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Abstract

A mechanism of coupled transcriptional-translational oscillators
(TTOs) producing circadian oscillations as “beats” in individual cells
is presented. The T'TOs are described in two versions: 1) a version in
which the activation or inhibition of gene sites is regulated stochasti-
cally, where the “free time” of the site under consideration depends
on the concentration of a protein complex produced by another site,
and 2) a deterministic, “time-averaged” version in which the switching
between the “free” and “occupied” states of the sites occurs so rapidly
that the stochastic effects average out. The second case is proved to
emerge from the first in a mathematically rigorous way. Numerical
results for both scenarios are presented and compared.
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1 Introduction

We are concerned with molecular mechanisms that can account for circadian
rhythms at the cellular level. Although circadian oscillators exist in complex
multicellular organisms as well as in single-cell organisms, it is thought that
most occur in single cells ([2], [8], [11]). We have previously [3] described
a model for circadian oscillations in which ultradian oscillators, which have
been widely observed to occur in cells, are coupled to produce circadian pe-
riods. The model was based, as is much of the related literature, on so-called
transcriptional-translational oscillators (TTOs), in which genes are activated
or inhibited for transcription by protein products of the oscillating system
itself (transcriptional activators or suppressors, respectively). Several mod-
els for interactions between more than one oscillator to generate a circadian
one have been described ([1], [13], [9]), but ours differs in positing coupling
between the protein products of independent ultradian oscillators.

A challenging feature of TTOs is the fact that in cells, a given tran-
scribed gene is present in one, or at most a small number of, copies, and
its interaction with a transcriptional regulator is not correctly modeled by
deterministic differential equations as used in [3]. Rather, because the num-
ber of copies of an expressed gene in a cell is zero, one, or possibly two,
such interactions are more accurately described by stochastic equations, and
this has been done for a number of existing models ([4], [13], [7]), using a
classical algorithm due to Gillespie [6]. In some cases this results in shorter
autocorrelation times [4] or random fluctuations [13]. Our objective here is to
apply the stochastic approach to a model similar to the one described in [3],
with particular reference to the apparent rates of binding of transcriptional
regulatory proteins to their target sites. There is something of a paradox in
these binding rates, as it has been observed that the rate is some 100-1000
times faster than the maximal diffusion-limited rate. In particular, a second-
order rate constant > 10'°M ~!s~! has been experimentally measured for the
association of the E.coli lac repressor with the lac operator site ([10],[15]).
A detailed experimental and theoretical analysis ([14],[15]) has shown that
the high rate of binding is due to low-specificity binding of the repressor
to DNA, followed by rapid, one-dimensional diffusion to the specific bind-
ing site. Such a process allows for observed binding rates higher than the
theoretical three-dimensional diffusion limit.

We have incorporated this rate, together with other parameters previ-
ously described, into a refined version of our coupled model, in which the
DNA binding steps have been treated as stochastic processes. The subse-
quent step of translation of mRNA into protein has been left as a deter-
ministic one, since the numbers of molecules in this process are larger. We



suggest that if the model is well-behaved with the critical DNA-binding step
as a stochastic process, then the remaining steps can be left as deterministic
without compromising the reliability of the model.

Three quite different time scales arise in the model. The binding and
unbinding of the inhibiting (activating) protein complexes at the transciption
sites occur on a very fast time scale, an aspect of our model motivated by the
observations in [15] and alluded to in the previous paragraph. We introduce
an (artificial) parameter € of dimension time to adjust the time scales for
these bindings and to explore the limit ¢ — 0. In the numerical tests in
Section 4 we vary €; in particular, for some of the simulations the value
€ = 2.8 x 1073 hrs is used: this corresponds to an average of roughly 10
binding events per second. As shown in Section 4, this small value of €
produces results which, for all practical purposes, are indistinguishable from
the simulations for a time-averaged deterministic model which is obtained in
the limit € — 0.

The second significant time scale is given by the periods of the individual
ultradian oscillators, which are of the order of a few hours. The critical
parameters for these oscillations are those describing the half-lives of mRNA|
proteins, and protein complexes. In section 5 we conduct a brief exploratory
analysis of the range of periods of our “primary” oscillators.

