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Abstract

This paper explores causes for the formation of stop-and-go waves
observed on multi-lane freeways near bottlenecks. A microscopic traf-
fic flow model of a two-lane highway with a bottleneck at which ve-
hicles must merge into a single lane is presented. We implement it
through the use of a Java program simulation governed by our model.
The simulation shows that our model gives a strong symptom of the
formation of such stop-and-go waves.
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1 Introduction

There are several different traffic scenarios which produce different types of
stop-and-go waves. The simplest case would be found on a high density,
multilane highway with aggressive drivers in which a bottleneck forces vehi-
cles to merge into single lane traffic. By aggressive drivers, we mean that
vehicles will fight for every bit of road they can advance; they will not slow
down until they are forced to do so by the cars in front of them. Such sim-
plistic behaviour means that drivers do not adjust their speeds when they
see backed-up traffic ahead. Thus, cars pile up near the bottleneck and expe-
rience stop-and-go motion as the front car of their lane merges, followed by
the next car moving ahead and then stopping to let the other lanes merge.
A simulation of this behaviour and a cure can be found in Ref. [1].

Kinetic bottleneck simulations and real-life traffic studies have shown
density “spikes” propagating backwards from the bottleneck, as in [2], and
present to us a different type of stop-and-go wave formation (I'm speculating
on the real-life studies existing... do they exist?). These suggest that vehi-
cles will experience stop-and-go motion before even reaching the back of the
bottlenecked traffic. What type of realistic driver behaviour produces such
traffic low? Obviously, the aggressive behaviour mentioned above will not
produce this effect. What we need is more conservative drivers; vehicles must
have the ability to look ahead at the situation on the road and adjust their
speeds and/or change lanes if a traffic jam is ahead. In Section 2, we describe
a traffic flow model used in an attempt to achieve this effect including the
highway design, how and when cars accelerate and brake, when cars change
lanes, and what cars do at a bottleneck. In Section 3, we present a simula-
tion of traffic flow behaving according to this model. The implementation of
the simulation is discussed along with the results which show symptoms of
stop-and-go wave formation.

2 The Model

2.1 The Setup

Consider a straight stretch of road along the z-axis from z = 0 to x = 850:
From z = 0 to x = 800, there are two lanes denoted lane 1 (top lane) and
lane 2 (bottom lane); between z = 760 and z = 800, we have a bottleneck



where cars must merge into one single lane; from x = 800 to x = 850, traffic
continues in a single lane denoted lane 3 (see Figure 1). These lengths are
all in pixels since our simulation will run directly on the computer screen.

Vehicles enter the system at z = 0 with initial speed v where v is a
uniformly distributed random variable between 15 and 20 pixels per 200
milliseconds for cars entering lane 1, and is a uniformly distributed random
variable between 10 and 20 pixels per 200 milliseconds for cars entering lane
2. The individual car’s speed limit, v,,,4., is taken to be this initial speed. We
do this since individual drivers have their own maximum speed which they
feel comfortable driving at (we can consider 20 pixels per 200 milliseconds
to be the legal speed limit on the road). Thus, we consider lane 2 to be the
“slower lane” since slower traffic only enters into this lane (however can still
change lanes), providing a realistic feature of highway traffic. Vehicles then
continue travelling to the right until they pass x = 850, at which point they
then leave the system. Cars enter lane 1 at “probability rate” p; and enter
lane 2 at “probability rate” p, (see Section 3.1). We take our road to be
initially empty.

Figure 1: The road for our model which is initially empty

2.2 Car Look-ahead Behaviour

Let us ignore lane changing for the moment and focus on how a car acts
and reacts to the traffic situation ahead in its lane. Let R; be a car on the
road. We denote the car directly in front of R;, if it exists, by R;_ ;. We
denote the positions and speeds of R; and R; ; by z; and v;, and x; ; and
v;_1 respectively.

We consider R; to have a look-ahead distance in which it surveys the
traffic situation ahead in its lane. The faster R; travels, the further R; must
look to make a good decision on the road. Thus, we define:

LAD := Look-ahead Distance = kyv; + (L + 5)
Here, L is the length of a car (taken to be the same for every car on the

road), S is a safety parameter, and k; is a constant. The effect of S, as will
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be seen later, is that R; will always attempt to have at least S pixels between
the front of itself and the back of R; ;.

