥
L∞x

+
∥∥∂2

xA(s)
∥∥
L∞x

+ ‖∂xA(s)‖2L∞x
)
|∂pX(s)|

+C ‖∂xA(s)‖L∞x |∂pP (s)| .

Hence, since Ȧi = ∂sA
i + vA · ∇Ai, i = 1, 2, 3 and

∣∣D2vA(s)
∣∣ ≤ C, the above

inequality and (FSβ) yield

|η̇(s)| ≤
(∥∥∂2

xΦ(s)
∥∥
L∞x

+
∥∥∂2

xA(s)
∥∥
L∞x

+ ‖∂xA(s)‖2L∞x
)
|∂pX(s)|

+
(
‖∂xΦ(s)‖L∞x + ‖∂xA(s)‖L∞x + ‖∂sA(s)‖L∞x

)
|∂pP (s)|

≤ 2β (1 + s)
−5/2 |∂pX(s)|+ β (1 + s)

−3/2 |∂pP (s)| .

Now, by the definition of ξ(s) and η(s), we have |∂pX(s)| ≤ |ξ(s)| + C (t− s) and

|∂pP (s)| ≤ C (|η(s)|+ 1), the latter as a result of
∣∣Dv−1

A (s)
∣∣ ≤ C, as it can be easily

checked. Then, Gronwall’s inequality implies

|η(s)| ≤ βCeβC
(∫ t

s

(1 + τ)
−5/2 |ξ(τ)| dτ

+

∫ t

s

[
(1 + τ)

−5/2
(t− τ) + (1 + τ)

−3/2
]
dτ

)
.(4.37)
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Both (4.36) and (4.37) then lead to

|ξ(s)| ≤ βCeβC
(

(t− s) +

∫ t

s

∫ t

τ

(1 + σ)
−5/2 |ξ(σ)| dσdτ

+

∫ t

s

∫ t

τ

[
(1 + σ)

−5/2
(t− σ) + (1 + σ)

−3/2
]
dσdτ

)
,

≤ βCeβC
(

(t− s) +

∫ t

s

∫ σ

s

(1 + σ)
−5/2 |ξ(σ)| dτdσ

+

∫ t

s

∫ σ

s

[
(1 + σ)

−5/2
(t− σ) + (1 + σ)

−3/2
]
dτdσ

)
,

≤ βCeβC
(

(t− s) +

∫ t

s

(1 + σ)
−3/2 |ξ(σ)| dσ

+

∫ t

s

[
(1 + σ)

−3/2
(t− σ) + (1 + σ)

−1/2
]
dσ

)
.

Finally, since the last integral is less than 3 (t− s), another use of Gronwall’s in-
equality yields (4.35).

Step 2: For β > 0 small enough, there exists a C = C(X̄0, P̄0) > 0 such that the
mapping X(0, t, x, ·) : R3 → R3 has Jacobian determinant satisfying

|det∂pX(0, t, x, p)| ≥ Ct3, 0 ≤ t ≤ a, x ∈ R3, p ∈ R3.

For t = 0 this is obvious. Let 0 < t ≤ a. Without loss of generality, we shall assume
that 0 < β ≤ 1/2. Then, by the characteristics and (FSβ) we have

(4.38) |P (t)| ≤ P̄0 + β

∫ t

0

(1 + τ)
−3/2

dτ ≤ P̄0 + 1.

Also, in view of the estimate on the vector potential given in Lemma 6, and recalling
that f0 ∈ D, is not difficult to check that

‖A(t)‖L∞x ≤ CX̄
2
0 P̄

2
0

(
P̄0 + 1

)
.

Denote g = |p−A|. Hence g ≤ C(X̄0, P̄0) and therefore the relativistic velocity
satisfies |vA| ≤ ν < 1, where ν depends only on X̄0 and P̄0. Now, we have that

DvA =
(
1 + g2

)−1/2
[id− vA ⊗ vA]. Then, since by Step 1, |ξ(0)| ≤ βCeβCt with

ξ(0) = ∂pX(0) + tDvA(t), we have for some β > 0 small enough that∣∣∣∣∣
√

1 + g2

t
∂pX(0) + id

∣∣∣∣∣ ≡
∣∣∣∣∣
√

1 + g2

t
ξ(0) + vA ⊗ vA

∣∣∣∣∣
≤ βCeβC + ν ≡ γ < 1.(4.39)

