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Abstract

A review of recently introduced Fokker-Planck-type systems of partial
differential equations as kinetic models of multilane traffic flow is given,
and we present a series of analytical and numerical studies for these mod-
els. In particular, we present convergence to equilibria, explain why equi-
libria of the present models may show jump discontinuities at the average
speed, and we explore synchronization on adjacent lanes from both an an-
alytical and numerical point of view. Finally, we present numerical studies
which explain the formation and propagation of stop-and-go waves.
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1 Introduction

We are concerned with systems of Fokker-Planck type equations as introduced
in Ref. [6] as kinetic models for traffic flow in a multilane freeway. For other
kinetic traffic flow models, see for example [15, 14, 13, 10, 11, 4]. Some ana-
lytical results on the asymptotic behaviour of solutions of these equations in
the spatially homogeneous case were obtained in [5] where the applicability of
entropy methods was explored.

In the case of two lanes the system of equations under consideration is

Ocfi + 00z fi + 0u(BIf(t, z,v) fi — D[f]0u fi) = px[f]fr — pilf]fi (1.1)
(t,z,v) € R" x R x [0, Umax] 1.2
i=1,2, k=3—i

where the braking and acceleration terms (abbreviated as B[f]) depend on lane-
changing probabilities; these probabilities are assumed to depend in simple (but
non-local!) ways on the macroscopic traffic density and flux; moreover, there
are lane-changing terms on the right-hand sides of the equations, and there is
a (degenerate) diffusion term in each equation, justified by the inability of the
average driver to accurately estimate average speeds ahead. We present the
details of the model in Section 2 below.

Here we explore qualitative properties of these systems from both analytical and
numerical points of view. First, we conduct a discussion concerning the various
modeling assumptions made in [6] and offer suggestions for generalizations. This
is done in Section 2. There we review the definitions of the braking, acceleration
and diffusion terms. Some comments regarding the definition of more realistic
lane-change probabilities are given. We also investigate the consequences of the
degeneracy of the diffusion term D and explain the occurrence of discontinuous
equilibria, observed originally (and unexpectedly) in the numerical experiments
presented in Section 3. D, as defined in [6], is D = o(p,u)|v — u|?, and the
degeneracy at v = w is obvious. As we demonstrate analytically in Section 2,
and numerically in Section 3, it is this degeneracy which allows jumps at the
average speed in the equilibria.

A simple way of eliminating this degeneracy is to assume a “residual” diffusion
€, active even when a driver moves exactly at the macroscopic speed as observed
ahead. Thus D would become D, = o(p,u)(Jv — u|” + £). We consider such
a modification as reasonable because drivers make inevitable small errors in
judging the traffic situation ahead, even in very homogeneous traffic. The resid-
ual diffusion would prevent the model from permitting discontinuous equilibria;
however, the statistically averaged traffic profile could still evolve towards, and
stay for a long time, near “metastable” densities with large gradients at the
average speed. That such profiles are a possibility is implicitly suggested by the
asymmetry between braking and acceleration scenarios.

In Section 3 we present a series of numerical experiments regarding the qualita-



tive behavior of solutions of the system. Specifically, we investigate the asymp-
totic evolution of solutions in the spatially homogeneous scenario. As mentioned
above, the system will typically converge to an equilibrium with a discontinuity
at the average speed; in [6] such equilibria were not considered, as it was tacitly
assumed that realistic equilibria would be continuous. This assumption would
certainly be reasonable if the diffusion were never zero, i.e., if the degeneracy
were to be eliminated from the model as outlined earlier.

If there is no residual diffusion, the discontinuous equilibria offer degrees of free-
dom towards extensions of the fundamental diagram. In particular, there may
by domains in the p,u plane where many equilibria, most with a discontinuity,
coexist. The numerical experiments in Section 3 suggest that this may be a
realistic scenario.

In addition, we show simulations which confirm that the models predict syn-
chronization of traffic on adjacent lanes. In view of the lane-changing terms on
the right-hand sides of the equations, this is not surprising, but is consistent
with observations made by B. Kerner [9] on the A5 in Germany. We inves-
tigated whether the synchronization could be predicted analytically, but while
this seems a reachable goal, we were only able to produce a proof for a simplified
model. The argument, based on a Fourier series expansion method, is presented
in an appendix.

