Discrete velocity models with general boundary conditions in a slab
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Abstract. We consider a gas between parallel plates, described by a discrete velocity
model. At the boundary we impose the most general linear boundary conditions which
preserve mass. Using a fixed point theorem we prove the existence of at least a one
parameter family of solutions, continuous in x. The velocities are assumed to have a
nonzero component in the direction orthogonal to the boundaries.

1. Introduction

The existence theory for the Boltzmann equation has seen remarkable progress thanks
to the methods introduced by DiPerna and Lions [DPL] to handle the pure initial value
problem. These methods have been extended to the case of mixed initial-boundary value
problems [AC][AM][CI].

The case of boundary value problems is harder to handle but some results have been
recently obtained [ACI|[Cel][Ce2]. The results have been obtained for the case of a slab,
by extending a technique first used by the authors and M. Shinbrot [CIS] in 1987 for a
discrete velocity model in a slab. The aim of the present paper is to extend the latter
results in another direction.

We recall that a discrete velocity model for a steady solution in a slab reads as follows:

where &; are the x-components of the vectors v; of the model. f; gives the nonnegative
discretized distribution function. We assume

&40  (i=1,...,n) (1.2)

This model has been solved in [CIS] for two kinds of boundary conditions: a) assigned
values for & > 0 at x = 0 and for & < 0 at = d; b) assigned values for £ > 0 at z =0
and given except for a common factor for {; < 0 at z = d. In case b) the common factor
depends on the f; associated with & > 0 in such a way as to produce a vanishing particle
flow at x = d. The second result has been extended by Illner and Struckmeier [IS] when
this particular case of vanishing particle flow holds at both boundaries.
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Here we consider the most general case of vanishing flow at both boundaries. This
results in the following boundary conditions at z = 0 and z = d:

£ifi(0) = Z Bijl&;|f;(0) i€ AT

JEAT

&l fi(d) = ) Bij&ifi(d) ieA” (1.3)

JEAT

where B;; are given positive coefficients satisfying

ZBij:l jeAN; ZBij:l j€A+ (14)
iEAT iEA~

AT are obviously the index sets of the velocities with +&; > 0.

We remark that the properties of the B;; imply that if we let ji(z) =3 ca+ & fi(2)
and j_(z) = > ;- |&5fi(2), then j4 = j_ at z =0 and z = d.

Recently Nikkuni and Sakamoto [NS] considered the inhomogeneous version of these
boundary conditions when a source term b; (i € A%) is added at x = 0 and =z = d
respectively. If this source does not vanish identically, then their method produces no
solution when the coefficients B;; satisfy the above conditions. In fact they had to assume
that one replaces = with < at least at one boundary. Their boundary conditions are useful
for problems of evaporation and condensation, but the results for the more natural case
when the particle number is conserved are not included in [NS]. The purpose of the present
paper is to cover this important case.

Concerning the collision term, we just assume that it conserves mass.

2. Basic equations

As in [CIS] we write the model equation as

§0ofi + 1 fiplf1=C7(f,f) i=1,...,n) (2.1)

where p[f] = >, fi and 7 is a positive constant chosen as to make C; nonnegative. C}
has the general expression:

CY(f, f) =Y biifuf (2.2)
ol

with bikl 2 0.

We remark that p[f] is nonnegative and when it becomes zero C} /p also goes to zero,
being bounded by a constant times p. Thus there is no harm in dividing the equation by
p(x) = p[f(z)] and by changing the z variable into

y= /Om p(z')dz' . (2.3)
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If we let p
M= / p(z)dz (2.4)
0

z will vary between 0 and M.
If we let f;(y) = fi(z) and then drop the tilda, the system becomes

gawfi‘*’fizzbikl%:é?[f] (i=1,...,n) (2.5)
kol

where we let v = 1 without any loss of generality. We remark that if Y. C;(f,f) = 0
(particle number is conserved in collisions), then

p=3CI1/] (26)

The transformation (2.3)-(2.5) has been first used in [Cel][Ce2] in discussions of existence
for the Boltzmann equation with continuous velocity in a slab.

We shall consider the modified problem that we have just obtained and show that
it has a solution (actually a one parameter family of solutions). Finally we shall show
that the solutions obtained in this way can be transformed into solutions of the original
problem. This will be done in the next section by defining a suitable (nonlinear) operator
T such that its fixed points are solutions of our problem and then using Schauder’s fixed
point theorem. The proof is shorter and simpler than the previous proofs, which applied
to simpler boundary conditions.

3. The existence theorem

We can now consider the operator
T:g—f (3.1)

defined by B
&fi(0) = Y Bijléjlg;(0) i€ At
JEA-
&l fi(M) = ) Bijéig;(M) i€ A” (3.2)
JEAT

where g; > 0, g; € C([0, M]; Ry).
The fact that this operator is well defined follows from the same argument as in [CIS].
In addition we have

I Tglll = Illg]l (3-3)

where
HIQIHZ/O plgl(y)dy + i~ [g](0) + 5 [g](M) . (3.4)

3



In fact, if we integrate the equation defining the mapping from 0 to M, sum over ¢ and
use the boundary conditions (note that j~[f](M) = j7[g](M), jF[f](0) = j~[9](0)), we
obtain:

L0 — 5 [g)(0) + G LFIM) — 5H[g(M) + / olf1(y)dy = / da@)dy.  (3.5)

Rearranging, we obtain the desired result.
We consider the set

Sr:={f;lllflll=R (R>0), fi=0} (3.6)

as a subset of C™([0,m]; Ry), and endowed with the norm ||| - |||. This set is trivially
convex and is mapped on itself by the operator T. Note that the norm is an L'-norm
plus boundary fluxes. In addition T'Sg is also compact because it is a bounded and closed
subset of the Sobolev space W1, So T is compact and by Schauder’s theorem [Sm] has a
fixed point f such that Tf = f. Because of the way T was defined this means that

Eoufi+ fi=CJf] i=1,...,n)

i fi(0) = Z Bi;l&1fi(0) ie AT

jeA~

&l fi(M) = > Bij&ifi(M) i€ A (3.7)

JEAT

The solutions f(y) that we have found are parametrized by the parameter R and have
a well defined nonnegative density p[f](y). In fact, p[f](y) > 0 for all y € [0, M], because
otherwise it would follow that all f; would vanish at one point yy, and by the existence
and uniqueness theorem for the initial value problem for ordinary differential equations it
would follow that f;(y) = 0 for all y, i, contradicting |||f||| = R > 0. We can therefore
invert the transformation of the independent variable and return to x to obtain:

_ [T dy
v= [ (38)

We have two parameters M and C to play with. M fixes the mass (per unit area if we
think in 3 dimensions) and R can be used to obtain any thickness of the slab (if Ry gives
a thickness dg, we obtain a thickness d by letting R = Rodp/d).

We formulate our main result.

Theorem. If the coefficients B;; are nonnegative and satisfy the condition (1.4), then
the boundary value problem (1.1), (1.8) has a one-parameter family of solutions satisfying
plfl(x) > 0 for all z € [0,d]. The solutions are parametrized by their norms ||| f]||.



4. Concluding remarks

We have studied the most general boundary value problem with conservation of mass
in a slab for discrete velocity models. The proof is not only applicable to more general
boundary conditions but is also simpler than any other proof given before for this kind
of problems. An extension to the case of continuous velocities appears to be feasible.
Although we have not discussed uniqueness, it is easy to see that uniqueness holds if R is
sufficiently small.
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