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Abstract

This article contains both a survey of and some novelties about mathe-
matical modeling problems which emerged within recent years in phys-
ical chemistry, microbiology, and multi-lane traffic flow. Specifically,
we first present a generalization of the Kolmogorov-Avrami model for
crystallization dynamics for cases where the crystallization is incom-
plete and the classical model fails; second, the concept and an ap-
plication of transcriptional-translational oscillators operating inside a
living cell. The feasibility and significance of such oscillators is an
important topic in molecular biology, and, as will be shown, their
interactions may be the cause underlying phenomena like circadian
rhythms. The basic equations are stochastic differential equations in-
cluding Markovian random variables, and their associated Kolmogorov
master equations are a linear kinetic system of PDEs. Third, we en-
gage in a discussion of traffic flow models for the multi-lane scenario,
with emphasis on Fokker-Planck type systems and their properties.
We summarize and discuss results from a series of papers in which
such models were introduced as alternatives to other, rather different
kinetic models, and we conduct a comparison. There are discussions
on the relationship between kinetic and macroscopic models, on fun-
damental diagrams, and on modeling ingredients which may lead to
more than one equilibrium solution, a scenario known as a bifurcated
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(or multi-valued) fundamental diagram. We go though an extensive
presentation of the properties and degeneracies of the new models,
and we briefly introduce relative entropy and discuss its applications.

1 Introduction

When I was first asked to lecture on kinetic theory in Porto Ercole I hesitated
before accepting, not because I did not want to participate, but because I was
not sure that what I have to contribute would be quite appropriate. After
all, my last real contributions to the theory of the Boltzmann equation are
10 years old and somewhat dated; I spent several years after that exploring
a generalization of the Vlasov-Poisson system which we called the Vlasov-
Manev system (there is a 1/r% correction to the Newtonian potential in this
system); this system leads to a lot of serious mathematics but is dubious from
the point of view of physical applicability. For that reason the Vlasov-Manev
system has not found much attention in the community.

When [ finally agreed to be one of the lecturers, it was under a different
pretext, namely that of mathematical modeling with motivating applications
from the outset. This has been a guiding motive for my own research over
the last few years, and it has been a consequence of an “open door” policy
that I am known for— namely, colleagues who explore a scientific problem
that may involve a dynamical system or kinetic model are welcome to knock
at my door, and I will see what can be done about the problem. This has led
me astray from my traditional research but brought me in touch with most
interesting scientific projects, and I would like to use this article to present a
survey over three of the most rewarding ones. I will have to skip technicalities
and many other details, but the interested reader may find most of these in
the available publications on the various models.

As announced in the abstract, the three themes are incomplete crystal-
lization, genetic (transcriptional-translational) oscillators and their possible
biological consequences, and kinetic models for multi-lane traffic flow. Each
subject will be introduced at length in the relevant section, so I will be brief
here. However, there are some novelties which I observed as I wrote this. In
Section 2, the treatise on incomplete crystallization, I noticed that the case of
more general stoichiometry was not adequately covered in the previous pub-
lications, so it is done here. This problem is in some sense a “warmup” and
really includes neither dynamical systems theory nor kinetic theory; rather,
it is an exercise in probabilistic modeling, at a fairly elementary level, but
with satisfying results.

The treatise on the Kolmogorov master equations for a simple example



(with the same structure as transcriptional-translational oscillators) in Sec-
tion 3.7 is cursory and incomplete. While the process is rather standard,
it appears to be novel in this context. The case where the transition rates
are state-dependent resembles exactly the scenario where a kinetic system
contains fast and slow time scales, and where the fast time scales average
out in a fluid dynamic approximation. The details in the case of the TTO
model are a topic of current research.

The section of multi-lane traffic flow contains a literature survey and
a detailed discussion of Fokker-Planck type kinetic models. Some recent
results are announced, in particular the newly discovered link between this
kind of kinetic model and the Aw-Rascle macroscopic model. Studies on
traffic flow open a very open-ended field of research, and they are popular
because everybody is an expert.

There is probably little really new mathematics in any of these sections;
the novelty is in the application rather than the tool. Of course, Applied
Mathematics should never be an end in itself but almost always a means to
an end, usually in science and engineering. The ends here are in physical
chemistry, in microbiology and in traffic engineering.

2 Incomplete Crystallization

In this first lecture we present the solution to an unusual example of crystal-
lization dynamics first observed at the University of Victoria ([14],[15]) about
10 years ago. The problem involved instability of an unstable crystalline bi-
nary phase of COy.Cy Hy, which formed at 90 degrees Kelvin when a mixture
of carbon dioxide and acetylene was sprayed onto a glass panel. Spectroscopy
showed that a new type of crystal (the binary phase) formed, but did not
last; rather, over a period of about 6 hours pure crystalline CO, formed, em-
bedded in an amorphous matrix of CyH,. Furthermore, this transition was
not well modeled by the classical Kolmogorov- Avrami crystallization curve;
eventually, the chemists who had conducted the experiments contacted the
mathematics department to see whether we could develop better models. We
could, and we will show in this first lecture what was done. We begin by
reviewing the classical theory.

2.1 Complete Crystallization: The Kolmogorov-
Avrami Model

The Kolmogorov- Avrami model produces a curve which predicts what frac-
tion of a crystallizable substance will have crystallized by time ¢. This may



be found in textbooks on physical chemistry. The model is also very satis-
factory in the sense that the curves match data very well in cases where the
crystallization is complete.

It is quite easy to show a derivation of the model, and we do this for
completeness. Crystallization (of, say, liquid CO) will start at certain sites
which we will refer to as crystallization nuclei (or “impurities”). In the
absence of such nuclei the substance will stay a liquid. From each nucleus an
individual crystal, which we will call a globule, will grow outward at constant
radial crystallization speed v > 0; eventually these globules will impinge
upon each other, thereby stopping the growth in each others direction. This
process will continue until there is no liquid left. Figure 1 shows a snapshot
of a two-dimensional simulation.
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Figure 1: The Crystallization Process

A Voronoi diagram illustrating the crystallization process: Crystallization n
grow until they impinge upon one another.



We begin by assuming that N nuclei are independently equidistributed
in a (large) domain D with volume V. Let Q1, ..., @y denote the locations
of the nuclei, and let P be an arbitrary reference point in D. If we set
X = min;_;_ndist(P,Q;), then elementary probability theory shows that

fora >0
Prob{X >a}=(1- dma®\ ¥
B 3V )

We can then immediately write down the cumulative distribution function
of X, defined by Fy(a) = Prob{X < a}, and find

Arad\ N

In the limit N — oo, V' — oo such that N/V = XA > 0 we obtain a spatial

N
Poisson process with intensity A > 0, and rewriting Fy(a) = 1— (1 — %)

we see that in this Poisson limit we find F(a) = limy_oFn(a) as

F(a) -1 e—47r)\a3/3.

Returning to the crystallization question, we see that the reference point P
will have crystallized by time ¢ exactly if its distance from the closest nucleus
is smaller than vt. This will have happened with probability F'(vt), and the
crystallization probability for P by time ¢ is therefore

olt) =1+ (1)

where k = 4w\v?/3. If we average over all equidistributed points P in D
Equation (1) does not change, and gives therefore the expected fraction of
volume which will have crystallized by time t. Equation (1) is known as the
Kolmogorov-Avrami model.

Remarks.

e Usually, neither A nor v are known a priori. Notice that small A\ means
a slower crystallization rate.

e Qur derivation applies to three dimensions. The corresponding formula
in two dimensions is @(t) = 1 — e

e In practice, chemists sometimes uses variations of the model with higher
powers of ¢, for example p(t) =1 — e **? Reasons given for this are
that the growth around some nuclei may start with a delay, or that



(equivalently) nuclei may form spontaneously while the crystallization
process is already under way. Moreover, while our derivation tacitly
assumes that the globule growth is radial, this is in general not the case;
the microcrystals may grow in simple or complicated geometric shapes,
and new nuclei may form at the edges of these shapes. The variations
used by chemists seem to address such complications reasonably well.

2.2 An Experiment where the Kolmogorov-Avrami
Model failed

An unusual example of crystallization dynamics was observed at the Univer-
sity of Victoria ([14], [15]) about 10 years ago. T. Gough and collaborators
discovered a hitherto unknown crystalline binary phase COy.CoH,, formed
at 90 degrees Kelvin when a mixture of carbon dioxide and acetylene was
sprayed onto a glass panel. Spectroscopy showed that a new type of crystal
(the binary phase) formed, but did not last; rather, over a period of about
6 hours pure crystalline CO, formed, embedded in an amorphous matrix of
CyH,. Furthermore, this transition was not well modeled by the classical
Kolmogorov- Avrami crystallization derived in the previous section.

They tested their data for compatibility with the Kolmogorov-Avrami
model by using log-log plots. Specifically, note that if ¢(t) = 1 — e " then,
by setting ¢ = e®, and taking double logarithms, it follows that

In(—In(1 — p(e®))) = Ink + ns.

Setting C' = Ink and denoting the left-hand side by f(s), the identity sim-
plifies to
f(s) = C+ns,

i.e., in this representation the crystallization curve becomes a straight line,
and, if the model applies, the properly rescaled data should also fall approx-
imately on a straight line. However, this was not at all the case for the data
from the decomposition of C'Oy.CoH,, and it was clear that the classical
theory was insufficient to explain the time dynamics of this phenomenon.

2.3 Generalized Models

The derivation of the Kolmogorov-Avrami model given earlier was based only
on the probabilities that an arbitrary reference point P would be at a certain
distance from the closest nucleus. This works very well for situations where
the whole substance will crystallize, but such is no longer the case for the



example presented in the previous section. We have to be more careful in
the model design.