Other numerical experiments presented in Section 3 concern the familiar phe-
nomenon of the formation of stop-and-go waves behind a bottleneck. See [7, 8]
for experimental observations and [2, 3, 12] for models exhibiting such a be-
haviour. We found that such waves do indeed form in suitable density regimes,
and their strength and propagation was closely related to the extent drivers
would look ahead. The numerical experiments also suggest that stop-and-go
waves will only be predicted when the model incorporates both time lags and
a bifurcated fundamental diagram as explained in [6]. If the model is modified
such that the fundamental diagram remains single-valued (to achieve this all
one has to do is to modify the lane-change probabilities such that they do de-
pend only on p and not on v,u) no stop-and-go waves formed in the numerical
tests; if, on the other hand, one keeps the model with the bifurcated fundamen-
tal diagram but sets the time lags to zero, the numerical tests again showed
no trace of stop-and-go waves. In summary, it appears that stop-and-go waves
as predicted by the Fokker-Planck models under consideration depend on three
vital ingredients: 1) a trigger, for example a lane ending and forced merging
of traffic, 2) the look-ahead behaviour of drivers while braking or accelerating,
and 3) a multi-valued fundamental diagram. All three are consistent with traffic
observations in multi-lane traffic.



2 The model

2.1 A review of the model details

We repeat the definitions of the various terms in (1.1) for the convenience of the
reader. The kinetic car density at time ¢ on lane ¢ = 1,2 per unit length and
unit speed is denoted by f;(¢,z,v). The macroscopic density and flux are then
the zeroth and first moment of f; :

pi(trr) = /fi(tamav) dU, ]Z(t7m) = /’Ufi(t7x7v) dU,

and the average speed is u; = j;/p;. When there is no dependence on the lane
(such as in homogenized scenarios) we shall omit the subscript i. We assume
a speed limit vy,4; = Umaz, and we assume that all drivers observe this speed
limit. Later we will normalize the speed limit as 1.

For the scenarios of braking (labelled by “B”) and acceleration (“A”) it will
be assumed that there are characteristic safety distances Hx, X = A, B and
characteristic reaction times T'x (with Ts < T4) such that the reaction of a
driver at time ¢, position z and moving with speed v will be relative to the
observed traffic at x + Hx + T'xv, and at time ¢t — 7, where 7 is the individual
reaction time.

To simplify the subsequent formulas, we define for X = A or X = B
X _ X _
pt =p7(z,t) = ple + Hx + Txv,t — 1) (2.4)

and similarly for uX. pX and 4% also depend on v and 7, but we will suppress
these dependencies in order to keep the notation simple. Note that the intro-
duction of the safety distances is a small but reasonable change with respect to
the modeling given in [6]. The values of the constants used in our numerical
experiments are given in Section 3.

The braking and acceleration terms in (1.1) are given by ([6])

_CB(U - UB)2q(pB7 uB7 ’U) v > uB
Blf1(t,z,v) = | ca(u® —0)*(pmax — p?*) v <uP v <ut| (2.5)
0 else
a(p,u,v) = p(1 = P(u,v)) (2.6)
_[GEm)? v
P(u,v) = 5 else (2.7

Here P = P(u,v) is the lane change probability, and 1 — P is the braking
probability. The explicit P given above is independent of p but is scaled to be
a probability. Alternative forms of P are discussed below.



The setup of the dependencies of B[f] is such that the constants c4 and cp are
dimensionless.

The ansatz for the diffusion coefficient is

a(pB, uB) v —uB|Y v >uP

Di[f](p,u,v) = U(pA, uA)|v _ uA|ry else (2.8)
with v > 1 and where the function o(p,u) is as in reference [6]:
2 u
o(p,u) = OcPmaxUmaxM m
(pst) = OcPmaxtipg l(pma.x) 2(—) 2.9)

ma(s) = s(1—s)

m; consists of two linked Gaussian distributions and is chosen such that diffusion
vanishes in the limit scenarios where p = 0 or p = pmax- M2 is chosen such that
the diffusion vanishes for v = 0 and v = umax. Finally, o, is positive constant
to be specified later. The lane change rates p;[f] in (1.1) are

pi[f](t,x,v) = aji(t7$)P(uiB=U)7

where a is a dimensionless constant, j; (¢, ) is the macroscopic flux and P(UZ, v)
is the lane change probability given in (2.7).

