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ABSTRACT

We summarize the results from several recent papers in which the effects
of a particle interaction via an (attractive or repulsive) potential +1/r? on
the associated Vlasov, Boltzmann, or, most generally, Vlasov-Boltzmann-
Smoluchowski equations were discussed. The potential is considered in isola-
tion; it occurs in the literature as a correction €/r2 to the Coulomb potential,

and the associated law is known as Manev potential.

1. Motivation and Background. This paper will summarize the results
from Refs. [1,2,5]. We are concerned with particle clouds which interact via
a pair potential u(r) = +1/r%. For u(r) = —1/r?, forces are attractive, and
the resulting kinetic equations are of stellar dynamic type; for u(r) = 1/r2
the repulsive case, the kinetic equations are Vlasov equations for plasmas
(charged particle systems). This kind of potential has been studied since
Newton [11], who was the first to describe some of the interesting effects
arising in the central force problem. Manev [7-10] studied u as a correction

to the Newtonian potential; specifically, he considered
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where <y is assumed to be the universal gravitational constant and € = =3

is thought of as a quasirelativistic correction (for a justification of this inter-
pretation see [5]). This choice of constants predicts the qualitatively correct
precession of the perihelion of Mercury. That potentials of this kind would
lead to precessional ellipses as orbits was already known to Newton [11].

It is an interesting question, at least from a mathematical point of view,
to investigate what happens to kinetic theory if the Manev correction (as we
will from now on call it) is incorporated into the kinetic equations. This is
exactly was was done in Refs. [1,2,5]. The major milestones, which we will

revisit in the current paper, are the following:

1. The initial value problem for a Vlasov equation with self-consistent
interparticle potential 1/r? possesses unique local solutions for sufficiently
smooth initial data. Nonnegativity and the usual conservation laws (mass,
momentum, energy, angular momentum) apply.

2. There are initial values for which global existence does not hold in
the attractive case. This is proved indirectly from a relationship linking the
moment of inertia with the (invariant) total energy. If the latter is negative,
an upper estimate on the maximal existence time is obtained.

3. The Vlasov equation with the self-consistent potential 1/r? possesses
an additional fundamental invariant (referred to as “projective invariant”) in
addition to the usual scalings of time, space, velocity, and Galilei invariance.

4. If particles interact via an (attractive or repulsive) potential 1/72, the
addition of Boltzmann collision terms is suggested by dimensional analysis.

5. In the attractive case, inclusion of a Smoluchowski coagulation term
is justified by the analysis of pair interactions. Specifically, there are particle
encounters which lead to coagulation in the sense that particles will coagulate

for small enough collision parameters.

Many of these results are, as indicated, specific for attractive or repulsive
forces; they remain valid if the Manev correction is just added to the New-

tonian (or Coulomb) potential. As already stated, we will here consider the
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Manev correction in isolation; we will also concentrate on the attractive case,

which displays the most interesting mathematical features.

2. Equations, Invariants, Non-Global existence. We focus first on

the equation in which a Vlasov-type force with an attractive interparticle

€

potential — % is responsible for the forces. f = f(t,z,v) denotes the density
function at time ¢ in R®, and p(¢,z) = [ f(¢,2,v)dv is the spatial density.
The potential is then

UlAl(t, o) = — ﬁ dy

and the force at location x at time ¢ is

F(t.2) = VUl 0) = = [ 25V, 0(t.0) dy

26/ mp(ta y) dy.

Note that the last integral on the right must be interpreted as a Cauchy

(2.1)

principal value; the integration domain is always all space, so the integral is
defined, e.g., if p is at least Holder continuous. The evolution equation for f
is

Of+v-Vof+F-V,f =0, (2.2)

with F' given as above. We call (2.2) the stellar dynamic equation associated
with the potential — 5. It is nonlinear because F' depends implicitly on p,
and p is given in terms of f. A major difference with respect to the classical
stellar dynamic equation (associated with the potential —2) is that even the
definition of F' requires that p posesses some smoothness (whereas in the

classical case boundedness and integrability are sufficient).