A moment’s thought shows that the Voronoi diagam partition of the
domain D defined by the nuclei @); should be of crucial importance for the
process. Recall that the Voronoi cell D; associated with @); is the set of all
points R such that |R— Q;| < min;|R— Q;|, or, in words, R is closer to Q;
than to any other nucleus. The partition of D obtained in this way is called
the Voronoi diagram associated with the nuclei.

For the time being we will focus on the growth of one crystalline globule
which starts at );. This growth rate will initially be cubic, but as soon as
the globule reaches a boundary of the Voronoi cell it will stop its growth
in this direction, because by definition of the Voronoi boundary the growth
from a neighboring nucleus will reach that boundary simultaneously, and the
globules will impinge upon each other. See Figure 1.

The stoichiometry of our original compound (in the example, the binary
phase COy.CyH,) is of importance for the sequel. Suppose that fraction
g < 1 of the available volume can actually crystallize, while the remaining
fraction 1 — ¢ will be occupied by the amorphous “waste” component. In the
example we have ¢ = 1/2. Considering still one Voronoi cell, we now make
an idealized ansatz for the individual growth curve of the globule: Let V, be
the volume of the Voronoi cell, set s := ¢V, b := (s/k){*/3) and define

kt® for ¢t<b

9(st) = { s for t>0b (2)

The constant k£ is proportional to the cube of the radial growth speed of
the globule. This is a growth curve which “pretends” that cubic growth
continues until the crystallizable fraction of the cell is full; at that point the
growth stops completely. In reality, the growth will not be cubic after one
or more boundaries of the Voronoi cell are reached; at this point growth will
slow down and stop completely at ¢ = b, when the maximal possible fraction
of the cell has crystallized. The details of the true individual growth curve
will depend on the geometry of the Voronoi cell in question, and on ¢q. The
idealized growth curve is more realistic for small ¢ because the bulk of the
Voronoi cell will be filled with the amorphous residue, and the crystallization
will stop rapidly. If ¢ is large, matters are more complicated, as the globule
may impinge into many Voronoi boundaries before the crystallization stops.
The key idea of a generalized model is to average idealized individual
growth curves as in (2) over the volume distribution of Voronoi cells gen-
erated by a Poisson process. Specifically, if we assume as before that the
crystallization nuclei are distributed according to a Poisson process with in-
tensity A > 0, the crystallizable fractions of the Voronoi cells will have volu-
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mina which are distributed according to some (unknown) probability density
fq(s), and the averaged crystallization curve will be an integral

o(t) = / " (s, 6)fuls)ds. 3)

Note that this growth curve is not dimensionless-by construction, it has the
dimension of volume. We can divide by a normalizing constant to rewrite ¢
as a fraction of the total crystallizable volume. Growth curves of the type
(3) have the potential to model most incomplete crystallization curves well.
However, the following problems arise and must be addressed:

e the idealized growth curves (2) are not very realistic; specifically, they
are expected to be less and less realistic as ¢ approaches 1.

e the distribution densities f; are not known. In fact, it is a hard open
problem in computational geometry to establish good approximations
of statistical properties of Voronoi cells, including their volumina. A
reasonable approximation for f, for the case ¢ = 1 is a density function

f(s) = ﬂ5267752,

where 3 and 7 are linked by the constraint that fooo f ds =1 (see Ref.

18] ).

If the idealized growth curves (2) are used in (3), an easy calculation shows
that
kt3 00
olt) = / sha(s) ds+ k6 [ 1y(s) ds (4)
0 kt

For the example of the disintegration of CO3.CyHy into crystalline C'O, and
residual CyH, the stoichiometry is 1-1, so ¢ = 1/2. in Refs. [14],[15] we
used f(s) = Bs%e™"* in (4) to produce a theoretical growth curve, and then
scaled time and 3 to produce a best fit to the data. The result was completey
convincing: See Figure 2.



-

Figure 2: The growth curve matched to data points

Remarks.

e Since this research was first published, many more examples for incom-
plete crystallization as described here have been discovered by chemists,
and the growth curves of type (4) provide good matches for their growth
curves (T. Gough, personal communication).

e If one chooses for f, the density distribution of the volume of the largest
sphere centered at the nucleus which will fit into a Voronoi cell, Formula
(4) reproduces the Kolmogorov-Avrami model. This is not surprising,
because this approach essentially ignores the space available to the
waste product. It is not hard to see that this largest sphere will on
average fill only 1/8 of the volume of the cell. See [18] for more details.

e The topic we discussed in this section doesn’t really fit the label “kinetic
theory.” We deemed it of sufficient interest to be presented here; there
is of course the central aspect of “averaging,” in this case over all the
Voronoi cells in the volume at hand.



3 Transcriptional-Translational Oscillators,
Ultradian, and Circadian Rhythms

Our second subject brings us from physical chemistry into the domain of mi-
crobiology, specifically cell biology. The section will provide an introduction
to coupled gene expression processes which provide oscillations in protein or
protein complex concentrations; such oscillations are observed in nature in
both eukaryotes and prokaryotes. Their periods are typically of the order
of magnitude of 15 minutes to a few hours, significantly shorter than the 24
hour day/night cycle, and hence they are known as “ultradian” oscillations.

We will present a mathematical model based on realistic biochemical pro-
cesses occuring in the cell, thus possibly a true mechanism; the complexity of
cell biology is such that experimental verification is very difficult. Dozens, if
not hundreds, of the biochemical processes we use in the model occur in real
cells simultaneously at any time.

3.1 The Setting

This article is an article on mathematical modeling, not microbiology, so we
find it appropriate to include a few basic (and trivial, yet impressive) facts
about cell biology. First, recall that each individual cell contains the genome
(DNA) molecule consisting of two DNA strands that in turn encode all the
genetic information about the living being. For a human, the length of a
single (untangled) DNA molecule would be on the order of magnitude of 2
meters; given that the human body contains about 10 cells, the accumu-
lated DNA molecules of one human being, laid end to end, would reach from
the Earth to the Sun and back 70 times. It would only take the DNA of a
little over 2,000 humans to reach to the next solar system.

Of course, the DNA molecule is tangled (knotted) in unimaginable com-
plexity to fit inside the cell, where it controls and drives life processes. The
crucial processors are the genes, which should be thought of as short pieces
of (“sites” on) the DNA strand. These sites drive chemical processes leading
to the production of proteins and protein complexes, a procedure known as
“gene expression.”

In the sequel we describe how the expression of two genes via messenger
RNA, translation into proteins, and protein reactions to form secondary pro-
tein compounds, which interact with “the other gene” on the DNA strand,
can produce ultradian oscillations. We call such an oscillating system a pri-
mary oscillator or transcriptional-translational oscillator, or in short a TTO.
Later we will describe how couplings between TTOs can lead to secondary os-
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cillations with circadian periods; this is a possible explanation for the cellular
mechanisms causing circadian rhythms.

A gene may be active or passive; if it is active, it will produce messenger
RNA (mRNA) at a steady rate, a process called transcription. The gene
state (active or passive) typically depends on whether a site-specific protein
complex (a protein “dimer”) is attached to the site (we call the site “occu-
pied”). If the presence of the specific dimer causes transcription, we say the
dimer “activates” the site. The opposite is also possible — occupation by a
site-specific dimer may stop transcription. In this case we speak of site repres-
sion or inhibition. The presence of an activating or inhibiting dimer at each
site should be modeled as a Markov process whose parameters depend on
the concentrations of the dimers in the cell (actually, it is more complicated;
we will discuss this further, after the TTO modelling is complete). Two
genes may “communicate” if the dimers produced by their transcriptional-
translational reactions are site-specific for the other gene. This is the basic
idea behind a TTO.

The job of the mRNA molecules transcribed by the gene is to assemble raw
materials available in the cell into proteins. This process is called translation,
and the chain transcription-translation is known as gene expression. The
proteins may react with proteins of the same kind to form homodimers, or
with different proteins to form heterodimers. It is these dimers (protein
complexes) which may reattach to the DNA strand, then travel along it until
they arrive at one of their specific sites and assume their task of activation
of repression.

In our model of a TTO, two genes (DNA sites) are transcribed into
mRNA, and this process is a starting point of the following cyclical chemical
dynamics.

e Transcription by gene 1 occurs when site 1 (its regulatory region) is
unoccupied. Its state is given by a random variable X, so that

X; =0 if site 1 is empty; X; =1 if site 1 is occupied by D, (see below)

e When gene 1 is active it produces mRNA (measured in molecules per
cell, R;) at a constant rate ki;. These molecules undergo first-order
decay with a rate constant kis.

e The mRNA molecules are translated with rate constant k13 into protein
Py, which: (a) decays at rate constant k4, (b) forms homodimers D,
at rate ki, and (c) forms heterodimers D;3 with proteins P from a
third gene (see below) with a rate constant kg;.
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e The homodimer D, binds to site 2, and thereby activates the transcrip-
tion of gene 2. The state of gene 2 is given by the value of a random
variable Y; so that

Y =0 if site 2 is empty, and Y; =1 if site 2 is occupied by D;.

e When activated, gene 2 transcribes its mRNA; its mRNA translates
into protein P,, which forms homodimer D,, which in turn feeds back
to inhibit gene 1 (above). In addition, the P, molecules decay with a
certain (biological) half-life.

e These linked reactions generate a TTO for an appropriate choice of
parameters. The parameters used in our subsequent calculations are
listed in Table 1. Our model entails gene 1 being inhibited by homod-
imer Dy and gene 2 being activated by homodimer D;. This is the
mechanism leading to primary oscillations.