2.2 Discussion

1. In spatially homogeneous scenarios
pP(t,2) = p(t) = pA(t,2), wP(t,2) = u(t) =u’(t,2),

i.e., all time lags and entailed nonlocalities become irrelevant.

2. The diffusion coefficient D as given above is degenerate. In [6] this degeneracy
was included intentionally, because it permits, at least when v > 1, Dirac- Delta
equilibria supported at the average speed, and such solutions are physically
reasonable because “everybody could just drive at the same speed.” However,
as we are really discussing a statistical description of traffic scenarios, it is
questionable how seriously one should take these Dirac Delta solutions. Their
stability (or instability) will depend on the parameters of the system; a careful
analytical study remains to be done. A side effect of the degeneracy is that even
in the absence of Dirac Delta parts to the solutions, the solutions to the spatially
homogeneous equation will typically form discontinuities at the average speed,
a phenomenon explained in the sequel. To avoid such discontinuities one could
remove the degeneracy by replacing D by

D[f](psu,v) = o(p,u)(jv —ul" +¢),



where € is thought of as a background diffusion, active in all situations. This
modification will, of course, remove the Dirac Delta and discontinuous equilibria.

3. A separate but related point is that the suggested diffusion is symmetric for
v—u >0 and v —u < 0, so braking and acceleration scenarios are assumed to
give rise to the same diffusion. This is probably not realistic.

4. The lane change probability in the present model depends only on u? on

the same lane and is independent of densities altogether. This is certainly
acceptable for the spatially homogeneous case, where all lanes are equivalent
and the density is constant, but is clearly inadequate for the inhomogeneous
case. A more realistic ansatz could be as follows: Consider a car in lane 1 (the
right lane) driving with speed v > u®. Suppose that the density and average
speed on the other (left) lane as seen by the driver, possibly in his/her rear
mirror, are p» and uz. We suggest that a more realistic lane change probability
function for inhomogeneous traffic is

v—ub
P=Papa(n = o)Piia = o) () (210)
1

Umaz —

Here P, is a “lane change motivation” factor, zero for us —uP < 0, then increas-
ing for 0 =~ uy — uf < Umaz, With saturation at 1. The factor P» is a “limiting
factor” taking into account that as the “relative flux” po(us — v) increases, it
will become more difficult to change from lane 1 into lane 2. In the simplest
case P» could be chosen as a characteristic function, zero above some critical
value for the relative flux.

2.3 Discontinuous equilibria

Here we focus on the model with degenerate diffusion and explain why equi-
libria with discontinuities at the average speed, as first observed in the numer-
ical experiments presented in Section 3 below, are to be expected. To con-
centrate on the essentials we consider a simplified spatially homogeneous but
time-dependent model, written as

Of + 0, F[f] =0 (2.11)

where F[f] = —(v — u)|lv — u|f — |[v — u|78, f. Notice that this equation has
the same fundamental structure as (1.1) with the braking/acceleration and
degenerate diffusion as given above; the essential feature which was retained
are the factors |[v — u| and |v — u|”; recall that v > 1. We normalize the ad-
missible speed range such that v,;,,; = 1. To enforce the mass conservation



law, Eq. (2.11) must be compemented with the no-flux boundary conditions
F[f1(t,0) = F|f|(t,1) = 0. In addition to this, observe that

FLf1(t,uw) = 0; (2.12)
this remains true for the more complex flux used in the full model.

For the self-consistent model we are concerned with we have the coupling con-
dition pu(t) = [wvf(t,v)dv (this is, of course, the property which makes the
model nonlinear. p is constant by mass conservation).