The third time scale is, of course, the circadian rhythm time scale, which
in our model arises from a coupling of two of the simpler ultradian oscillators
of slightly different frequencies. Natural selection could explain why pairs of
frequencies leading to the right “beats” have emerged in the course of evolu-
tion. In fact, the common occurrence of ultradian oscillators would make it
easy for evolution to produce circadian rhythms out of different components
in different organisms, as is actually observed [3]. This mechanism has the
added advantages of robustness and easy adaptability (the period of the beat
will change with minor adjustments of the frequency ratio between the two
primary oscillators). A power spectrum analysis demonstrates the robustness
of the model with respect to the parameter e.

2 The Model

Our model involves TTOs contained in a single cell. As described in [3], the
model comprises two ultradian “primary” oscillators whose protein products
are coupled to drive a circadian rhythm. For simplicity, the two coupled pri-
mary oscillators are essentially identical, with only their frequencies different,
since the critical feature is the ability to couple TTOs through known molecu-
lar processes (formation of transcriptional-regulatory protein heterodimers).



Therefore, the key question regarding the ability of a stochastic process to
describe stable circadian oscillators can be addressed in terms of one primary
oscillator. In this system, two genes (DNA sites) are transcribed into mRNA,
and this process is the origin of the following chemical dynamics.

e Transcription by gene 1 occurs when Site 1 (its regulatory region) is
unoccupied. Its state is given by a random variable X7, so that

X; =0 if site 1 is empty; X; =1 if site 1 is occupied by D, (see below)

e When gene 1 is active it produces mRNA (measured in molecules per
cell, R;) at a constant rate ki3. These molecules undergo first-order
decay with a rate constant ki4.

e The mRNA molecules are translated into protein P;, which either: (a)
decays at rate kig, (b) forms homodimers D; at rate k7, or, (c) forms
heterodimers D;3 with proteins P; from a third gene (see below) with
a rate constant kg;.

e The homodimer D, binds to site 2, and thereby activates the transcip-
tion of gene 2. The state of gene 2 is given by the value of a random
variable Y7 so that

Y1 =0 if site 2 is empty, and Y; = 1 if site 2 is occupied by D;.

e Transcription of gene 2 and translation of its mRNA into protein P,
leads to formation of homodimer Ds, which feeds back to inhibit gene
1 (above).

e These linked reactions generate a TTO for an appropriate choice of
parameters. The parameters used in our subsequent calculations are
listed in Table 1. Our model entails gene 1 being inhibited by homod-
imer Dy and gene 2 being activated by homodimer D;. This is the
mechanism leading to primary oscillations.

We denote by R;, P;,D;, i = 1,2 the concentrations of the mRNA,
the translated protein and the homodimer produced by site i. The above
scenario is then summarized in the following system of stochastic differential
equations. The parameters ki3 etc. have the same meaning as in Ref. [3],
and we have kept the notation used there; this explains the unconventional
numbering (some of the equations from the reference, and hence some of the
parameters, are no longer needed).



R, = kis(1—Xy) — kiR (1)
Pl = kisRi — kigPy — 2k17P] + 2k1s D1 — kg1 PLPs + kga Dy (2)
D, = ki P} — kgD, (3)
R, = Fki3Y1 —kuR, (4)
P, = kosRy — kigPy — 2ky; Py + 2kog Dy (5)
Dy = kyP— kyD, (6)

The last two terms in the second equation reflect the combination of proteins
P, and Pj3 (which is produced by the second primary oscillator) to form the
heterodimer D;3. This heterodimer in turn breaks down into pairs P; and P;
at rate kes.

The second primary oscillator is given by a nearly identical set of equa-
tions, except that the periods of the oscillations are slightly different. This
can, of course, be achieved by changing the parameters in many ways, but
the simplest method is to have the two TTOs identical in nature but with
different time scales. To do this we simply multiply each right hand side
by a fixed constant § > 0, where d is close (but not identical) to one. For
example, the first equation of the second oscillator will read

Rg = 5(k13(1 - XQ) - k14R3).