Therefore, a positive constant C = C(X̄0, P̄0) exists such that

|det∂pX(0)| ≡ t3

(1 + g2)
3/2

∣∣∣∣∣det
[√

1 + g2

t
∂pX(0) + id− id

]∣∣∣∣∣ ≥ Ct3.
Step 3: For every 0 < t ≤ a and x ∈ R3, the mapping X(0, t, x, ·) : R3 → R3 is
bijective. Indeed, for p, q ∈ R3, let

pλ = λp+ (1− λ) q, gλ = g(t, x, pλ) = |pλ −A(t, x)| , 0 ≤ λ ≤ 1.
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In view of (4.39) in Step 2, we have

|X(0, t, x, p) − X(0, t, x, q)| =

∣∣∣∣∫ 1

0

∂pX(0, t, x, pλ) (p− q) dλ
∣∣∣∣

=

∣∣∣∣∣
∫ 1

0

[
−id + id +

√
1 + g2

λ

t
∂pX(0, t, x, pλ)

]
t (p− q)√

1 + g2
λ

dλ

∣∣∣∣∣
≥ t |p− q|

∫ 1

0

dλ√
1 + g2

λ

− γt |p− q|
∫ 1

0

dλ√
1 + g2

λ

≥ (1− γ) |p− q| t,

which shows that the mapping is injective. It is also surjective, since the open range
X(0, t, x,R3) = R3. If not, there exists a boundary point x0 so that X(0, t, x, pn)→
x0 /∈ X(0, t, x,R3) as n→∞, for some pn → p0 ∈ R3. By continuity X(0, t, x, p0) =
x0, which is a contradiction, and the assertion follows.

Step 4: Then, Steps 2 and 3 imply that the mapping X(0, t, x, ·) : R3 → R3 is
a C1-diffeomorphism. In particular, Step 2 implies that for some constant C =
C(X̄0, P̄0) > 0, the inverse mapping X−1(0, t, x, ·) : R3 → R3 defined by X 7→ p(X)
has Jacobian determinant satisfying∣∣det∂pX−1(0, t, x, p(X))

∣∣ ≤ Ct−3, 0 < t ≤ a, x ∈ R3.

We can now deduce the estimates (4.33)-(4.34) for the charge and current densities.
Indeed, bearing in mind that f0 ∈ D, we have

ρ(t, x) =

∫
R3

f0(X(0, t, x, p), P (0, t, x, p))dp

=

∫
R3

f0(X,P (0, t, x, p(X)))
∣∣det∂pX−1(0, t, x, p(X))

∣∣ dX
≤ Ct−3,

where C = C(X̄0, P̄0) > 0. Then, since |jA| ≤ ρ, (4.33) indeed holds.
To prove (4.34) we proceed as follows. In view of (FSβ) with β = 1/2, and

recalling that |∂xvA| ≤ C |∂xA| and f0 ∈ D, we have that

‖∂xρ(t)‖L∞x ≤ C
(
P̄0 + 1

)3 ‖∂xf(t)‖L∞x,p(4.40)

‖∂xjA(t)‖L∞x ≤ C
(
P̄0 + 1

)3 (‖∂xA(t)‖L∞x ‖f0‖L∞x,p + ‖∂xf(t)‖L∞x,p
)

≤ C
(
P̄0 + 1

)3 (
1 + ‖∂xf(t)‖L∞x,p

)
,(4.41)

and

(4.42) |∂xf(t, x, p)| ≤ |∂xP (0, t, x, p)|+ |∂xX(0, t, x, p)| .

Hence, the proof will be completed if we provide a uniform bound on the space
derivatives of the characteristic curves. Similar to the computations in Step 1, it is
not difficult to check that for 0 ≤ s ≤ t ≤ a

|∂xX(s)| ≤ 1 + C

∫ t

s

(
|∂xP (τ)|+ ‖∂xA(τ)‖L∞x |∂xX(τ)|

)
dτ,
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and by (FSβ) and Gronwall’s lemma

(4.43) |∂xX(s)| ≤ C
(

1 +

∫ t

s

|∂xP (τ)| dτ
)
.