If we consider for a moment the even simpler linear case where u in (2.11) is
given and constant, the boundary conditions, the property (2.12), and simple
integrations of (2.11) from 0 to u and from w to 1 yield that in this case p_(t) :=
Jo f(t,v)dv and p(t) := ful f(t,v)dv are invariant with time; hence, there is
no mass transfer through the (here prescribed) speed u, and if the solution f
will converge to steady equilibria which will inherit the initial mass partitions
defined by w. This will in general enforce a jump; in view of the degeneracy
such discontinuous solutions are still perfectly reasonable weak solutions of Eq.
(2.11).

In the nonlinear self-consistent case u(t) is the average speed of f and is therefore
time-dependent. Defining p_(t) as above one finds

du d

= fltu) =~ (2.13)

at’~
Tt is not clear from (2.13) whether or not a discontinuity will form in f ast — oc.
However, it was proved in Ref. [5] that u will converge to a limit, and by (2.13)
the formation of a discontinuity will be linked to the rate of convergence of u.
Our numerical results in the next section suggest that u will reach a steady
state so fast that insufficient mass transfer for the prevention of a discontinuity
occurs, and hence the resulting equilibria have jumps.

These comments are not rigorous proofs. It is an interesting mathematical
challenge to classify the initial values according to whether or not they give rise
to discontinuous asymptotic states; however, we believe that residual diffusion
is a reality in traffic, and therefore this challenge is largely academic.

3 Numerical experiments

3.1 The Algorithm
3.1.1 The discretization

A splitting scheme, see for example [1], is used to discretize equation (1.1). For
the discretization of the first two Vlasov-type terms in equation (1.1) we use



a simple first order upwind-type discretization. We note that for conservative,
higher order reconstructions one could use the approach in [1]. The diffusion
term is discretized in a linear-implicit way. The source terms on the right hand
side are non-stiff and therefore discretized explicitly.

Zero-flux boundary conditions are used in v-space. For physical (z-space) we
prescribe inflow boundary condtions at * = x5, Due to the positive slope of
the characteristics we do not need to apply boundary conditions at £ = Ty ax-

3.1.2 The constants
For simplicity we set

Pmax = Umax = 1. (3.14)

The domain is
Zmin =0, Tmax = 10. (3.15)
The constants for the given operators are chosen as in [6] and given by
d=1,v=1,c4=5,cg =250, =0.25. (3.16)
In the space-dependent case we have additional constants. We take identical
values for the reaction times in case of acceleration and braking
To=Tp =0.125,H4 = Hg = 0.0375. (3.17)

The spontaneous reaction time 7 is set to 7 = 0 to simplify the calculations.

3.1.3 Modeling of the bottleneck

We consider a two-lane situation and use the space-dependent equations on each
lane to simulate Stop- and Go-waves. We assume a restriction on road 1 in the
sense that movement becomes rapidly constrained at a point Zmin < o < Tmax-
For the computations below g is chosen equal to 8. We modify u?, pP and P
in order to model the restriction: For points z < z¢ we use the formulas for
pB,uP and P as given in the previous sections. Modifications are applied to
uB, pP in case of

z+ Hp +Tgv > x9. (318)

For lane 1 we set

uB(x,t) =0 and pP(z,t) = pmax  if 2+ Hp + Tv > . (3.19)



For lane 2 we do not change the previous definitions. The lane change probability
P must be modified for both lanes for x > z¢. We set

v—u )6 V> U
_ Umax—U
P = (1 p2)($7t) 0 else

0 x>z (inlane 2)

>z (inlane 1) (3.20)

The additional factor (1 — p2) prevents blow-up of the solution on road 2 due
to lane changing.

3.2 The spatially homogeneous case
3.2.1 Long-term behaviour

We consider the spatially homogeneous case for smooth initial profiles and com-
pute the emerging stationary solution as t — oo.

The constants are as in Section 3.1.2. It turns out that the final stationary
solutions will in general have a discontinuity at v = u. (In view of our analysis
in Section 2 this is to be expected). The discontinuity is robust with respect to
the chosen mesh size. It remains unchanged for decreasing mesh width.