The parameters chosen reflect, where available, reasonable choices of
known molecular processes. The critical ones for establishing the periods
of the primary oscillators are the decay times of the mRNAs and proteins.
For the former, a half-life of 13-17 minutes and for the latter, 4-17 minutes
generate ultradian oscillations in the model. The values used in the simula-
tion are given in Table 1.

The coupling between the two sites communicating in each oscillator is,
of course, provided by the random variables X;, Y;. The times for which these
random variables stay constant are assumed to be exponentially distributed.
For example,

Prob{X; =0 1in (0,t)|X:(0) = 0} = exp(—Dst/e),
Prob{X; =1 in (0,t)|X1(0) = 1} = exp(—rt/e)

while

Prob{Y; =0 in (0,%)|Y1(0) = 0} = exp(—D;t/e),
Prob{Y; =1 in (0,t)|Y1(0) = 1} = exp(—st/e).
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Parameter | Value Parameter | Value
k13 1800 Fss 500
e =3 k54 0.8 _
k‘15 700 k57 6.8 x 10
Tis 1 ksg 3 _
Frm 3.6 x 102 K1 5 x 10
k1s 15 oo 3'53

;
IZi 1302 s 5000
o £ q 5500

) 1.125

Table 1: Parameters per unit time (hrs.)

Here r and s are constants; € is a time scaling parameter, introduced for
convenience to exploit the fact that the binding and unbinding of the ho-
modimers occurs on a faster time scale than the remaining processes. We
use € to properly gauge the most critical parameter, namely the rate constant
for binding of the transcriptional-regulatory proteins (Dy, Ds) to the sites of
the genes. Experimental work ([14], [10]) indicates macroscopic (observed)
second-order binding rates of 10'°/(M -s). In terms of molecules per cell in a
bacterium, this translates into approximately 36,000 molecules/(cell - hour)
(1 molecule per bacterial cell is about 1072 M).

The average “free” time of the binding site for Dy is thus €/Ds, and the
average “occupied” time is €/r. Their quotient is independent of €, but will
change with the homodimer concentration D,. Similar interpretations apply
for X, and Y3 and the random variables associated with the second primary
oscillator.

The average times for which a dimer stays bound (e/r,€/s, etc.) are
independent of the state of the system. In contrast, the “free” times are
inversely proportional to the concentration of the attaching homodimer. In
one of the simulations given in Section 4 we use r = 25 and ¢ = 107 !sec
(which corresponds to £ = ﬁsec, or an average of 900,000 binding events per
hour). We shall see that the corresponding stochastic simulation compares
well with a limiting scenario for which € = 0. Before we describe this limiting
scenario in detail we present the remaining equations making up the complete
oscillatory system.

As stated earlier, the protein products P; and P; of the first and second
primary oscillators combine to produce the heterodimer D;3. As formulated
in the model, this heterodimer binds to the regulatory site of a fifth gene and



activates it for transcription (other constructs, involving other heterodimeric
products of the two primary oscillators, and either stimulation or inhibition of
transcription of the fifth gene, could also be used). Transcription, translation,
and dimerization of the protein product of gene 5 yields the product Ds,
which is the primary circadian output of the model (although all variables
show circadian behaviour to a greater or less extent, as seen in the graphical
results).
The corresponding system is

Diy = ketP1Py — keaDis (7)
R, = ks3Xs — ksyRs (8)
P, = kisRs — kiP5 — 2ksy P2 + 2ksg D5 (9)
Dy = ksP? — ksgDs, (10)

and

Prob{Xs; =0 in (0,%)|X3(0) = 0} = exp (‘f 13t),
Prob{X; =1 in (0,1)|X3(0) = 1} = exp (‘th)

3 The time-averaged deterministic model

We employ renewal reward theory (see [12]) to derive a system of ordinary
differential equations which replaces (1-6) by a “time-averaged” system in
the limit € — 0. To this end, note first that if D, were independent of time, the
time average of X (¢) over “macroscopic” time intervals (i.e., intervals of scale

much larger than ) is - ffb. The corresponding average of 1 — X (¢) is then

—+p,- Renewal reward theory implies that this intuition is mathematically
2

accurate.