Figure 3 is a caricature of the process.

proteins trandation
S Tr
o A/\ mRNA (R)
/
e 0 s
B e (6] transcription ® e e

™

gene (site) 1

(active if empty;
inhibition)

DNA

(double
helix)

(activeif
occupied) 8

Figure 3: A caricature of a TTO
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3.2 Stochastic and Time-averaged ODE Systems for
Primary Oscillators

We denote by R;, P;, D;, i = 1,2 the numbers of mRNA, translated protein
and homodimer molecules per cell produced by site :. The above scenario is
then summarized in the following system of stochastic differential equations
(only two of the equations contain the random variables X; and Y; explicitly,
but all dependent variables are then of necessity random variables). The
parameters ki1 etc. are listed in Table 1. The notations for these parameters
are changed from those of Ref. [8] for a more logical sequence. For a complete
list of biologically reasonable parameter values, see the reference.

R, = ku(l-Xy)— kiR

P = kisRy — kP — 2k15P12 + 2k16D1 — kg1 Py P3 + kgo D13

D} = kisP?— kisD;

R, = kuYi— kiR,

Py = kosRy — koy Py — 2kos Py + 2k Dy

Dy = kysP5 — kogDs (

— o~~~ —~
oo
— N N~ —

0

The loss terms in the various equations reflect the fact that mRNA, protein
and dimer all have a biological half-life in the cell. For example, the half-life
of the homodimer D; is T = In2/ky¢. The first term in the second equation
describes the translation process; note that there is no reason why ks and
k13 should be coupled; the former, as mentioned, is the rate of disintegration
of an mRNA molecule, while the latter is the rate at which such a molecule
manufactures proteins. The last two terms in the second equation reflect
the combination of proteins P; and P; (which is produced by the second
primary oscillator) to form the heterodimer D;3. This heterodimer in turn
breaks down into pairs P, and P3 at rate constant kgs.

e Notice that there is no coupling between the equations for Ry, P, D,
and Ry, P, Dy except possibly through the laws of the random variables
X1, Y. This is exactly how the coupling is achieved, and we will shortly
explain how.

e The dimensions we choose for our model variables are in molecules/cell.

A second primary oscillator will be given by a nearly identical set of equa-
tions, except that the periods of the oscillations are slightly different. This
can, of course, be achieved by changing the parameters in many ways, but

13



Parameter | Value Dimension

k11 1800 1/hr (1 mRNA every 2 seconds)
k1o 3.2 1/hr (half-life T' ~ 13minutes)
ki3 700 1/hr x molecule

k14 4 1/hT‘

ks 3.6 x 10~* | 1/(hr x molecule?)

k1g 15

kos = ki3

k24 4

ka3 1400

k25 1074

k26 )

Table 1: Parameters. The dimensions are [kio] = hr~!, [kio] = (nr. x hr)~!,
[ki5] = (nr2 x hr)™!

the simplest method is to have the two TTOs identical in nature but with
different time scales. To do this we multiply each right hand side by a fixed
constant § > 0, where 0 is close (but not identical) to one. For example, the
first equation of the second oscillator will read

Rg - 5(k11(1 - XQ) - k12R3).

The parameters chosen reflect, where available, reasonable choices of
known molecular processes. The critical ones for establishing the periods
of the primary oscillators turn out to be the decay times of the mRNAs and
proteins (not surprisingly, the oscillations are based on a Hopf bifurcation,
which is driven by the values of these parameters. We discuss this aspect
later). For the former, a half-life of 13-17 minutes and for the latter, 4-17
minutes generate ultradian oscillations in the model. Some of the values used
in the simulation are given in Table 1.

The coupling between the two sites communicating in each oscillator is,
as stated, provided by the random variables X;, Y;. The times for which these
random variables stay constant are assumed to be exponentially distributed
and follow “their own time scale.” For example,

Prob{X; =0 in (t,t+ h)|Xi(t) = 0} = exp(—Ds(t)h/e€) + o(h),

Prob{X; =1 in (t,t + h)|X1(t) =1} = exp(—rh/e) + o(h)

while

14



Parameter | Value
r 25
s 5000
q 5500
) 1.125
Table 2: More parameters. We set [¢] = hr, so that r,s, ... become dimen-

sionless

Prob{Y1 =0 in (¢t,t+ h)|Yi(t) = 0} = exp(—D1(t)h/e€) + o(h),

Prob{Y1 =1 in (t,t+ h)|Y1(t) = 1} = exp(—st/e) + o(h).

€ is a time scaling parameter, introduced for convenience to express the fact
that the binding and unbinding of the homodimers occurs on a faster time
scale than the remaining processes. The constants r and s measure, relative
to the scale €, the average times for which the sites will remain occupied. As
this is an internal parameter of the site it should not depend on the states
of the rest of the system (like, for example, the dimer concentrations). We
give values for these parameters, and for J, in Table 2.

The parameter € scales the most critical parameter, namely the rate con-
stant for binding of the transcriptional-regulatory proteins (D7, Ds) to the
sites of the genes. There is experimental work ([2], [29], [35]) which indi-
cates macroscopic (observed) second-order binding rates of 10'°/(M -s). In
terms of molecules per cell in a bacterium, this translates into approximately
36,000 molecules/(cell-hour) (1 molecule per bacterial cell is about 107 M).
This rate is much larger than predicted for a diffusion-limited reaction, and
is believed to be due to the unusual mechanism of association, in which the
protein binds with low specificity to unrelated DNA and then migrates along
the DNA molecules to its high-affinity regulatory site by one-dimensional
diffusion. It has been shown that this accounts for the rate enhancement
observed in [2].

We therefore set the average “free” time of the binding site for Dy as
€/D,, and the average “occupied” time as €/r. Their quotient is independent
of ¢, but will change with the homodimer concentration Ds.

As stated, the average times for which a dimer stays bound (¢/r, /s, etc.)
are independent of the state of the system. In contrast, the “free” times are
inversely proportional to the concentration of the attaching homodimer. In
one of the simulations given in [8] we used r = 25 and € = 10 'sec (which

1

corresponds to £ = g=sec, or an average of 900,000 binding events per hour).
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The corresponding stochastic simulation compares well with a (yet to be
described) limiting scenario for which e = 0. Before we describe this limiting
scenario in detail we present the remaining equations making up the complete
oscillatory system.

The protein products P; and Pj of the first and second primary oscilla-
tors combine to produce a heterodimer D;3. Assume that this heterodimer
binds to the regulatory site of a fifth gene and activates it for transcription
(other constructs, involving other heterodimeric products of the two primary
oscillators, and either stimulation or inhibition of transcription of the fifth
gene, could also be used). Transcription, translation, and dimerization of
the protein product of gene 5 yields the product Ds, the primary circadian
output of the model (although all variables show circadian behaviour to a
greater or less extent, as seen in numerical experiments).

The corresponding system is

Di3 = ke PiPs— keyDi3

Ry = k53 X3 — ksuRs

P! = kisRs — kigPs — 2ks7 P; + 2ksg Ds
Dy = ksP? — ksgDs,

and

Prob{X; =0 in (f,t+ k)| Xs(t) = 0} = exp (%3(%) +o(h),

Prob{X; =1 in (t,t + h)|X3(t) = 1} = exp (%h) + o(h).

The parameter g was listed in Table 2. For reasonable values of the other
ones, the reader is referred to ([8],[9]).

3.3 The time-averaged deterministic model

As € is (realistically) small, we investigate what happens in the limit € \ 0.
First, observe that we have uniform (in €) a priori bounds on the derivatives
of all the dependent variables; for example, Dy(t) varies uniformly slowly
relatively to €, such that it should be legitimate that Dy be treated as a
constant on short time intervals as € \ 0.

Renewal reward theory (see [32]) allows us to derive a system of ordinary
differential equations replacing (5-10) by a “time-averaged” system in the
limit. If Dy were in fact independent of time, the time average of X;(¢) over
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“macroscopic” time intervals (i.e., intervals of scale much larger than €) is
- ffh. The corresponding average of 1 — X () is then —5-. Renewal reward
theory implies that this intuition is mathematically accurate.

Specifically, define a cycle to consist of a period of unoccupied time fol-
lowed by a period of occupied time, ending with detachment. The period
of unoccupied time is by construction exponentially distributed with mean
€/D,. Suppose, in the language of renewal reward theory, that no reward
is received during this time. The following, occupied part of the cycle is
exponentially distributed with mean ¢/r, and we assume that the reward as-
sociated with this period is exactly equal to the amount of occupied time.
Renewal reward theory then asserts that the long-term average reward (i.e.,
the proportion of occupied time) is with probability 1 equal to E(R)/E(L),
where E(R) is the expected reward during a cycle and E(L) is the expected
length of a cycle.

In the case under consideration

E(R)=¢/r, E(L)=¢/r+¢/Ds,,

so the long-term time average of X;(t) is Do/(r 4+ D), i.e., lim. 0 X1.(t) =
Tffb (here, we denote the random variables X; as X, to emphasize the
dependence on €). This time average will hold over any time interval over
which D, is constant or changes sufficiently slowly. In this time-averaged

system Eqns. (5,8) then become

r

R, = k — kiR 15

1 11T+D2 12411 ( )
D

RI2 - kllT})l_kl2R2 (16)

and the remaining equations stay the same. Similarly, Equation (12) be-

comes
D13

(¢ + Di3)
This intuitive argument is not rigorous, but it can be made rigorous. For
details, see [8]. We state the result.

Denote by Ry, P, Dic etc. the solution of (5-10) for some € > 0 and given
initial values R;(0), P1(0),..., and denote by Ry, P;, D; etc. the solution of
Eqns. (15, 16) ff. for the same initial values.

Ry = ks3 k54 Rs.

Proposition 1. Almost surely for allt > 0,
lim R,(t) = Ra(?)
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lim D (t) = Dy (%)

e—0

11_1)13 Rze(t) = Rz(t)
etc.