Assuming that we have a sufficiently smooth solution, one readily proves,

using the method of characteristics, that for all 1 <p < o0

1 )llze = [l follzr (2.3)

3



(which includes conservation of mass) and that

%//Uf(t,x,v) dv=20 (2.4)
dt [// VS dvds // |x_y|2 dd =0 (2.5)

(momentum and energy conservation). Conservation of angular momentum
also holds.

The proof that the initial value problem is well-posed is actually quite in-
volved and was given in Ref. [5]. One has to work in spaces of functions with
Holder continuous derivatives; in particular, the initial values have to have
this degree of regularity. The force field given in (2.1) is undefined at dis-
continuities of p. The model therefore loses its validity if such discontinuities
form, or if p develops strong enough singularities.

It is remarkably easy to see that this must actually happen. The method
is based on a standard calculation used in the theory of N-body problems,
the theory of the nonlinear Schrodinger equation, and also in classical stellar

dynamics.

Consider the functional I(t) = [ z2p(t, z) dz (twice the moment of inertia

of the system). A straightforward calculation shows that

2

%I(t) = E(t) = E(0) (2.6)
where E(t) denotes the (time-invariant) energy, given by the expression inside
the bracket in (2.5). If E(0) is negative (meaning that there is not a lot of
“temperature” in the system), it follows that I(¢) must eventually become
negative, contradicting the fact that p > 0. Hence the solution must cease
to exist at some earlier time. The time when I(t) becomes negative is easily

calculated by integrating (2.6) twice. For details, see [1].

3. Projective Invariance. More than 100 years ago Sophus Lie classified

the group invariants of the free flow characteristic equations %x(t) =0 (or
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z=wv, ©=0). There are 4 of those:
shift: ¢ =t+a;, 2/ =2
scale: t' =e*2t, 2/ ==z

Galilei: t'=t, 2’ =z+ ast
t , T
frmd P — Tr = .
1-— a4t 1-— Of4t

Projective: ¢

If z is one-dimensional, there are 4 more by interchanging x and t. The con-
stants aq, ..., a4 are free parameters. We refer to [3] for a detailed discussion
of these invariants.

The first three invariants remain valid for the N—body problem (i.e.,
z € R3Y) in the presence of a conservative interparticle potential, like the
Newtonian potential. However, the projective invariance is generally lost at
this level, with one exception: For interparticle potentials +.5, projective
invariance remains valid, and remains valid even for the Vlasov equation under

consideration here. Specifically, the following theorem holds.

Theorem. Let f(t,z,v) be a solution of (2.2), where the force is given by (2.1)
but can be attractive or repulsive. Suppose that f exists on a time interval
[0,t0). Let a > 0 and set

t x

T iva YT iga vTvdta)-ar
Then F(t,y,w) := f(t,z,v) solves Eqn. (2.2) with respect to T,y,w on an

interval T € [0 } , and for the initial value F(0,y,w) = fo(y, w + ay).

to
? 14atg

This projective invariance of the equation has interesting consequences:
it allows to transform solutions into other solutions and even to produce some
global solutions from local solutions. Note that the transformation (¢, z,v) —

(7,y,w) is invertible; we can write

T Y
t= xr = v=w(l—ar a
1—ar’ 1—ar ( )+ ay,

and we see that if F(7,y,w) solves the equation on [0, 7¢], then f(¢,z,v) =

F(1,y,w) assumes the initial value Fy(z,v — ax) and exists on the time in-

terval [0 5 } if a < 1/79, and on [0,00) if @ > 1/7. It is transparent

’1—a1g
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how the transformation changes the data to new data with different angular

momentum.

The proof of the theorem is elementary and uses only the chain rule and

the representation of the force field given by (2.1).