We first used a sin type initial profile and computed the stationary solution; the
calculation was then repeated with a linear initial profile. Both had the same
density p, but different average speeds u. The final profiles differ, consistent
with the fact observed in [6] that the fundamental diagram is multi-valued. For
the results see Figures 1 and 2. We computed a two-lane situation and applied
the same initial profile to both lanes. The average velocity u is also shown in
the diagrams. In all figures we plot initial and final profile in the same plot.

We present two further results on discontinuous solutions, where in both cases
we start with constant initial data. The final profiles are presented in Figures
3 and 4. For the first figure we used the standard settings for the constants,
i.e., ca = 5,cp = 25. For the second figure we changed the braking force to
ca = cpg = b, while all other constants remain the same. We obtain a jump
“down” rather than “up” with respect to the earlier example.

3.2.2 Families of discontinuous steady solutions.

Recall that the equations for the spatially homogeneous case are given by

ep(v —u)’q(p,u,v) f +o(p,u)(v —u)0,f =0 v>u

9 (3.21)
CA(U - U) (pmax - p)f - U(U - 'U)’Yauf =0 v<u
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Figure 1: A sin function as an initial value. The final profile consists of two
Gauss curves sparated by a discontinuity.

Assuming o(p,u) is defined as above equation (3.21) allows solutions of the type

- [ D ],
c® exp(—a%) v<u ’
(3.23)
where ¢(9 depend on u and p. @, 3 are given by
cA(Pmax — P) cBp
o(p, ) oo, u) (324
The real-valued constants ¢(t) and ¢(?) are such that
Umax
p :/ fv)dv. (3.25)
0

Hence, we obtain a one parameter family of solutions f(v,c()/c?) of equa-
tion (3.21).

We verify that the stationary solutions computed in Section 3.2.1 are of type (3.22).
To this end we consider the stationary solution f to the linear initial profile given
by Figure 2 and determine constants ¢(!), ¢(?) by

min [| (v, /) = fllo. (3.26)

(1) (@)

To compute f(v,c™)/c¢?) we used the constants introduced in 3.1.2 and set p
and u as in Figure 2. The stationary solution and the discontinuous solution
f(v,c® /c?) for the optimal choice of ¢(V)/¢(?) are presented in Figure 5.

10
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Figure 2: Linear initial profile. The final profile consists again of two Gauss
curves sparated by a discontinuity.

Having the one-parameter family of solutions of ( 3.21) we can compute a one-
parameter family of fundamental diagrams by

pu:/ " vf (v, /eP)dv, (3.27)
0

i.e., for each fixed p € [0, pmax] and each choice M, c?) we compute u by the
above relationship. We obtain a family of functions u(p,c(*) /c()). In Figure 6
we plot three different graphs corresponding to three choices for the quotient
¢ /¢, The top part of the Figure shows u(p,ct)/c(?)) for the three differ-
ent quotients ¢ /c(® = {2,1,1} and varying p. In the lower part we plotted
f(w,cM/c?) with the parameters u = 0.4,p = {0.3394,0.2124,0.1157} for
¢ /e® = {2,1,1} respectively. Allowing discontinuous solutions as solutions
of the model we obtain a region where the fundamental diagram is multivalued.

3.2.3 Synchronisation

We next investigate the question whether and how the traffic profiles on the
two lanes will synchronize. Synchronization was reported by B. Kerner [9]. It
is expected to be predicted by our model because of the structure of the lane
changing terms on the right-hand sides. For a simplified scenario we prove in
Section A below that synchronization must occur.

For the subsequent numerical tests we focus again on the spatially homogeneous
scenario. We use the standard settings for the constants. We assume different
initial profiles and look for synchronisation effects due to lane changing. First
we choose a sin and a linear initial profile, see Figure 7; in a second test we take

11
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Figure 3: Constant initial profile. The final profile consists of two Gauss curvess
separated by a discontinuity. c4,cp are as in the standard settings.

two stationary solutions with different macroscopic speed, see Figure 8. Rapid
synchronization was observed in these and all other considered cases. In the
appendix we present an analytical result of this type for a simplified system.

3.3 Stop-and-Go waves

This last test is concerned with a scenario where both spatial and temporal
dependencies enter. We have to solve the full system, with the spatial and
temporal nonlocalities taken into account.