Remarks on the proof. 1t is easily seen that on any bounded time interval
[0,7T] the random funcations {R;, Pi,...} are an equicontinuous and uni-
formly bounded set, such that the conditions of the Arzela-Ascoli Theorem
apply. We can therefore extract convergent subsequences, and it suffices then
to show that the limits will satisfy the deterministic system (15, 16) ff. This
is done by considering the integral version of the systems, partitioning the
integrals into Riemann sums with step size At, and using the mentioned
renewal reward result on each short time interval. For details see [8].

3.4 Interlude: Coupled and Forced Oscillations

The production of the heterodimer D13 described in the previous section was
the key step leading towards circadian rhythms. These model rhythms are
therefore the result of forced oscillations with forcing terms whose frequencies
are close but not identical; in other words, we think of circadian rhythms as
resonances. This idea is old [34] and somewhat controversial among biolo-
gists. In Ref. [9] we presented a detailed discussion arguing in favour of the
idea. Rather than repeat this discussion here, we will provide a very brief
review of the elementary facts behind resonances, or beats.
Consider the simple coupled system of linear ODEs

o) +wlr, = k(ze—71) (17)

oy +wlty = Kz — 29) (18)

where k is thought of as a small coupling constant, and w is the natural
frequency of a harmonic oscillator. This system is the prototype of coupled
oscillators. If we set Z := x; — x4, the system can be written equivalently as

o +wlt, = —kZ (19)

7"+ (W +2k)Z = 0 (20)

so the second equation is now decoupled from the first, and its solution Z
can be seen as driving the oscillations of z;. At least for this linear scenario

it is therefore transparent that resonances via coupling and resonances via
external forcing are equivalent. Of course, if we set Y = x1 45, the equations
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for Y, Z are really decoupled and easily solved. This is a first-year exercise
for undergraduate students, with the result Y (¢) = acos(wt — ), Z(t) =
Acos((Vw? + 2k)t — ). If we abbreviate a := A — «, we find

z(t) = gcos(wt - B)+ %A(cos(wt — B) + cos((Vw? + 2k)t — 7),

and after the use of a trigonometric identity

z(t) = gcos(wt - B)+ Acos(% ((w +Vw? +2k)t — (B+ 7)))
X oS <(\/w2 + 2K —w)t — %(ﬂ — 7)) (21)

Recall that k is assumed to be small relative to w. Thus

\/w2+2f£:w+g+0(/<c2),

and the last term in (21) produces an envelope cos (51& - .. ) with the
long “circadian” period T, = 2“7“, as compared to the shorter “ultradian”

period 17 = %’T Note that the same 75, is produced by constant quotients
of w and k; hence circadian rhythms may be produced by various choices of
ultradian oscillators and coupling strengths.

The (stochastic or time-averaged) systems considered earlier are more
complex than the simple harmonic oscillators just described, but the basic
mechanism is very similar. In fact, linear bifurcation analysis can be applied
to understand the origins of the oscillations at the TTO level, and beyond
this the secondary oscillations reduce to sinusoidal waves via Fourier series
expansions. We discuss this in the next section.

3.5 Ultradian oscillations from a Hopf bifurcation
Two questions arise naturally from what has been said so far. They are
e What are the principal reasons causing the primary oscillations?

e Is it really necessary to introduce secondary oscillations from couplings
between primary oscillators to obtain circadian frequencies? Is it not
rather possible to obtain circadian rhythms directly from TTOs, with
reasonable ranges of parameter values based on known biochemistry?
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The second question was investigated to some extent in Ref. [8]; while
there are parameter ranges that can stretch the periods of TTOs to circadian
range, these look biologically not realistic.

In this section we address the first question and show that the primary
oscillations arise from a Hopf bifurcation. This mechanism also provides
the methodology (at least in principle) to predict periods of the primary
oscillations, at least while the parameters are near the bifurcation points.

Consider the time-averaged single primary oscillator

dR1 T

— =k — kioR
dt Yr+ D, "R
dP:
d—tl - klgRl - k14P1 - 2]€15P12 + 2]€16D1
dD
d—tl = kisP} — kigD1
dRy D,
— =k — ko R
dt 118+D1 12412
dP, )
E == k23R2 - k14P2 - 2]€25P2 + 2]€26D2
dD
= kP — kD

(22)

To simplify a systematic investigation of the dependence of the periods on
the parameters, let ko3 = ki3, kos = k15, kog = k16, and linearize the system
about its unique positive equilibrium (Rig, Pig, Dig, Rog, Pop, Dog) (it is
easy to see that there is such an equilibrium). The linearization yields the
6-by-6 matrix

—k1s 0 0 0 0 T
kls _k14 - 2k15P1E‘ 2k16 0 0 0
A — 0 2k15P1E _klﬁ 0 0 0
0 0 (53)7112)2 —k12 0 0
0 0 0 kis =k — 2ki5Po 2k16
0 0 0 0 2k15Po —k16

Its eigenvalues satisfy det(A — A\I) = 0, which yields the characteristic equa-
tion

(k12 + )\)Q(km + )\)Z(k14 + 2k15Pig + A) (k14 + 2k15Pop + A) + Cg =0. (23)
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Here,
2= Arski k2 k2, .
(s + D1g)?(r + Dag)?

Note that the numerator is a simple product of parameters, but the de-
pendence of ¢y on the parameters is somewhat more complex because the
equilibria values Dig, Dop also depend on the parameters. To identify os-
cillatory solutions with (long) periods we need a complex conjugate pair of
eigenvalues with positive real part and (small) imaginary parts. Clearly,
c2 = 0 in (23) produces 6 real and negative eigenvalues (counted with their
multiplicity). If we now increase c3, one pair of eigenvalues approaches and
eventually crosses the imaginary axis, producing the Hopf bifurcation and
the oscillations.

The only way to force the crossing of the imaginary axis at small imag-
inary value is to move a pair of eigenvalues closer to the imaginary axis to
begin with (i.e., when ¢Z = 0). Numerical experiments to this end are given
in [8].

3.6 On numerical and real experiments

In Ref. [8] we presented several simulations performed with the XPPAUT
package (see [11], or http://www.math.pitt.edu/ “bard/xpp/xpp.html). The
parameters used in these studies are those from Table 1. Here we present
two graphs associated with the deterministic (time-averaged) model.

First, Figure 4 shows the time evolution of the numbers of the proteins
P, and Ps. They oscillate with a period of about 3 hours but differ slightly in
their periods (of course, this was set up to be so). A slight circadian variation
is seen, but is much more promiment in Figure 5, where the responses of the
protein products of the fifth DNA site are shown; note the time lag of Ds
with respect to Dis.

In Ref. [8] the same calculation was done for the stochastic model. We
used Gillespie’s method [12], where the € was chosen as 2.8 x 10™°hrs. The
results are essentially identical to the ones for the time-averaged model.

As a control measure we performed some calculations with larger e, for
example € = 2.8 X 103 hrs and € = 0.028 hrs. For the former case, especially,
the results were still very close to the time-averaged simulations. For the
latter case deviations from the time-averaged simulations became noticable:
in particular, the amplitude of the circadian oscillations in D5 fluctuated
stochastically and their period decreased slightly.

The circadian period is remarkably robust with respect to the choice of
€. We demonstrate this in [8] by computing Fourier power spectra of the Dj
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Figure 4: The time evolution of the proteins P, and P3; according to the
time-averaged model

time series generated by simulations with € = 2.8 x 1075 and € = 2.8 x 1072,
The reader is referred to [8] for details.

Fourier power spectra offer a natural way of investigating whether our
model applies to reality. Specifically, efforts are currently under way (with
suitable plants) to observe periodic activity levels in the absence of exter-
nal circadian stimuli. Power spectra of the collected time series display (of
course) a strong circadian peak, but there is evidence of a (much weaker)
power concentration at ultradian frequency levels. This is consistent with
our theory, but the data are of insufficient resolution to decide whether cou-
plings between ultradian oscillators are responsible for the circadian rhythm.
More experimental work on this is in progress.

3.7 On Kolmogorov master equations: an example

The theory presented in the above sections is incomplete in the sense that
there is no mechanism to analytically investigate fluctuations caused by the
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Figure 5: The time evolution of the heterodimer D;3 and the homodimer Ds
according to the time-averaged model

random variables X1, Y] etc., and the associated parameter €, or by stochastic
fluctuations of the initial state of the system (which, for the problem under
consideration, should be completely irrelevant). All we proved (in Proposi-
tion 1) is that for given fixed initial values the fluctuations will indeed vanish
as € — 0.

The method of choice for gaining additional information is to set up a
system of partial differential equations (the Kolmogorov master equations,
which we will for short call KME) for the probability densities that the ran-
dom variables X7, ... at time ¢ and the dependent variables R;(t), P;(t), D;(t)
assume certain values. This is possible but somewhat cumbersome for the
full system starting with equations (5)-(10). Note that there are four possible
right hand sides for the equations, each associated to whether or not X; and
Y; are 0 or 1, and each assumed with certain probabilities. Instead of deriv-
ing the KME for the full complicated system we shall discuss the following
much simpler example.

Let X = X (t) be a random variable alternating between 0 and 1, and let
N = N(t) be a dependent variable whose evolution is driven by the law
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N filN) if X =1
= fo(N) if X =0
fo and f; could really be any (smooth) functions but later we will set f1(N) =
1—N, fo(IN) = —N, or more compactly f;(N) =i— N, i =0, 1. This choice
implies that the values of N will remain confined to [0, 1] if they are so at
time 0.

Now assume that there are probability densities p;(N, t) such that for any
Borel set I C [0,1] and i = 0,1

Prob{N(t) € I, X(t) = i} = / pi(N, 1) dN.