Specifically, define a cycle to consist of a period of unoccupied time fol-
lowed by a period of occupied time. The cycle ends with detachment. The
period of unoccupied time is exponentially distributed with mean €/ D,. Sup-
pose, in the language of renewal reward theory, that no reward is received
during this time. The following occupied part of the cycle is exponentially
distributed with mean ¢/r, and we assume that the reward associated with
this period is exactly equal to the amount of occupied time. Then, by re-
newal reward theory, the long-term average reward (i.e., the proportion of
occupied time) is with probability 1 equal to E(R)/E(L) where E(R) is the



expected reward during a cycle and E(L) is the expected length of a cycle.
In the case under consideration

E(R)=¢/r, E(L)=c¢/r+¢€/Ds>,

so the long-term time average of X;(t) is Do/(r 4+ Dy), i.e., lim. 0 X1(t) =
rf—fh (here, we denote the random variables X; as X;. to emphasize the
dependence on €). This time average will hold over any time interval over
which D, is constant or changes sufficiently slowly. In this time-averaged

system Eqns. (1,4) then become

T

R, =k — kiR 11

1 8D, 14dvy (11)
D,

R, = k — kR 12

2 BT D, 14dv2 (12)

and the remaining equations stay the same. Similarly, Equation (8) becomes

A _
(¢ + D13)

This intuitive argument is not rigorous. As is transparent from the equations
for the primary oscillators, all the dependent variables are random variables
with time fluctuations at time scale e. In particular, D; and D, (and likewise
D3 and Dy) experience stochastic fluctuations in their third derivatives (R}
experiences random jumps, as does P/, and as does D{"). The integration
process involved in the computation of D;, (i = 1,2) will average out these
fluctuations, so that D; will indeed vary more slowly than, say, R;. An
argument based on the Arzela-Ascoli Theorem can be used to translate these
observations into a mathematical proof.

To this end we denote by Ry, P D1 etc. the solution of (1-6) for some
€ > 0 and given initial values R;(0), P1(0), ..., and denote by Ry, Py, D; etc.
the solution of Eqns. (11, 12) ff. for the same initial values. We prove

RI5 = k53 k54 R5 .

Proposition 1. Almost surely for all t > 0,

etc.



Proof.

Step 1. Consider an arbitrary but fixed time interval [0, 7] and let (e,) be a
sequence such that €, — 0 as n — oo. For each n we consider a realization,
again denoted by Ry, etc., of the initial value problem (1-6) ff. with the given
fixed initial data.

The resulting functions R, Pic,,Die,, - - - all remain bounded and have
(uniformly in €) bounded first derivatives on [0,7]. By the Arzela-Ascoli
Theorem, there is a convergent subsequence of ¢,, denoted again by €,. We
denote the limits by Rl, ]51, .... What we show next is that these limits are
solutions of the deterministic limit equations (11,12) ff.

Step 2. We write € rather than ¢, to simplify the notation. Observe that
t
Rle(t) =R, (O)e*kmt -+ k13/ (1 — Xle)(,r)ekm(’rft) dr
0

and
r

T+ Do(T)

The central step of our proof is showing that le and 152 are also related
by (11). This will follow if we can show that for any differentiable function
f = f(7) and any fixed time interval [s, t]

ekra(m=1) g

t
Ri(t) = Ry(0)e™ 14! + kg /
0

t

iy [ (1= %) (7)f(7) dr = [

e—0 s

r

mf(ﬂ dr.