Assume that f = f(z,v) is a nonnegative steady solution; the existence
of such solutions for the attractive case has recently been shown by Steacy
[12]. We can then apply the above transformation and get that f(1%,v(1—
at) +ax) is also a solution, assuming the initial value f(x, v+ ax) and ceasing

to exist at time ¢t = 1/a.

4. Why a Boltzmann Collision Term Should be Added. We now
discuss a scaling argument first presented in [1] which will suggest that the
equation discussed so far is incomplete. For this section, we consider a more
general repulsive interparticle potential u(r) = 5, where o > 0 is a constant
and 1 < n < 2. In order to accurately describe close encounters (collisions)
between particles, we add a Boltzmann collision term Q(f, f) to the right
hand side of the equation. The differential cross-section associated with the

potential is
Q

o(u1.0) = ( )2/"%(0059),

where |v| is the relative particle speed, 0 is the scattering angle, m is the

mlv|?

particle mass and g, is a function such that f_ll(l — x)gn(x) dr < co. The

Vlasov-Boltzmann equation is then

Ouf +0-Vaf + Vol = QU ) (4.1)
with
«
and

QU f) = / / v — vlo (v —va],0) {f'f. — £ 1.} sin 6d0dipdo,,
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with the usual notation in the Boltzmann collision term: f, = f(t,z,vs), f.
= f(t,z,v.), etc., where v, v, are pre- and v’, v/, are post-collisional velocities
respectively.

The term involving F' and the term Q(f, f) in (4.1) represent effects of
long-range and short-range forces respectively. To decide which one domi-
nates in the particle system under consideration, we pass to a dimensionless
representation: Assume that xg,vg,to (with 2o = wvotp) and py are typical
scales for the system under consideration. We then define new, dimensionless
independent and dependent variables via

z 3

~ v
, and  f(¢%,0) = 2 f(t,z,0).
Zo Vo to ( ) Po ( )

I
ST
I
~+
I

z

It is tedious but easy to rewrite Eqn. (4.1) in terms of the new variables.

After this is done and we drop all the tildas, the equation reads

Ohf+v-Vof —CyVyg /| d -Vof =CBQ(f, f) (4.2)

The constants Cy and Cpg are

o 3_
07 = (ig)

a 2/n
C = po <—2> Zo-

mug

1/n

We define r, = [m(zg] . Note that r, is essentially the square root of the
0

differential cross-section and has therefore the dimension of length. In fact, it

can be interpreted as a distance over which typical particles strongly correlate.

Furthermore, we define the quotient

n—2

C a \' " o,
=6~ () o

mug

1/3

If we interpret p, as a measure for the typical distance between two

particles in the system, the validity of the kinetic description requires that
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Ty << pal 8 << 20. Hence the quotient g := ;—0 will satisfy g << 1, and we

observe that
0 if n>2

A=p"2x{ 1 if n=2
oo if n<2

Hence if n > 2, the Boltzmann collision term dominates over the Vlasov force
term (note, however, that this is a purely formal observation as we have made
no attempt to define the Vlasov potential for this case— additional regularity
assumptions on the density are needed to do so); if n < 2, the Vlasov force
term dominates. It is exactly for n = 2, i.e., the case we are discussing here

in detail, that both terms carry similar weight.

5. The scattering problem for attractive potentials. The previous
section suggests that Boltzmann collision terms should also be taken seriously
when particles interact via an attractive pair potential —1/r2. In fact, two
new phenomena arise which require careful attention: One has to address the
phenomenon that the relationship between collision parameter and scattering
angle is not a one-to-one function for attractive forces, and, for the specific
potential —1/72, that there is the possibility of coagulation. The latter gives
rise to yet another term on the right hand side of the equation, namely, a
coagulation term of Smoluchowski type.