Our objective is to find (and use) evolution equations (the KME) for the p;.
We need two fundamental tools to this end:

1. The definition of conditional probabilities:

Prob{AN B} = Prob{A|B}Prob{B}
2. The definition (and existence) of transition rates for X.

For the subsequent calculation we denote by 7;(t) Ny the unique solution
of N = fi;(N), N(0) = Ny. Also, we consider a time interval [¢,¢ + At], and
consider

Prob{N(t+ At) e I, X(t+ At) =1} =
Prob{N(t+ At) e I, X(t + At) =1,X(t) =1}
+ Prob{N(t+ At) e I, X(t+ At) =1,X(t) =0}
= Prob{N(t) e Ti(—A), Xt + At) =1,X(t) =1}
+ Prob{N(t) € To(—At)I, X (t + At) = 1, X (t) = 0} + o(At).

In the last identity it has tacitly been assumed that At is small and that
two flips of X in [t,¢ 4+ At] are of probability o(At); this is the meaning of
“a”. Also, the last line assumes that the flip 0 — 1 of X happens at exactly
time ¢ 4+ At; this assumption is too simplistic, but (as the reader may verify)
the subsequent calculations will produce the same final result of the flip is
assumed to occur at ¢t + sAt for some s € (0, 1]. We continue the calculation
by converting to conditional probabilities:
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Prob{N(t+ At) e [, X(t+ At) =1} =

Prob{X(t + At) = 1|X(t) = 1, N(t) € Ty (-~ At)I}
x Prob{X(t) = 1,N(t) € Ti(=At)I}

+ Prob{X(t+ At) = 1|X(t) = 0, N(t) € To(~=At)I}
x Prob{X () = 0, N(t) € Ty(—AB)I} + o(At).

We next invoke the second key ingredient, namely the assumption that there
are transition rates A > 0 and p > 0 such that

Prob{X(t+ At) =0 |X(t) =1,N(t) € T1(-At)I} = pAt + o(At)

Prob{X(t+ At)=1 |X(t) =0,N(t) € To(—At)I} = AAt + o(At).
We first assume that A and p are constant: we call this the constant case;
the important case where A and p depend on the sets Ty(—At)I, T (—At)I,
respectively, and assume limits A(IV), u(N) as these sets concentrate on N (t)
is called the wariable case. The variable case is the important one for the
TTO examples; we will explore the example A(N) = N, u = const. in more
detail.

For the case where A\ and p are constant, the previous calculations readily
lead to

/pl(N,t—i- At) dN = le(_At)Ipl(N, t) dN - (1 — pAt + o(At))
I
+fT0(fAt)I po(N,t) dN - (AAt + o(At))  (24)

By using the simple substitution N = z — Atf;(z) we proceed to compute
dN = (1 — Atf{(z))dz and

/T( At)[pl(N’ t) dN = /[p1(z — Atfi(2),1)(1 = Atfi(2)) dz + o(At).

Substituting this into (24), collecting terms and concentrating I to the
point N leads to

m(N,t+ At) — pi (N, t) =
pi(N = fi(N)AL 1) (1 — f{(N)AL)(1 — pAt)
—p1(N. 1) + po(N — fo(N)AL1)(1 — fo(N)AL)AAL + o(At),
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and after division by At and taking the limit as At — 0, we find

Op1 +On(pifi) = Apo — ppr

0o + On(Pofo) = —Apo + up. (25)
This system of equations is known as the Kolmogorov master equations
(short, KME) for the original equation.
Remarks.

e One easily sees that the same system (25) emerges if the “flip” of X
from 0 to 1 occurs at some time ¢+ sAt, s < 1 (rather than at ¢ + At,
as assumed above).

e If A\ and i depend on the previous state of the system, the equations
(25) emerge with A = A\(N) and u = p(N) on the right-hand side.

e Of particular interest for us is what happens in the “fluid-dynamic”
limit where A — %, p— % and € — 0. We address this, as is common
in theories of kinetic equations, by studying the associated moment
equations.

3.8 Moment equations

Consider the special case of (25) where f;(N) = i— N. The rescaled equations
become

o1 +On((1 = N)p1) = =(Apo— pup1)

(up1 — Apo)- (26)

and we complement these with the boundary conditions p;(0,t) = po(1,t) =
0.

Alr—_a| -

Oipo + On(Npo) =

We study the moment equations associated with (26) for the constant
case and for the case where p is constant but A = A(N) = N. Denote for
1=0,1

Pi(t) = /lpi(N,t) dN, P(t)=P°(t)+P'(t)=1
E'(t) = / 1 Npi(N,t) dN, E(t) =E'(t) +E*(¢)

E(t) = /01 N%p;i(N,t) dN, Ey(t) = E)(t) + E}(t), etc., and
V(t) = Ey(t) — E*(t) (the variance).
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By multiplying (26) with suitable powers of N, integration and by using
the boundary conditions, we obtain the moment equations. In the case where
both A and p are constant, these are

(AP° — uP")

Al |-

(uP' = AP?)
with the solution

PL(t) = ﬁ + (Pl(o) _ L) e Py —1—Pl).  (27)

Clearly, P'(c0) = 52, P°(c0) = 5!, and the solution converges ;—
exponentially fast towards these steady values. For the next moment, we get

the system
. 1
El = P'—E' +-(E’ —uE")
€

: 1
B = —F + =(uE' — \E")
€

and E = P! — E; after times of order O(1) the latter becomes

A

bl

which should be compared with the original equation N = X — N : assuming
constant switching rates and the scaling under consideration, the renewal
reward result used in Proposition 1 maybe applied to the current setting and
leads to the same equation for E.

Note that the equation for E contains € only via P!, and we saw that
this e— dependence vanishes after times of order O(1) (actually, even faster).
The equations for E' have no simple limits as € — 0, but it is not hard to
compute the E’s explicitly. For example, one finds that up to errors of order
€ in the first two terms

A2 A A At
E'(t)=(~"—) +~" [E0) - —"— ) et + Ce 70,
() (A+u> +/\+u<() /\+u>e e

and it is clear from this representation how E! decomposes into a steady part
and parts decaying on different time scales.
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As for the variance V, similar calculations show that
V =2(E' — P'E) — 2V; (28)

substituting the obtained formulas for E!, P! and E shows readily that the
first term on the right of (28) is of order O(e) for times O(1) and vanishes
completely for such times if ¢ = 0. This provides a qualitative means to
control the variance of the distribution of N after an initial layer that may
be caused by initial uncertainty in V.

The variable case is much harder, but we first note that all required
information is implicitly contained in the linear system of PDEs (26). If
we could solve this system explicitely the solution would provide anything
we wish to know. We could, of course, rely on numerical solutions, but
keep in mind that we are interested in what happens in the limit ¢ — 0, a
most delicate limit from a numerical point of view. The system of moment
equations, which provided such a drastic simplification in the constant case,
is now far less friendly because it is not a closed system: for the example we
obtain

Pl = (B

|
=
B

Po—

AN =] =
=
T
&

so [ is required to solve the system for P!, and then P° =1 — P!. For the
E‘ we have

B = P'_E +-(E - uE))
€
: 1
E = -E+-(uE - E)
€

and, as before, E = P! — E.
The equation for the variance V := E, — E? remains identical to the
“constant” case, as in (28):

d
—V =2(E! — P'E) — 2V.

A rapid count shows that at this level we have 4 equations for the 5 unknowns

PYEENES and V

(we can ignore (the equation for) P° because P’ + P! = 1). We can now
either include additional higher order moments (leading to a larger and still
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not closed set of equations) or use a closure relation to eliminate one of the
variables. This is, of course, exactly the question of closing hydrodynamic
equations emerging as moment equations from a kinetic equation.

To complete this section we will show a simple (and non-rigorous) way
of obtaining closed limits of moment equations based on the following two
steps.

e Multiply the equation for P! by ¢, then set ¢ = 0. This suggests that
E° ~ pP!. This is a fluid dynamic approximation in the sense of kinetic
theory.

e Assume that E° ~ POE. This is an (asymptotic) independence assump-
tion.

These two steps together, if valid, imply that
Pl=1-pP'=1-Ept
E

such that P! = %, and therefore

E:L—]E
E+up

The reader should compare this to the constant case, and to our time-
averaged systems of TTO equations. Notice also that under the two assump-
tions, we necessarily find E' = P'E, and the variance equation therefore
becomes

V=2V,

meaning that whatever variance is present must have come from initial un-
certainty and will diminish exponentially fast with time.

At this level we have not used the moments [, at all.

Of course, our two closure assumptions remain to be justified; one way
to pursue this is by using the renewal reward argument which we employed
to obtain the time-averaged version of the TTO equations, adapted to the
present example. The details of this are still being worked out as I write this.

For more sophisticated (higher order) closures we should emulate Grad’s
closures or related approaches (see [31]). I am not aware of any applications
of this methodology to the current biological context, but the importance of
good control of the size of stochastic fluctuations is clear.
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4 Fokker-Planck Type Models for Multilane
Traffic Flow

The various subjects covered in this article (and in my Porto Ercole lectures)
differ widely in terms of their origins — physical chemistry, microbiology,
traffic low on roads — but they share averaging concepts as a common
thread. In the crystallization problems discussed in the first section, we
averaged over many small Voronoi cells; in the modeling of TTOs time-
averaging over times of order larger than € led to simpler systems of evolution
equations for the molecular concentrations in a cell; in this present section we
shall use the idea of (heuristic) ensemble averaging to set up kinetic equations
for multi-lane traffic flow. We begin with a short review of what types of
traffic models are being studied.