To this end consider a partition {s,s + A, s+ 2A,...,s +nA =t} of [s, ],
where A = t_TS Then

t n—1l  asi(k+1)A
/ (1- X)) () dr =Y / (1 - X1)(r)(7) dr.

k=0 Y STkA
On [s + kA, s+ (k+ 1)A] we have
f(1) = f(s+EkA)+0(A)

SO

(1=X1) (1) f(7) dr = [f(s+kA)+O(A)] (1—-X1)(7) dr

/s+(lc+1)A s+(k+1)A
s+kA s+kA



Because of the equicontinuity we have uniformly in e
D, (1) = Dy(s 4 kA) +0(A) + u(e),

where u(€) — 0 as € — 0. Hence, by the renewal reward result quoted earlier
[12]

s+(k+1)A r/A )
lim 1-X,)(7) f(7) dr = . s+kA)+O(A
i [ 0K () dr = e s (kA 0(A?)
SO
t n—1
lim 1—Xie)( = Af(s+ kA)+O(A),
€0 s( 1) (7 Zor—i-Dgs—i—kA) J(s ) (8)

and in the limit A — 0 the right hand side converges to

/st JT(T)]”(T) dr.

Step 3. The argument in step 2 and similar (but simpler) reasonings for
the other dependent variables show that the R;, P and D;,¢ = 1,2 and
the R;, P, and D; are both solutions of the same initial value problem By
unique solvability it follows that these solutions are identical, so for example
Ry (t) = Ry(t) for all t. This uniqueness also implies (by a standard argument)
that the passage to a subsequence of the ¢, made earlier is not necessary,
but that in fact lime,o R;(t) = R;(t), and likewise for all other dependent
variables.

This completes the proof.

4 Numerical tests

Here we present some results of simulations performed with the XPPAUT
package (see [5], or http://www.math.pitt.edu/ “bard/xpp/xpp.html). The
chosen parameters are those from Table 1. Figure 1 shows the time course
of the proteins P; and Pj for the deterministic model, which oscillate with a
period of about 3 hours but differ slightly in their periods. A slight circadian
variation is seen; it is much more promiment in Figure 2, where the responses
of the protein products of the fifth DNA site are shown; note the time lag of
Dy with respect to D3.
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Figure 1: The time evolution of the proteins P, and P3; according to the
time-averaged model

In Figures 3 and 4 the same calculation was done for the stochastic
model. This calculation used Gillespie’s method [6], where the e was chosen
as 2.8 x 107°hrs. The results are essentially identical to the ones for the
time-averaged model.

As a control measure we performed some calculations with larger ¢, for
example € = 2.8 x 1072 hrs and € = 0.028 hrs. For the former case, espe-
cially, the results were close to the time-averaged simulations. For the latter
case, deviations from the time-averaged simulations became noticable: the
amplitude of the circadian oscillations in Ds fluctuated stochastically and
their period decreased slightly.

Despite these more significant stochastic effects with larger ¢, the integrity
of the circadian period is remarkably robust in our model with respect to the
choice of e. We demonstrate this by computing Fourier power spectra of Ds
time series generated by simulations with € = 2.8 x 107 and € = 2.8 x 1072
(see Figures 5 and 6). The former was calculated from a time series of
7447 data points at intervals of 1 minute, representing 124.1 hours of real
time. The latter was calculated from a time series of 9920 data points at
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Figure 2: The time evolution of the heterodimer D;3 and the homodimer Ds
according to the time-averaged model

intervals of 10 minutes, representing 1653.2 hours of real time. We chose to
integrate for a longer time in the latter case because the circadian oscillations
were less regular. The power spectrum is shown in decibels (decibels =
101og,,(power), where power = | X;|? for X;, the i*" frequency component of
the Fourier transform of the time series {z}). The frequencies of the primary
oscillators show up clearly in the power spectra at close to 8 and 9 cycles per
day respectively, and the circadian oscillations are clearly overwhelmingly
dominant at close to (but not exactly) 1 cycle per day in both cases. Even
after 65 “days” with ¢ = 0.028, the stochastic oscillator remained in phase
with the circadian period; the wave form appeared to persist indefinitely.