Our objective is a reproduction of the phenomenon of stop-and-go waves as
perceived behind bottlenecks on the highway. Numerical tests confirm that
stop-and-go waves are produced by a trigger, like a bottleneck, the spatial non-
localities contained in the definition of the reaction times Tg and T4 and the
multi-valued fundamental diagram.

We consider two different cases with slow and fast moving traffic. In both cases
stop-and-go waves are observed. The results are given in Figure 9 and 10. We
plotted the averaged quantities p;, j; for fixed times ¢.

plat) = [ fia oo i=1,2 (3.28)
0

is plotted in the top row and

Ji(z,t) = / o vfi(z, t,v)dv i =1,2 (3.29)
0

12



Figure 4: Constant initial profile. The final profile consists of two connected
Gauss curves sparated by a disconinuity. c4 = ¢g = 5. The other constants are
as in the standard settings.

in the lower row. We assume a bottleneck on lane one at zg which forces the
drivers to change to lane 2. The position of the highway bottleneck is marked
by a cross on the horizontal axis. We choose initial data f;(x,v,0) according
to the continuous stationary solution of the Vlasov-Fokker-Planck equation, i.e.
fi(x,v,0) is chosen equal to

c(p(x), u(@)) exp(Bv —u)* T [(1=¢) 535 — 325)) v >wu
c(p(@), u(w)) exp(—a(u — v)*77/(3 = 7)) v < u(z)

The constants are those given in paragraph 3.1.2. p(x) and u(z) are chosen such
that for each z in the computational domain the relation

—~
8
~—

(3.30)

Umax
u(z) :/ f(z,v)dv (3.31)
0
holds. We set
z <xzg p(z) = consty, u(r) = consty (3.32)
x> 1xz9 p(x) = consts, u(x) = consty (3.33)

where the exact values of the constants are given in Table 1 below.

A An analytical result on synchronization

The numerical results on synchronization from the previous section are not sur-
prising given the nature of the lane-changing terms on the right-hand sides of

13
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Figure 5: The asymptotic profile of a long time calculation in comparison with
a stationary, discontinous Gaussian curve.

the model equations. Yet, it is not a straightforward matter to prove a corre-
sponding result analytically; if the model were a simple system of linear diffusion
equations with linear exchange terms on the right hand side, synchronization
could be proved by use of a variety of methods (energy or entropy methods,
expansion in Fourier series, maximum principles,...), yet the self-consistent non-
linear structure of the lane changing terms, i.e., the factors j; and ja (inserted
for dimensional consistency), make the adaptation of these methods challenging.
We succeeded in proving synchronization nonetheless for a simplified system in
which the diffusion is constant and in which braking and acceleration terms are
ignored (this is, of course, not realistic, but it is a first step).

The system we consider here is thus as follows. On a highway with two lanes,
assume that traffic is spatially homogeneous but has lane-dependent different
velocity distributions. Will these velocity distributions synchronize as ¢t — oo ?
Our model is reduced to

Ofi—elifi=jaf2—jiha

1.34
Oifo —€0%fo=j1fi — jofo ( )

14
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Figure 6: Fundamental diagrams and different solutions of the steady spatially
homogeneous equation.

where as before f; = fi(t,v),i=1,2,v € (0,1), t > 0, and
1
jilt) = / filt, v) v do.
0

This is a simplified version of the two-lane system (1.1) in which we neglect the
braking-acceleration terms and take the diffusion to be constant € > 0. We shall
impose the initial conditions

f,‘(O,U) = fo,’(U), 1=1,2, ve (0, 1),

and the Neumann boundary conditions

6vfi(t’ 0) = a’UfZ(ta 1) = 03 = 1a23 t> 05

which correspond to the zero-flux conditions on the boundary. It is easy to
check that for ¢ = 0 the right-hand side of (1.34) has an equilibrating effect,
whereas the equations with the right-hand side zero describe an exponentially
fast convergence to constant steady states. However, because of the non-local

15
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Figure 7: Sin and linear profile as initial values. The final profiles are synchro-

nized.