4.1 Types of traffic models, and fundamental diagrams

Most of the traffic models in use for practical applications belong to one of
the following three categories:

1. Microscopic (“follow-the leader”) models, in which each individual car
is modeled by its own differential-delay equation, of type

(Vi1 —vi)™ (= 7)

(@ip1 — z)™(t — 1)

where z; and v; denote the position and speed of the i-th car (count-
ing in the direction of traffic flow), z;,; and v;;; correspond to the
leading car, and 7 is the individual reaction time. The factor C(v;) is
usually (but not always) taken as a constant, and the powers my, mo
vary from model to model; in the simplest case m; = my = 1. The
choice m; = 2, my = 1 makes C(v;) dimensionless. As presented, these
models assume single-lane traffic; even two-lane traffic introduces seri-
ous complications, because lane-changing has to be taken seriously and
requires careful bookkeeping on car-interactions between the lanes.

Microscopic models can be and have been used to compute density-flux
relationships (“fundamental diagrams”) in equilibrium situations, for
example in carefully monitored flow through a tunnel where all vehicles
keep approximately the same distance and speed; one may define a
density p(z;) = xi_;i+1 and an average speed u;(z;) = v; and compute
a fundamental diagram u = u(p) from basic observational facts such
as u(p) = Vmar (the speed limit) for p € [0, perit) (a critical density,
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identified by observations, at which drivers will begin to slow down),
U(pmaz) = 0, and integration of the model equations.

2. At the other end of the spectrum are completely macroscopic mod-
els, which are PDEs, typically (systems of) conservation laws relating
density and flux. For example, for p = p(z,t) and j = j(z,t) =
p(x, t)us(z,1)

Here, u® and p are linked by a (presupposed) fundamental diagram,
such that the equation becomes closed. Models of this type were al-
ready considered by Lighthill and Whitham 40 years ago; as scalar
conservation laws they enjoy attention as good examples for the forma-
tion and propagation of shock and rarefaction waves. They also are in
use for real highway simulations and give satisfactory results for many
(but not all) traffic situations. The underlying assumption is that the
traffic is close to equilibrium all the time, and that the equilibria are
stable. Unfortunately, this does not always seem to be true. We discuss
these weaknesses and suggested remedies below.

3. The third class of traffic models, whose interpretation requires a sta-
tistical point of view, are kinetic models. Such models provide partial
differential equations of transport (or drift-diffusion) type with inter-
action terms for car density functions f(z,v,t) so that macroscopic
density p and flux j are given as moments p(z,t) = [ f(z,v,t) dv and
j(z,t) = [vf(z,v,t) dv. We will mention examples of such models in
the sequel and discuss Fokker-Planck type models for multilane flow in
some detail.

4.1.1 Fundamental diagrams

As mentioned, a fundamental diagram is a relationship between p and j (or
p and u = j/p) in equilibrated traffic. It is a priori not even clear that such
a relationship should exist; theoretically, any different average speed up to
the speed limit (and possibly beyond) is conceivable: in other words, the
measures pd(v — u), for which all drivers simply move at the same (possibly
large) speed u should from the outset not be ruled out as solutions. In fact,
such “synchronized traffic” is observed and even desirable on freeways, and
large p and u together produce desired large flux. The problem is that such
values for p and wu are also inherently very dangerous, and so drivers will
reduce p by increasing their distance from the lead car.
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Traffic observations seem to produce acceptable functional relationships
consistent with the existence of a fundamental diagram in many situations.
However, there are a few exceptions, which seem to require refined theories.

A first regime where the fundamental diagram is easily obtained is when
the road (or the lanes in case of two- or multi-lane traffic) is almost empty. It
is reasonable to assume that (almost) everyone will drive at the speed limit
Umaz, Such that v = v,,,, and u is a constant function of p for small p.

For really high densities (say, two car lengths between any two cars)
drivers whould be forced to reduce their speed; it is, however, not clear what
the end speed should be — that may well be dependent on the society under
consideration. It is not even clear whether there would be a stable steady
state: moving jams are observed in situations like this, indicating that a
steady flux associated with such a high density might be unstable. We refer
to [23] for observations and theories on this regime. For the maximal density
(bumper-to-bumper traffic) one expects standing traffic, and hence zero flux.

The third regime is the intermediate domain, and this is where things
depend on the type of road. On a single-lane road the fundmental dia-
gram seems to make good sense and produce a decreasing average speed as
a function of density; on multi-lane highways, however, measurements seem
to suggest that there is a density domain p € [p;, po] where the fundamental
diagram is multivalued; this is reported in the papers [23], [24] and elsewhere.
As the phenomenon occurs only on multi-lane highways, it is clear that it
must be related to lane-changing.

4.1.2 Some examples

Given the uncertainties surrounding the existence and stability of fundamen-
tal diagrams, the need for more sophisticated models was there a long time
ago. A natural generalization was to replace scalar conservation laws by sys-
tems, where a separate equation for u is assumed. An early model of this
type was due to Payne and Whitham, and reads

pi+ (pu)e = 0
1 1
U + v, + —a = u®(p) — ul. 29
t T P PW(p)pw Te(p)[ (,0) ] ( )
The idea here is that the average speed is assumed to respond to density
gradients via a scaled “anticipation” function apw, and that traffic always
tries to relax to an equilibrium speed u®(p) (thus effectively postulating a
fundamental diagram) on a characteristic time scale T¢(p).
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This model is unsatisfactory from several points of view. First, it con-
tains three a priori unknown functions whose existence is debatable. Second,
as shown by Daganzo [4], it may produce the nonsensical phenomenon that
traffic gradients may force u(z,t) < 0, i.e., traffic may flow backwards. In-
deed, something not seen in reality. A moment’s thought about the structure
of equation (29) will convince the reader that strong positive gradients of p
may force rapid and unchecked decrease in %, so much so that © may become
negative.

A. Aw. and M. Rascle suggested a modification of the model which avoids
the pathology:

pr+ (pu)s = 0

1
Uy + uty + p0,(Uar(p))ts

Te(p)

This system suggests a transport equation for u, so that positivity of v is
ensured. However, a fundamental diagram is still implicitly assumed. We
note in passing that Klar and Rascle [1] provided a derivation of this equation
from microscopic follow-the-leader models. If 7° = oo and we abbreviate
p = ug then the second equation can be rewritten as

[u®(p) — ul. (30)

(u+p(p)): +u(u+p(p))s = 0.

As is obvious from this version, p has the dimension of a speed. Recent
analytical work on solving Riemann problems for this model employs this
version. (see [17]).

4.2 On kinetic models

Kinetic models for traffic flow are almost as old as theoretical traffic studies
themselves. We refer to [20] for a listing. We begin our brief discussion of
kinetic models with a list of desirable properties of “good” kinetic models;
some of these properties are easily understood and implemented into models.
Other properties are desirable, but very elusive.

1. The model should incorporate realistic scales for quantities like speed,
acceleration, density, flux, and so on. While this sounds eminently
reasonable, it rules out certain types of models from the outset, as will
be shown below.
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2. The fundamental diagram should (in principle) be computable; on
multi-lane highways, where lane-changing is an option, it should display
multi-valued regimes consistent with observations.

3. If diffusive mechanisms are absent in or removed from the model (as-
suming that is possible), the model should possess “trivial” equilibria
poy(v), i.e., equilibria which correspond to states where all drivers keep
constant distance to the lead car and drive at the same speed u. There
are traffic scenarios where such equilibria are observed, for example, in
moderately dense traffic, with no lane-changing, on freeways. These
scenarios are referred to as “synchronized” traffic in [23].

4. The model should predict traffic phenomena like stop-and-go waves or
traffic synchronization.

5. Ideally, the model should be amenable to “validation” from microscopic
dynamics via the formulation of a Liouville equation for an "N-” car
probability density on a (multi-lane) highway, the establishment of a
hierarchy of equations for the reduced correlation functions arising as
marginals, and a closure relation analogous to the molecular chaos hy-
pothesis in particle dynamics. However, this last point is likely the
most elusive of them all, because there is no reason why there should
be such a thing as “vehicular chaos”, although attempts to overcome
this obstacle have been made (see [25]). This is in stark contrast with
equations for rarefied gases or plasmas like the Boltzmann or Vlasov
equations, where such validations have been performed.

We will discuss two examples of kinetic models: a model of Boltzmann-
Enskog type due to Klar and Wegener ([25], [26]) in which much effort was
devoted to point 5 above; and second, a class of models of Fokker-Planck
type, due to Illner, Klar and Materne ([20]), for which the 5th item above
remains rather elusive, but the other four are attainable.

4.2.1 Enskog-type models: description and critique

Our discussion of these models will be cursory and incomplete; it will be
argued that their value is mostly of instructional nature, because, as we
state here from the outset, they belong to a (large) class of kinetic models
which does not satisfy point 1 from above.

Following the notation from [25] we consider a freeway of N lanes and
denote by f, = fa(x,v,t) the kinetic traffic density on the a—th lane, a =
1,...,N. Further z € R,v € [0, Uynaz), t € [0, 00]. The equation for f, reads
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Bufa + 100 fa = Colf2, .. O, fr ) f) (31)

where C,(...) denotes the interaction terms (sometimes also called “col-
lision terms”, but this terminology is unfortunate for the application at
hand) leading to gains or losses for f, in the space-speed-time domain
[z, 2 + dx] X [v,v + dv] x [t,t + dt]. As indicated, the interaction terms may
depend (in complicated ways) on the one- and two-vehicle density distribu-
tions on various lanes; for example, the gain and loss terms due to braking
contained in C\, will be terms

(GB - LB)(fafla fo(?)a ch-l)a

where it is indicated that the dependencies will typically involve two-car
densities on the same lane (completely reasonable, because you will react
relative to what the lead car does), and the one-car densities on adjacent
lanes (because these will impact your lane-changing behaviour). In addition
to terms due to braking, there will be also terms due to acceleration, gains
and losses due to lane changes to and from the lane on the left, and gains
and losses due to lane changes to and from the lane to the right. We will not
bother the reader with detailed presentations of all these terms; only one,
the Gp, is reproduced here for instructional purposes:

Gp(z,v,t) = / / Pg(w, vy, fari(z,...))
v+ Jw>v4
op(w = v;v)|w—vi| fO @, w,z+ Hy+ Tpw,vy) dw do,.