5 Remarks on the frequencies of the primary
oscillators

The fundamental idea of our model is that circadian oscillations can easily
be achieved via coupling of faster oscillators. We now address the question of
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Figure 3: The time evolution of the proteins P, and P5 according to the
stochastic model

whether the primary oscillators could attain circadian periods without need
for coupling within reasonable ranges of parameter values based on known
biochemistry. To this end we investigated which (if any) intrinsic limitations
there are on the periods of the primary oscillators introduced earlier. We
first explored (randomly) variations of the growth parameters ki3, k15, k17,
etc., and the unbinding rates r and s to see how they would affect the periods
of the time-averaged single primary oscillator
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Figure 4: The time evolution of the heterodimer D;3 and the homodimer Ds
according to the stochastic model

4R,
dt
4P,
dt
4D,
dt
dR,
dt
4P,
dt
4D,
dt

r
13T+D2

kisRy — kigPy — 2k17P12 + 2k1sD,

k

- k14R1

k7 P} — kigDy

D,
135 + D1

kosRy — kig Py — 2ko7 P2 + 2kos Dy

k

— kiR

k27P22 - k28D2
(13)

Initially we kept the decay parameters ki4, k16, k13 fixed and just varied kq3.
This had a modest effect on the period; the longest which was observed

14



decibels
70 80 90
| | |

60

50
1

T T T T T T T
0 2 4 6 8 10 12

cycles/day

Figure 5: Power spectra for D5 when € = 2.8 x 1075 (no smoothing)

was 3.5 hrs. Random experiments of this nature did not produce periods of
circadian length.

For a systematic investigation of the dependence of the periods on the
parameters, we then set kos = k15, ko = k17, kogs = kig and linearized the
system about its unique positive equilibrium (R1g, Pig, D1, Rep, Pop, Dog).
The linearization yields the 6-by-6 matrix

—ku4 0 0 0 0 Y
k15 _klﬁ - 2k17P1E 2k18 0 0 0
A _ O 2]€17P1E —klg 0 0 0
0 0 ity —ku 0 0
0 0 0 kis  —kis — 2kirPop 2kis
0 0 0 0 2k17Pop —kis

Its eigenvalues satisfy det(A—AI) = 0. This yields the characteristic equation

(k1a + N2 (K1 + N2 (ks + 2k17Pig + A) (kg + 2k17Pop + A) + 2 = 0.
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Figure 6: Power spectra for D5 when € = 2.8 x 10~2 (smoothed with a Daniell
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To identify solutions with longer periods we look for a pair of eigenvalues
with positive real part and small imaginary parts. Observe that ¢z = 0 in
(5) produces 6 real and negative eigenvalues (eigenvalues are counted with
their multiplicity). If we now increase c3, one pair of eigenvalues approaches
and eventually crosses the imaginary axis (Hopf bifurcation), producing the
oscillations. However, the only way to force the crossing of the imaginary
axis at small imaginary value is to move a pair of eigenvalues closer to the
imaginary axis to begin with (i.e., when ¢ = 0).

To achieve this, we first modified the parameter k;; governing the rate
of homodimer formation. However, decreasing k7 turns out to increase P g,
counter-acting attempts to move the crossing pair closer to the real axis.

Finally, the actual rate of homodimer decay, kig, is not known, although
it is unlikely to be smaller than 1 per hour. Choosing it to be exactly 1

16



per hour (earlier it was set to 15 per hour) we increased the periods up to 9
hours. Setting kg this low is probably not reasonable, but given no a prior:
firm bounds as to how small kg3 can actually be (a comment that applies to
k14 and ks as well), no simple predictions on the size of the periods of the
primary oscillators can be made.

The following set of parameters produces a wavelength of about 22 hours:
ki3 = 1000, kis = kig = 1, kis = 400, k17 = 107>, kig =025, r =1, s =
9000. Thus almost circadian periods can be obtained, but only by stretching
parameters beyond biochemically reasonable values.

6 Conclusions

We have shown that TTOs in both their stochastic and time-averaged ver-
sions produce stable ultradian oscillations for reasonable parameter choices.
These oscillations are robust with respect to the scaling parameter governing
the dimer-driven stochastic activation or inhibition of the relevant gene sites.
Couplings of such TTOs with slight variations in their periods offer a simple
mechanism to explain the emergence of circadian rhythms as “beats”. This
explanation has the added desirable feature of making circadian rhythms
readily adaptable to evolutionary pressures.
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