To start, let us revisit the scattering formulas for the classical repulsive
situation. Assume that the interparticle potential U(r) is repulsive and that
two particles move at relative speed u and with impact parameter p > 0, as
depicted in Figure 1. r¢ denotes the distance of closest approach between the

particles. The angle ¢ depends on p, u and rq like

° 1
=2 dr 5.1
2 p[() 7-2\/1 _ 27(51(;;) . (5)2 ( )

Here, m is the particle mass. A derivation of (5.1) is a straightforward ap-

plication of the conservation of energy and momentum and can be found in
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textbooks on classical mechanics, see, e.g., [6]. 7o is determined as the distance

for which the expression under the square root is zero.

70

Figure 1. Scattering with a repulsive potential

Note that ¢ € [0,00] with ¢(0) =0, ¢(c0) = w. The function p — ¢
is 1-1 and invertible. Setting 6 = m — ¢, we define p(f) = p(r — 6). The

differential cross-section to be used in the Boltzmann collision kernel is

o(u,0) = 219) ‘dﬁ(a) ‘ (5.2)

sin 0

do

As is known [4], the function |u|o(u, @) is the appropriate kernel for the
Boltzmann collision integral associated with the potential U(r) under consid-
eration.

Let us first study a power-potential

a
U(T):_r_’Y’ a>0, 1<y<2.



Formula (5.1) becomes

2
with s7 =~ (5.3)

_ /°° dr
Y= 4p , ) 7 p27 mu2’
o 1214+ (2)7 = (2)

or

o dx
= Z) = 2 s
¢ = p(z) /O T

: _ 2« Y 2
with z = 25~ and 1 + zz5 — 25 = 0.

Consider the special powers y =2 —1/n, n=1,2,..., then the substitu-

tion x = (zy)™ leads to

vo —2n_2-9n —-1/2
p(z)=2n | dy[z7"y* " +y(1—y)]
0

with yo(1 — yo) + y?>~2"2z72" = 0.

If z — oo, i.e., p — 0, then

dy

Vy(l—y)

1
©(2) = Pmaz = 2n/ = 2nm. (5.4)
0

Hence simple trajectories (i.e., 7 < ¢ < 2m) occur only for n = 1 (the Newto-
nian potential), while in the general cases n = 2, 3, ... we get spiral trajectories

with n — 1 loops. See Figure 2 for an example.
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Figure 22 t< o <2m,and 0 =¢p—m

To compute the scattering angle § € [0, 7] between the velocities %_
and 4, we observe the following elementary geometric relationship between

¢ € (m,00) and 0 € [0, 7] (see Figure 2):
If 2k—1)r<¢<2kr, then 60=¢—(2k—1)m, (5.5a)

and if 2km <@ <(2k+1)m, then 0= 2k+ 1) — . (5.5b)

The formulas (5.1) and (5.5) define the scattering angle 6 uniquely as a
function of the impact parameter p € (0, 00).

We next consider the scattering problem for the potential

Ulr)=—-S, ¢>0. (5.6)



For this case, the integral (5.1) gives the simple explicit formula

2177 2¢
p=m [1 — (p—p*> ] , with p? = pc (5.7)

for p > p.«. Note that ¢ — 0o as p decreases from co to p,.

If p < ps«, then the particle “falls into the center » = 0”. To analyse
this in more detail, recall that the scattering problem appears initially from
a reduction of the two body problem. Consider two particles with masses
m;, positions #; and velocities ¥; (i = 1,2), interacting via the potential

U(|Z1 —Z2|). A standard transformation to the center-mass frame of reference,

miT1 + MoZo

X =  E=2 — 2,

— m1U1 + Moo _ _ -

V=——""""= 4=79 —1
my + mo

reduces the two-body problem to the problem of one body (with mass m =
o2, position & and velocity @) in the central field U(|Z]). For the poten-

tial (5.6) a global (in time) solution of the two-body problem does not exist

for sufficiently small (p < p,) relative angular momentum. For given initial

conditions
SC(O) = Xy, U(O) =1y, To-ug<0, FE= 9 ‘.’f@‘Z < 0,

M? = m2[zdud — (Lo - o)?] < 2em,

one can prove that there exists a time instant to € (0,00) such that
Z(t) =0, |d(t)] = oo as t Tto.