For the sake of brevity we refrain from discussing the complete terminology
used here; suffice it to say that Pg(...) denotes a braking probability, which
will depend on the speed w of the considered car at x relative to the speed
of vy of the leading car, at x + Hy + Tsw. op(...) is a probability to brake
to v given that the previous speed was w, and given that the lead car moves
at v;. op(...)Jw — vy| then assumes the part of a “collision” (or better,
interaction) kernel.

We refer the reader to [25] for the structure of all the other terms arising
in the Enskog collision operator. Our main purpose here is to see how these
models stand up to the above wish list of properties 1-5.

In passing, I must state here that these Enskog models were my personal
introduction to research on kinetic traffic models; specifically, the question
of how to use them to calculate fundamental diagrams presented challeng-
ing analytical problems inasmuch as the existence, uniqueness and structure
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of equilibria (from which the (p,j)— values on the fundamental diagram
are calculated) is highly nontrivial for these equations. Equilibria were first
computed by numerical means alone; later, in Refs. ([21],[22]) analytical
existence and uniqueness results were proved for special cases.

In these efforts it became transparent that the equilibria will significantly
vary with the choice of the probability densities oz. And this is weakness
no. 1 of the models: it is a priori not clear how o should be chosen! As
explained in the references, the logical choice op(w — v;vy) = d(v — vy)
leads to total cancellation of the interaction terms; hence Klar and Wegener
used op(...) = ﬁ){[ﬂw,w](v), where 8 € (0,1) is a parameter. But other
choices are possible and will change the equilibria, and this puts a question
mark to the computability of the fundamental diagram, point 2 in our list.

Second, we point out that (31) needs a closure relation before being of use;
as written, one needs to know two-vehicle correlation functions to compute
one-vehicle densities. The idea of closure relations is to express the former
in terms of the latter, by a more or less heuristic factorization including
correlation factors (as the standard molecular chaos assumption is certainly
not true). We omit the details, but the closure relation problem is closely
associated with the 5th item on our list.

The third, final and most serious objection is related to the first one.
Why, in fact, is it that we have the freedom of choice for o 7 If we had
elastic particles on the real line, moment and energy conservation would
dictate that the only possibility would be speed exchange, and that would
ultimately not produce any interaction terms at all. In the traffic example,
neither energy nor momentum are conserved in interactions, but the target
velocity is (with some margin of error) known in advance: The driver will
attempt to go as fast as traffic permits without causing a collision. More-
over, the velocity adjustment cannot be instantaneous! Whenever we write
a Boltzmann or Enskog collision term, we are implicitly assuming that “col-
lisions” are instantaneous, and hence so is the velocity change. However, in
traffic scenarios the interaction time between two cars is of comparable scale
to the mean travel time between encounters, and this fact will be ignored
if interactions are modeled by a “collision term” on the right hand side. In
other words, every model of type 0;f +v0,f = C(f) with a (linear or nonlin-
ear) collision term of scattering, Boltzmann or Enskog type violates the first
property: the scales of interaction times are not chosen realistically. In fact,
because the Enskog model compresses these times to zero, they create the
option to guess a “scattering” kernel og(...)|w —vy| . In the next section we
will see that this option disappears if we include positive braking and accel-
eration times. The corresponding kinetic equation then becomes an equation
of Fokker-Planck type.
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4.3 “Fokker-Planck” Multilane Traffic

Focus on an individual driver on a one-lane highway, with position z(t) and
speed v(t). z and v will change according to laws

and all the detail of the interaction with traffic will be in the dependencies
of the force (braking or acceleration) term B(...), typically augmented by
a diffusive correction. If lane-changing is ignored (trivial if there is only
one lane) and if there is no diffusion, the statistical dynamics of a kinetic
distribution density f(z,v,t) is given by a conservative transport equation

Ouf + v0uf + 0y(B(...)f) =0

(this does require a derivation, but a standard one, which we omit). A
diffusive correction with diffusivity D(...) will appear as a term —D(...)0, f
inside the last bracket.

If there are two lanes, and we have lane changing rates p;(...) from lane
1 to lane 2 and py(...) from lane 2 to lane 1, then the corresponding system
for the lane densities f; and f, will be

Oy fi 4+ v0y f:0,(B(.. ) fi — Di(-..)0ufi) = Prfr — ifi (32)
where k£ = 3 — 1.

Let us summarize: The braking/acceleration force is modeled by B, the
diffusivity by D, and the lane-changing by the p;s. The details of the model
are, of course, contained in the dependencies of these quantities on the state
of the traffic; there, we can include such effects as nonlocalities or time-delays,
driver errors leading to diffusion, and individual reaction times.

In view of what was said in the previous section the above models will
assume that lane-changing is instantaneous, but braking or acceleration are
not. This seems indeed reasonable; while lane-changing does in reality take
some time, the process itself should be equated to the signalling of a lane
change, because the traffic in the adjacent lane should react to that rather
than the actual lane change.

Ideally, and as stated earlier, the dependencies of B and D (and p;) should
be derived from a Liouville equation via hierarchies and a closure procedure,
but as such procedures are frustratingly elusive for the problem at hand,
we will simply consider dependencies that seem reasonable from a heuristic
point of view.
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4.3.1 Dependencies.

Let us now fill in the (...) in the suggested Fokker-Planck systems. Without
restricting the generality, we can scale time and distance such that v,,;,, =0
and v, = 1. By Hy we will denote a minimal safety distance (including the
typical car length, as we will interpret the position of a car as the position of
the front of the car). In addition, traffic observations tell us that there are
three characteristic (reaction) times, namely, 1) the intrinsic average reaction
time 7 (typically of the order of 0.5 to 1.5 seconds), 2) a “braking threshold”
time T, and 3) an “acceleration threshold” time 7. Observations suggest
that 7 < T < Ta (the latter two being of the order of magnitude of a few
seconds), and their meaning is as follows: Abbreviating Tx where X = B
or X = A, a driver moving at speed v will brake (or accelerate) only if the
distance Hx := Hy + Txv is smaller (or larger) than the distance to the
leading car, and this leading car moves with a speed v, such that v, < v (or
vy >v) for X = B (or X = A, respectively).

Drivers will be able to observe macroscopic density (p) and flux (j = pu),
but not much additional information about the kinetic density f is directly
observable (recall that f really only makes sense from a statistical point
of view). Hence it was suggested (in [20]) that B, D and the p}s should
only depend on these quantities, with appropriate nonlocalities. To this
end, the abbreviations p®(z,t) = p(z + Hy + Tgv,t — 7) and uB(z,t) =
u(x + Hy + Tgv,t — 7) (and similarly p#,u4) are conveniently introduced;
note that p? and u® become dependent on the speed variable v and make
no sense outside of a kinetic model.

p,j,u and f are naturally linked via

p:/fdv, j:/vfdv.

We set the lane change rates py, as pg := Pi(. .. )Jk, where ji is the flux on the
k-th lane and P is the lane change probability per car. This is dimensionally
correct, although the exact dependence of py on jj is debatable. In [20], the
dependence of P, on lane k was chosen as

’U—UB g . B
( kB) if v >

Umaz —Up

(33)
0 if v <ulf

P, = P(ug,v) = {
In other words, the lane changing probability is set to depend on the relative
(scaled) speed with respect to the leading car; the conditions v > u} are im-
plicit conditions because the right-hand side depends on v. In this sense, the
definition of Py is already quite complicated, yet we have not even included
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any dependence on the state of traffic on the adjacent lane (as one should
have). The number § is a parameter, usually chosen as 1.
We next describe the ansatz for the (braking/acceleration) force B. It is

—cg(v—up)?pP (1 — P(uf,v)) ifv>up
By = Blfs)(z,v,1) = { calv — u2)(pmaz — pL) if v < uf and v < u
0 otherwise
(34)

Several remarks are in order. First, the chosen powers of the relative speeds
(v — u) and the densities allow for dimensionless constants cg,cs. Other
powers (in particular the first power for the relative speed) are certainly
worthy of attention. Second, note that the braking force is chosen to be
proportional to p for braking scenarios, but proportional to p.. — p for
acceleration conditions. This seems reasonable, as higher densities make
acceleration less likely. In any case, these dependencies are nothing but
guesses, and one could substitute a general function g(p). Third, the reader
may wonder why there are three lines in (34). This is because it is conceivable
that the first two cases do not cover all possibilities, because u* and u? are
not computed at the same spot. Imagine a situation where you move slower
than the traffic immediately in front (at  + Hy + Tgv), but faster than the
traffic further ahead (at z + Hy + T4v). What would you do? We suggest
you should do nothing. Fourth, and last, the braking probability (1 — P) is
only present in braking scenarios.

We mention that if we assume that 75 = T4 =: T, a much simpler braking
ansatz with the same basic qualitative features is

B = B[f)(z,v,t) = —c(v — u")g(p"). (35)

Note that we will brake if v > u(z + Hy + Tw) and accelerate otherwise, and
we have left the p— dependence open. It has recently been observed ([19])
that the Aw-Rascle model can be derived from moment equations associated
with this model.

Finally, we need a reasonable idea for the diffusion. In [20] the ansatz

Di(...) = o(pr, up) v — u®|" (36)

was chosen, with v € (1, 3). The function o was set up to vanish fast enough
for the limiting values of p and u (0 and pyqz, Vmaez)- Clearly, these limiting
values are of little significance for practical applications, as the behaviour
of the cars on the road is a priori known at these values. We will therefore
not discuss o at all. The values of v and the degeneracy of the diffusion
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at v = u® were chosen intentionally: with the given form, this diffusion is

consistent with the existence of the trivial (synchronized) equilibria pd, (v).
The verification of this fact is an easy exercise in distribution theory.