Also,

|∂xP (s)| ≤ C

∫ t

s

(∥∥∂2
xΦ(s)

∥∥
L∞x

+
∥∥∂2

xA(s)
∥∥
L∞x

+ ‖∂xA(s)‖2L∞x
)
|∂xX(τ)| dτ

+C

∫ t

s

‖∂xA(τ)‖L∞x |∂xP (τ)| dτ

≤ C

∫ t

s

(1 + τ)
−5/2 |∂xX(τ)| dτ.(4.44)

Therefore, both (4.43) and (4.44) yield

|∂xX(s)| ≤ C + C

∫ t

s

∫ t

τ

(1 + σ)
−5/2 |∂xX(σ)| dσdτ

≤ C + C

∫ t

s

∫ σ

s

(1 + σ)
−5/2 |∂xX(σ)| dτdσ

≤ C + C

∫ t

s

(1 + σ)
−3/2 |∂xX(σ)| dσ.

Gronwall’s lemma then provides a uniform bound on |∂xX(s)|, which in turn pro-
duces a uniform bound on |∂xP (s)| via (4.44). As a consequence

|∂xX(0, t, x, p)|+ |∂xP (0, t, x, p)| ≤ C, 0 ≤ t ≤ a, x ∈ R3, p ∈ R3,

which implies (4.34) via (4.40)-(4.42). This concludes the proof of the lemma. �

Proof of Theorem 2. By virtue of the previous lemmas, the proof is almost
identical to the proof of [14, Theorem 4.1] for the Vlasov-Poisson system.

Indeed, let β, δ > 0 and C = C(X̄0, P̄0) > 0 be suitable for Lemma 12 to hold.
Fix T0 > 1 such that for all t ≥ T0

(4.45) Ct−2 ≤ β

2
(1 + t)

−3/2
, C (1 + ln t) t−3 ≤ β

2
(1 + t)

−5/2
.

Now, by letting δ > 0 be smaller if necessary, Lemma 11 implies that the Cauchy
datum f0 ∈ D with ‖f0‖L∞x,p ≤ δ yields a classical solution f of the RVD system on

the maximal existence interval [0, T [ with T > T0, and

‖∂tA(t)‖L∞x + ‖∂xA(t)‖L∞x + ‖∂xΦ(t)‖L∞x

+
∥∥∂2

xA(t)
∥∥
L∞x

+
∥∥∂2

xΦ(t)
∥∥
L∞x

<
β

2
(1 + T0)

−5/2
,

for all 0 ≤ t ≤ T0. Hence, f satisfies the free streaming condition (FSβ) on [0, T0].
In fact, the continuity of the left-hand side of the above inequality implies that there
exists a maximal T0 < T1 ≤ T such that f satisfies (FSβ) on [0, T1[. Therefore,
Lemma 12 and (4.45) imply that for all T0 ≤ t < T1

‖∂xΦ(t)‖L∞x + ‖∂xA(t)‖L∞x ≤ Ct−2 ≤ β

2
(1 + t)−3/2,∥∥∂2

xΦ(t)
∥∥
L∞x

+
∥∥∂2

xA(t)
∥∥
L∞x

≤ C (1 + ln t) t−3 ≤ β

2
(1 + t)−5/2.
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Then, a continuation argument yields T1 = T , and by (4.38), we deduce

sup
{
|p| : ∃0 ≤ t < T, x ∈ R3 : f(t, x, p) 6= 0

}
≤ P̄0 + 1.

Therefore the continuation criterion in Theorem 1 implies that T = ∞, and thus
the solution f is global in time. The proof of Theorem 2 is complete. �

Appendix

For vA =
p−A√

1 + |p−A|2
, set DvA =

id− vA ⊗ vA√
1 + |p−A|2

= ∂pvA.

Then ∂xvA = −DvA∂xA and ∂tvA = −DvA∂tA. Clearly, |DvA| ≤ C, and so
|∂xvA| ≤ C |∂xA| and |∂tvA| ≤ C |∂tA|. Also,

∣∣∂2
pvA

∣∣ ≤ C; |∂x∂pvA| ≤ C |∂xA|;∣∣∂2
xvA

∣∣ ≤ C
(∣∣∂2

xA
∣∣+ |∂xA|2

)
;
∣∣∂2
t vA

∣∣ ≤ C
(∣∣∂2

tA
∣∣+ |∂tA|2

)
;|∂t∂pvA| ≤ C |∂tA|

and finally |∂t∂xvA| ≤ C (|∂t∂xA|+ |∂tA| |∂xA|).
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