The question arises how to continue the solution of the two-body problem for
t > to. A natural way to do so is to assume that the two particles simply
coagulate at t = tg, i.e., they form a larger particle with mass M = m; 4+ mg
and velocity V. This guarantees momentum conservation, while there is in

general a loss of energy. This corresponds to the implicit assumption that the
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new “large” particle possesses internal energy which, however, is irrelevant for
our purposes.

Summarizing, we describe collisions between two particles with masses
m;, © = 1,2 and velocities ¥;, ¢ = 1, 2 before the collision and interacting with
the potential (5.6) as follows. If the impact parameter p satisfies p > p, (see
(5.7)), then an elastic scattering with scattering angle 6 € [0, 7| given by (5.1)
and (5.5) occurs. If p < p, we have coagulation, i.e., the collision results in
the formation of a larger particle with mass M, = m; + my and velocity
V= (mqy + moty) /M.

This analysis of the pair collision process applies not only to the potential
(5.6), but also to other potentials U(r) for which U(r)r? — —e as r — 0. See
[2] for details.

6. Collision integrals for elastic scattering. For a repulsive pair potential
defining a scattering cross-section as discussed above, the collision term for

the Boltzmann equation is

Qf, f)(v) == / dw dn o(|uf, §)|ul [f (V') f(w') = f(0)f(w)]  (6.1)

R3x S2

where © = v — w, the arguments x and ¢ have been suppressed, and the

post-collisional velocities v’ and w’ are given by

1 1
V=St wtfun), w' =g+ w = fuln).
Here, n = (sinf cosa,sinfsina,cosd), dn = sinfdfda, 0 < § < 7w, 0 <
a < 27. Compare with (4.1).

In preparation for writing the collision integral for attractive potentials,

we rewrite (6.1) in the more compressed form

QN = [ dwlo— o 9EEE 0 —w) (62
with
YV.0) = [ ano(ULOFV U - FLU} (63)
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and F(V,U)=f(V+¥)f(v - Y).

Note that the original form of the Boltzmann collision integral includes an
integration over the impact parameter p € (0,00), and not over the scattering
angle 6. With the integral over p and (5.2), the integral in (6.3) becomes (we

omit the argument V)

¥(U) = / T dpp / " do (F(UIn) - F(U)}, (6.4)

where n € S? is still defined as before, but the polar scattering angle 6 is
now a function of p as defined by the scattering problem which we discussed
earlier. If the intermolecular potential U(r) is positive and monotonically
decreasing with r, we have a one-to-one correspondence between 0 < 0 < 7
and 0 < p < oo, and (5.1) defines the relationship between (6.3) and (6.4).

In the sequel we consider the integral (6.3) for attractive potentials when
the dependence between p and 6 is given by the formulas (5.1) and (5.5). We
assume monotone dependence between p and ¢.

To simplify our notation, we write the integral (6.4) in the compressed

form

¥(U) = / " dppGloo)) (6.5)

with G[0(p)] = 0277 da{F(|U|n) — F(U)}, where n = (6(p), ) is given in
spherical coordinates with the polar axis in direction U. Using (5.1), we define
pn,n=1,2,..., by p1 =00 and ¢(p,) =nm, n=23,...Ifthereis a maz
such that ¢(p) = @maez as p — 0, and if we set Qe = N7 + @o with
0 < o <, weset p, =0 for n > N. Using (5.5), we rewrite (6.4) as

sU)=%" { / " dp pGlop) — 2k — 1)a] + I " dppGl(2k + 1) - w(p)]}

k=1 2k P2k+1
(6.6)
©(p) being defined in (5.1).
Let
PR (0) = p[(2k — D)m + 0], k=1,2,...
PEV0) = p[2k + ) — 0], k=1,2,... (6.7)
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0 < # < w. We remark that the inverse function p(¢p) exists in view of our
assumption that ¢(p) is strictly monotone.
It is now natural to introduce a set of “partial” differential cross section

(see (5.2) for comparison)

pm o) | d 5

on(0) = sin 6 @ ()

, n=23,... (6.8)

and to set p = p(?*) (@) or p = pP**+1(h) in each of the integrals in (6.6).