We pause to revisit our list of desirable properties of a kinetic traffic
model. It should be transparent at this point that the Fokker-Planck mod-
els as described so far satisfy the first two properties: realistic scales and
existence of synchronized equilibria. We will shortly see that fundamental
diagrams are computable (so the third item on our list is covered), and it
has been shown in numerical experiments that relaxation to identical equi-
libria on both lanes, as well as the formation of stop-and-go waves behind
bottlenecks are predicted by these models. So the only significant gap in the
program is the last item, namely, a satisfactory derivation of the model from
a Liouville equation.

The diffusion D, as given above vanishes at v = u®, a deliberate choice.
Is that realistic? It means that if a driver moves at exactly the speed he/she
sees in the lead traffic, he/she will not adjust his/her speed at all, not even
by a nervous foot on the gas pedal. This seems somewhat beyond human
precision, though it appears that in reasonable high density regimes drivers
will concentrate to such an extent that the errors become very small. In gen-
eral, though, and in particular in lighter traffic, when there is more distance
between cars, some of the drivers will be prone to speed fluctuations due to
their judgement (or lack thereof). A more realistic diffusion function should
therefore be of the type

Di(...) = o(pr,ur) v — uB|7" + e(p, u).

This will remove the synchronized equilibria in all regimes where €(p, u) > 0.
One can speculate about the dependencies of this “residual diffusion”; as a
first approximation we suggest to take € as a (small) positive constant.

This completes our model description.

4.4 Spatial and lane homogeneity, non-trivial equilib-
ria, and computing fundamental diagrams

There are several possibilities of homogeneous scenarios: identical, but time-

and space- dependent traffic on all lanes (lane homogeneity), or spatial homo-

geneity (i.e., the densities for all lanes are independent of x), or both. In the
last case the equations simplify dramatically, as the lane-changing terms will
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cancel and the nonlocalities become irrelevant. We are left with a nonlinear
drift-diffusion equation

O f + 0y(B([f],v)f — D([f],v)0,f) =0

where f = f;,i = 1,2 (identical densities on either lane), and B and D
depend on v and the moments of f as described in the previous section. We
have emphasized this dependence in the above equation but will in the sequel
just write B(...), etc.

The equation should be complemented with zero flux (Robin) boundary
conditions at v = 0 and v = Vpep :

B(..)f = D(...)d,f

at v = 0,Uq.. Equilibria are time-independent, space- and lane- homoge-
neous solutions of the model, which also have to satisfy these Robin bound-
ary conditions. This means they have to satisfy the nonlinear first order
ordinary differential equation

B(...)f = D(...)d,f. (37)

The nonlinearity is, of course, given via the dependence of B and D on the
macroscopic density and flux. These dependencies introduce a rather unusual
nonlocality into the coefficients of the equation.

If D is degenerate (i.e., D vanishes at v = u) then Eq. (37) applies only
for v # u. This causes several problems:

e First, for the dependencies given in (34) the braking (or acceleration)
force also vanishes at v = u. The implication is that there will be no
flux through the average speed, and this suggests that relaxation to
equilibria (to be discussed later) will occur for v > u(t) and v < u(t),
even while u(t) evolves with f, but the equilibria values for the two
domains may not link continuously at u. This is indeed the case and
has been seen in numerical experiments (see [16]). Even if we start
with a very smooth f, a jump will develop in the limit ¢ — oc.

e These discontinuous equilibria were ignored in [20]; there, only contin-
uous solutions of (37) were allowed.

e On the upside, when the degeneracy is strong enough (y > 1) it permits
the trivial equilibria pd (v —u). We realize that it is our desire to include
these trivial equilibria that introduces, so to speak via the back door,
additional equilibria which may not be of real interest.
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As shown in Ref. [20], for any given p and wu, continuous solutions for
the degenerate case and the B as given in (34) can be computed explic-
itly by integration of (37). Only the (rather pathological) boundary points
p=0,u = Upney and p = Ppaz, v = 0 need some special attention (this is
where the function o in (36) comes in), but we will not discuss this here. The
solutions then need to be normalized such that f f dv = p, an easy step, and
this leaves us then with a mapping u — f[u] (because the equation depends
parametrically on u, so do the normalized solutions). The fundamental dia-
gram is defined as the set of all fixed points of this mapping. In other words,
once p is chosen in the viable domain, we have to look for an u such that
pu = [ vflu](v)dv, or equivalently, u has to be a root of

Ry(u) := / "0 — W) flul(v) do.

It requires little effort to see that R,(u) > 0 for u near 0, and R,(u) < 0
for u near v,,q,, and hence continuity implies that there is at least one root.
Hence the fundamental diagram is well defined.

This discussion summarizes the analysis given in [20]. In that paper it was
shown that if lane change probabilities of the type given in (33) are included,
then there is an interval (p;, p2) of densities such that the fundamental di-
agram is three-valued for p € (p1,p2) (and only there). This fundamental
diagram is depicted in Figure 6.

Several questions arise in this context, and most of these questions have
been answered (some of the answers have not appeared in print, but they
hopefully will in due time):

1. What happens if the degeneracy is removed? Remember that there is a
good rationale for this— the uncertainty of the individual driver to read
or respond accurately to a traffic scenario ahead. Think of a residual
diffusion € > 0 to be added to D. It should be clear that this eliminates
the trivial synchronized equilibria; it is also clear that it removes the
piecewise continuous equilibria with a jump at u, simply because the
defining differential equations can now be integrated past this point.
While the solvability of (37) for given p and u in this case is clear, it
is much harder (though possible, [19]) to compute explicit formulas for
these equilibria (MAPLE helps). The fundamental diagram continues
to be multi-valued while the residual diffusion is small enough.

2. We state that it is the lane-changing that causes the multi-valued fun-
damental diagram. Indeed, suppose we turn off the lane-changing (a
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Figure 6: A multivalued fundamental diagram

The lane-changing probability leads to a density regime where several equilibria
with different average speeds are possible.

convenient way to do this in (33) is to set § = 00). It turns out that
then for every p € [0, ppaz] the function

u— R,(u)

is strictly monotone increasing, and will therefore possess exactly one
root. In fact, this property depends only on the monotonicity of % as a
function of u (see [36] for an example), and it is exactly the presence of
a lane-changing probability that may alter this monotonicity in some
domains.

3. If we are in the region where there is more than one equilibrium, which
of these are stable? While it is easy to make guesses on this (“the two
with high and low flux are stable, the one associated with the middle
branch and intermediate flux is not”) it turns out to be a nontrivial
matter to decide. Analytical and numerical work on this is in progress.

4. A simpler question of practical importance concerns the number of
lane-changes associated with an equilibrium. If f, is the equilibrium
associated with the point on the fundamental diagram (p, u), the aver-
age number of lane changes for traffic in this equilibrium is
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/ P(u,v)f.(v) dv.

Using the definition of P given in (33) and the equilibria computed in
[20], one easily sees that there is more lane changing in the equilibrium
associated with the higher flux. This is intuitive but sounds dangerous;
however, speaking realistically, it is only in moderate densities that
multi-valued fundamental diagrams are expected; in higher densities,
lane-changing becomes difficult (and more dangerous), and the model
should be adjusted for this. That lane-changing should intrinsically be
a positive factor towards flux enhancement should be intuitively clear.

4.5 Further Results

We conclude with a brief synopsis of other known facts on the Fokker-Planck
models. In situations where both lanes are treated equally and lane-changing
is symmetric, it is to be expected that traffic synchronizes in the sense that
nearly identical distributions should emerge on both lanes after a short time
(note that this concept of synchronization is different from the one discussed
earlier, in which all vehicles assume an identical speed). Some numerical
experiments showing that such synchronization holds for the FP models were
given in [16]; some analytical result for simplified equations can also be found
in that reference.

Other analytical work, done in [5], concerns the relaxation of space- and
lane-homogeneous solutions to one of the equilibria computed for the setup of
the fundamental diagram. This is a question which invites the use of entropy
methods such as widely used in the literature on PDEs such as reaction-
diffusion, porous media or Fokker-Planck type equations (see for example
[3]). The basic idea is to study the long-term behavior of relative entropy

functionals of the type
_ f
E[flglt)= [ @ g

Here, ® is a suitably chosen convex function (for example, ®(z) = (2P —
z)/(p — 1) for some p > 1), f = f(t,v) is the spatially homogeneous traffic
density, and g = ¢(¢,v) is a local equilibrium, i.e. a function for which the
drift-diffusion part of the kinetic model vanish; but g is in general no solution
because it depends on time—only if ¢ is associated with a density-flux pair
on the fundamental diagram is it a steady solution. Standard calculations
for such entropy functionals and their associated entropy productions may
be employed to obtain results on the asymptotic convergence of f(t,-) to a
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steady equilibrium. However, this is delicate because for the model under
consideration the local equilibria depend on the first moment u(t)p(t) of f,
and we know that at least for some values of p there are several steady
equilibria. It is therefore not clear what f will do as ¢t — oo; the result in [5]
states that convergence to a steady solution is to be expected, but we could
not state to which one, and we could not find convergence rates.

It is reasonable to expect that realistic traffic models should pose profound
difficulties from an analytical point of view; after all, they should also predict
rather complex behaviour. The presented Fokker-Planck type models do
both, but there is no doubt in my mind that they are still far from reality.
The truth, as always, is stranger.

I would like to end this article with words of thanks to the organizers
of the Porto Ercole summer schools and to the students and colleagues who
listened to my lectures. Thank you for your interest.
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