Parameter Testcase 1 Testcase 2

Beginn of the bottleneck To =28
# Discretization points in v 81
# Discretization points in x 161
Initial density for both roads and z < z¢ 0.2837
Initial velocity for both roads and x < xg 0.1
Initial density for both roads and = > z¢ 0.0
Initial velocity for both roads and x > xg 1.0

0.2319
0.59

Table 1: Data for bottleneck simulation.

dependence of the fluxes j; on the solution, the combined result of these two

effects is not immediately predictable.

We begin with some natural manipulations of the system (1.34).

First, F = f1 + fo satisfies the equation
OF —ed’F =0

with homogeneous Neumann boundary conditions. Therefore,

1
F(t,v)—>F0:/ Fdv, ast— oo.
0

Further, setting J(t) = fol F v dv we obtain using (1.35)
J'(t) + (F(t,1) — F(t,0)) =0,

16
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Figure 8: Two Gaussian curves with different average speeds as initial profiles,
and the synchronized final profiles.

so J'(t) = 0 and J(t) — fol Fovdv = $Fp, as t — oo.
Writing the equation for ¢ = f; — fo we obtain
Bup —e0yp =2jafo — 21 f1 = =Fj — Jg,
where j = j; — j2. Multiplying the equation for ¢ by v and integrating we get
J'+ 275 = e(p(t,0) — o(t, 1)).

Since the asymptotic behaviors of F' and J are known, we replace them in
the above equations by their limit values to obtain the following approximate
equations:

Oup — e 02p + s Fop = —Fyj,
(1.36)

jl + Foj = E(QD(t, 0) - (P(ta 1));

in which ¢ = @(t,v) satisfies

Bup(t,0) = Byp(t,1) =0, >0
and

1
Jjt) = / pudv.
0

We now establish the following

Theorem 1. For every po € L*(0,1), the unique weak solution ¢ = ¢(t,v) of
(1.36) satisfies
lo(t, v)llL2(0,1) < Ce™™,

where C' > 0 and a > 0 are computable constants.

17
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Figure 9: Intermediate profile arising during the bottleneck simulation for test-
case 1

Proof. Continuing ¢(t,-) to (—1,0) as an even function, we can expand
o
p(t,v) = Z an(t) cos(mnv), (1.37)
n=0

noticing that the boundary conditions are then satisfied for any choice of a,(t).
We have

0(t,0) =) an(t) and @(t,1) = (-1)"an(t),
n=0 n=0
so that -
0(t,0) = o(t,1) =2 asnq1(t).
n=0
Also

t
) = o™ 2 [ (p(6,0) = p(t, 1) e 0 ar
0

18
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Figure 10: Intermediate profile arising during the bottleneck simulation for
testcase 2

where jo = fol o v dv. Substituting (1.37) into (1.36) we obtain the following
system of equations for the Fourier coefficients:

_FOj(t)7 n=20

1
/ 2,2 —
a, (t) +emna,(t) + EFO an(t) = { 0) n# 0

§(t) = joe Tot 4 28(t).
where

00 t
sH=3 /0 Gt (7) e~ .
n=0

(Notice that j is independent of v; hence it only contributes to the zero-order
term on the right-hand side of the equation for a,,.)

The equations for n > 1 can be solved explicitly:

an(t) = an(o) 67(5ﬂ2"2+%F0)t7
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and so we can compute

¢
/ Qongr (1) e FoT) dr =
0

Thus,

1
1Fy —em?(2n + 1)2

(67%F0t75ﬁ2(2n+1)2) _ efFot)‘

— L1 Fot 0) —em?(2n+1)%t _ o~ Fot 0)
e
Z1170—571'2 (2n +1)2 T;);Fo—awz (2n +1)2

= e*EFOtSl( t) + Ce 1ot

where S;(t) is uniformly bounded for ¢ > 0. We can now use the expression
for S(t) to find j(t) and ag(t) and obtain the exponential decay for all Fourier
coeflicients of . This completes the proof. O

While this proof does not address the synchronization question for the full traffic
model, it shows at least that our lane change terms are consistent with synchro-
nization.
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