Returning to the integration variable 6 € [0, 7], the result is
o (U) :/ d0 sin 0 F(0) 5(|U1, 0), (6.9)
0

with
&(|U|,0) = Zan U1, ). (6.10)

If Ymaz < 00, the sum in (6.10) is actually a finite sum. For example,
on(|U],0) = 0 for n = 3,4,... for the Newtonian potential with v = 1,
while o3(|U], 0) is merely the classical Rutherford cross-section in this case
(the integral (6.5) is then actually divergent, a fact we ignore for the current
formal discussion).

The partial differential cross-sections o, (6) in (6.8) allow the following
physical interpretation: Each function o,(0) is associated with the relative
contribution of those trajectories which have exactly n — 1 intersections with
a real axis directed along wu.

To summarize, we obtain for an attractive potential U(r) the usual Boltz-
mann collision integral (6.1), provided that |U(r)[r? — 0 as 7 — 0. The
only difference is that we have to use a generalized differential cross-section

a(|U],0) as given by (6.10) to replace the usual cross-section o(|U],0).

We now discuss the case U(r) = —e/r?. Elastic scattering is again de-
scribed by the Boltzmann collision integral in the form (6.2)-(6.4), provided

that we integrate over dp in (6.4) not from 0 to oo, but from p = p iy = P«
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(as given by (5.7)) to oco. All the above arguments carry over. Inverting the

explicit formula (5.7), we find

P2 =p2[1—(v/p)?] ", (6.11)

hence

dp  p -
= 1 —

_ (mpa)% (012
o7 —
From (6.7), (6.8)
) 9 2k —1)m+6
sin 0 o9 (0) = (7ps) s 12
{[(2k — 1)7 + ]2 — =2} (6.13)

9 (2k+1)mr— 6

{[(2k + D)7 — )2 — 72}’
k = 1,2,... The formulas (6.10) and (6.13) (note that the convergence in
(6.10) is straightforward) define a generalized elastic cross-section & (|U]|,0)
for the potential U(r) = —e¢/r2, € > 0.

sin 0 o9r+1(0) = (mps)

7. Boltzmann-Smoluchowski collision integrals. @ We focus on the

potential
€
U(T):_r_2’ e > 0. (7.1)
As discussed earlier, a classical solution of the scattering problem for this
potential exists only for sufficiently large impact parameters p? > p? = fﬁ

mims2
mi+ma

solution of the scattering problem which incorporates a coagulation process.

and reduced mass p = . If p < p«, we have to consider a generalized

A consequence is that we have to consider particles with different masses in

any case, because particle masses change in the collision (coagulation) process.

1. We replace the distribution function f(z,v,t) of a simple gas by a new
distribution function f(m,z,v,t), where m > 0 denotes a particle mass. The

total number of particles is now given by the formula

N = //dmdv/ooo dm f(m,z,v,t). (7.2)
16



2. We assume that a pair collision with an impact parameter p < p, results

in coagulation of particles, i.e., in the “reaction”
(my,v1) + (M2, v2) — (M, V) (7.3)

with M = my 4+ my, V = Za¥tmev2 Note that if p < p. the postcollisional
velocity V' does not depend on the impact parameter p. The coagulation

process is therefore completely determined by a total coagulation cross-section

o(u;my, my) = mp2. (7.4)

An elastic differential cross-section can now be calculated in the same

way as described in Section 6. We set

2
2 = 2t 1) (75)

m1mou?
in (6.13) and calculate a differential cross-section &(u, 8;m1,ms) by the for-
mulas (6.10-13).

We are now ready to write the Boltzmann-Smoluchowski equation for a

distribution density f(m,z,v,t) :

% +v-Vof =QB+ Ism (7.6)

where (Qp and Ig,, denote the Boltzmann and Smoluchowski collision inte-
grals, respectively. As discussed in section 4, a Vlasov term should also be
included; we omit this term in the present section for the sake of simplicity.

First calculate cross-sections & (u,0;my,mg) and o.(u;my, my) as de-

scribed earlier. Then

QB:/ dm1/ dwdn|U|6(|U|,0;m, mq)
0 R3xS2

x {f(m,v") f(mi,w') = f(m,v) f(m1,w)}
with U = v —w, U-n = [Ulcosf, v/ =V +L2U-n, w=V—-LU-n,

— myvt+miw _ _mim
V= m4+mq B = (m1+m) "

Boltzmann collision integral for particles with different masses.

(7.7)

This is the obvious generalization of the usual
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The Smoluchowski collision integral is

1 o0 o0
Igm = — / dm1/ dm2/ dUld’l)2‘U|0'c(|U|; mq, mz)
2 Jo 0 R xR?

flmy,v1) f(ma,v2)d(my + mg —m)d ( (7.8)

mivy + mMoV9
_— U
my + mo

— f(m,v) /000 dml/dwf(ml,w)|v—'w|ac(|v—w\;ml,mg)

with U = wv; — vy. The factor 1/2 in front of the first integral gives the
correct number of inelastic collisions. We have omitted the arguments x and
t throughout.

The cross sections 6 (|U|, 8; m1,ms) is a symmetric function of the masses
mi and mgy. The presented form of the coagulation term is convenient for the

calculation of inner products

(1/),I5m):/0 dm . dv Y (m,v)[gm(m,v)

with test functions 1. After some elementary transformations, one finds

(W, Ism) = %/dml/dmZ /Rs . dvidvs f(ma,v1) f(ma,va)

miv1 —+ v xop)

XU ([U; 1, m) [zp(ml +ima, )= (e, v1) — (s, va)| |

mi + mg
U = vy — vg, from which conservation of mass and momentum readily follow:
(m7 ISm) =0= (mv, ISm)-

We conclude by presenting explicit formulas for (7.1). Let (see (6.10-13))

n2e(my + ma)

g(0;m1,mg) =2 pp— g(0),
. s (2k — 1) + 6 (2k+1)r—6
sind 9(0) =) e (e e §
(7.9)
p(mi,ma) = 2%.
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The collision terms in (7.6) then become

R3xR3 |U — w| (7.10)

X {f(m v') f(my,w') — f(m,v) f(ma, w)}
and

m—S

L p(s,m =) s s
—2/0 dS/deu 7] f(s,v+mU)f(m S, U)

~stm) [~ s [ a9 ss.),

where v’ and w’ are defined after (7.7).

(7.11)

For generalizations to other potentials, the two-dimensional case and ad-

ditional details the reader is referred to [2].

Concluding remarks. We have presented a survey on kinetic equations
for particle systems in which the particles interact via pair potentials +¢/r™,
with ¢ > 0 and 1 < n < 2. The emphasis of the discussion was on the case
—e/r?. i.e., the attractive (stellar-dynamic) potential known as the Manev
correction. We showed that for this potential, the kinetic equation depict-
ing the time evolution of a particle cloud should include Vlasov interaction,
Boltzmann collision and Smoluchowski coagulation integrals, and we derived
the corresponding cross-sections.

If one considers the full Manev potential —y/r — ¢/r?, in which the term
—¢e/r? may be interpreted as a quasirelativistic correction to the Newtonian
potential, it follows that the corresponding kinetic equations should include
corrective Boltzmann collision and Smoluchowski coagulation terms. A possi-
ble application of such equations would be to the dynamics of globular clusters,
where close encounters between stars are sufficiently frequent to justify the
inclusion of diffusive collision terms in the kinetic equation (in astrophysical
applications, the Fokker-Planck collision term [4] is usually employed in this

context).
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