For R; to drive safely on the road, it needs to keep a safe distance from
R;_,. This safe distance needs to increase as v; increases to allow R; enough
time to brake if R;_; happens to slam on its brakes. This is the philosophy
of the generally accepted road rule in British Columbia called the “2-second
rule” [3]. So we define:

OD := Optimal Distance = kqv; + (L + 5)

Again, ko is a constant. Thus, R; tries to stay further back from R; ; as its
speed increases.

We now come to the ordinary differential equations which define R;’s ac-
celeration. Let D = |z;_1 — x|

Case 1: D < OD

1 1\, .
. max {_bma;va —C1 (B - OD) v; + 6}7 Vi1 S
V; =
11 ),2 .
mazx {_bma;va —bsiight (5 - ﬁ) v + 6} Vi1 > U

Here, bpq, is the maximum amount of braking that can be applied by
R; (since it is only physically possible to decelerate so fast), ¢; and bg;gn
are dimensionless constants, and ¢ is a small random error, taken to be a
normally distributed random variable with mean 0 and standard deviation
0.2. The error accounts for the driver’s inability to perfectly judge the speeds
and distances required to make the decision. We will take ¢; to be larger in
magnitude than bg;gss since R; must brake harder if R;_; is travelling slower
than R;. However, no matter what the speed of R;_;, R; brakes since it is
closer to R;_; than desired.

Case 2: D=0D

Case 3: D> 0D and D < LAD

1 1 2 .
max {_bmama —C <O_D - 5) (v; —viz1)® + 6} ; Vie1 <

Vi =19 min {amm, 3+ 89N (Vmaz — V3) <0D - %) maz{(Vmaz — v:)%, (Vi1 — v3)%} + 6} TVt > U

€ Vi—1 = U4



Similar to byaz, Gmaez 1S the maximum acceleration of R;, and ¢, and c3
are dimensionless constants. So when R; is further than the optimal distance
from R;_; (and within the look-ahead distance), it brakes according to the
top equation when R;_; is going slower and accelerates according to the mid-
dle equation when R;_ ; is going faster. We check the sign of (Ve — v;) to
ensure that R; decelerates if travelling faster than its speed limit.

Case 4: D > LAD
/l')i = mZTL {a/ma;c; C4(Uma:c - /Ui) + 6}

Note that c4 is another constant. Here, R; | is outside the look-ahead dis-
tance of R;, so R; just accelerates up to its speed limit. This acceleration term
is the only dimensionally inconsistent expression; however, the behaviour of
R; for this case is the least important to our investigation and as long as R;
accelerates towards its speed limit, our model will behave properly.

The key to our desired conservative driving behaviour lies in Case 3. As
noted above, R; brakes when D > OD and v;_; < v;. Also notice that we
multiply by the square of the relative velocity, v; — v;_1, rather than the
square of the velocity of R;, v;, as was done in Case 1. By doing this, R;
will adjust to the flow of traffic ahead of it given that the magnitude of c; is
large enough. So if a jam is ahead, the flow of traffic will be slow and hence
R; will slow down to R;_1’s speed before reaching the back of the jam. This
will help produce stop-and-go waves.

2.3 Lane Changing

Stop-and-go waves seem to appear only in macroscopic models which in-
corporate bifurcated fundamental diagrams (see [2]). To produce this, we
include lane changing terms in the model. To be consistent with the macro-
scopic models, we have allowed vehicles in lanes 1 and 2 to change lanes in
our microscopic model when realistic conditions for doing so are satisfied.
The lane changing decision of R; is dependent on, among other factors, the
positions of several other cars on the road. We will continue to denote R;_;
as the car directly in front of R; and in the same lane as R;. We will now
denote the car closest to and ahead of R; in the opposite lane as Rypeqq and
the car closest to and behind R; in the opposite lane as Rpeping (see Figure
2). All of the following conditions must be satisfied for R; to change lanes:



1. z; < 760

2. U < Gmin

3. |%; — Tbehina| > (M + 1)L

4. v; < fUmaz

5. a) |Zehead — Zi| > LAD; or b) |Tanead — 25| > OD* and Vgpeaq > Vi-1

Here, ap, is a small constant so that R; will change lanes only when de-
celerating or travelling at approximately constant speed; M is a constant
denoting the minimum number of car lengths between the back of R; and
the front of Rpening needed to safely change lanes; f is taken to be a positive
value < 1 so that R; will only change lanes when travelling some fraction of
its speed limit or slower; OD* is the optimal distance R; would want to be
from Rgpeqq if R; does change lanes (i.e. OD* = OD computed as if R; is in
the other lane). If all five conditions are satisfied at any given moment, then
R; changes lanes “with probability p” (see Section 3.1).

Figure 2: The approriate references R; must consider when deciding whether
or not to change lanes

2.4 Merging at the Bottleneck

Now we are concerned with the look-ahead behaviour of cars near the bottle-
neck. Once z; = 760, R; must begin to merge into lane 3. We then take the
car directly behind R; and in the opposite lane (Rpening) to look ahead at R;.
In other words, R; becomes the car directly in front of Ryeping for the purpose
of calculating the acceleration of Rpeping as in Section 2.2. It is possible here
for Ryening to be very close to R; at the moment that R; begins to merge.
This makes it important for the parameters ¢, and bg;gn; to be large enough
so that once both x; and Zpeping are > 800, |x; — Toening| > (L + S); ie. the
cars do not hit each other as they complete their merge.
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3 The Simulation

3.1 Implementation

A Java animation program is used to observe traffic low under the micro-
scopic model described in Section 2. The differential equations for the cars’
accelerations are advanced using Euler’s method with time step dt = 0.025,
where each time step produces a frame of animation.

As described in the model, cars enter lane 1 at probability rate p; and
enter lane 2 at probability rate p,. We interpret this in the program by
inserting a car at x = 0 in lane 1 with probability p; at each integration time
step, and similarly in lane 2 with probability p;. However, we may only insert
a car R; at ; = 0 when pe, > kov; + (L + S), where Rpqex is the car at the
back of the lane. We impose this restriction so that there is sufficient room
for R; to enter the road without running into Ry, Also, cars are coloured
according to their randomly generated speed limits, v,,4,: If 10 < v, < 13
pixels per 200 milliseconds, then the car is red; if 13 < v,,4, < 17 pixels per
200 milliseconds, then the car is yellow; if 17 < v, < 20 pixels per 200
milliseconds, then the car is cyan.

The lane changing conditions in Section 2 are checked for every car at
each time step. When all these conditions are satisfied for a particular car
at a given time step, it immediately changes lanes with probability p. For
simplicity, lane changing occurs instantaneously. Since a car will often have
its lane changing conditions satisfied for a lengthy duration of time rather
than just at one time step, our cars will almost always change lanes when
able to if p is not too small. This means that when a group of cars all see
the same jam ahead, they will all change lanes at nearly the same time. This
is unrealistic behaviour; we expect cars to change lanes one at a time rather
than as a group. For this reason, we choose a small value for p.

The numerical values used in the simulation for the various parameters
are listed in Table 1.

3.2 Results

Since our road is initially empty, it takes some time for traffic to build up and
to observe interesting behaviour. Figures 3 and 4 show the states of traffic
at an early and a later time in one particular simulation respectively.

In Figure 3, we see that no jam has developed yet at the bottleneck.



Parameter Value | Parameter Value
bomin 1 Omaz 0.75
bsiignt 2 k1 30
brnaa 10 ko 1.5
c1 15 S 5
Co 3 Amin 0.05
Cc3 10 f 0.95
s 10 P1 0.0029
L 6 P2 0.0058
P 0.005 M 2

Table 1: Data for the model parameters used in the simulation

Thus, cars travel along at safe distances from the cars in front of them and
change lanes when appropriate. There is only a very small degree of stop-
and-go waves forming at this early stage caused by instances where a slower
car changes lanes in front of a faster travelling car. This forces the faster
car behind to immediately slow down while the slower car in front begins to
speed up after having made more room in front of itself by changing lanes.
After a short while, the car behind can then accelerate since there is a larger,
safer distance between the two cars. Thus, the car behind experiences a slow
down, speed up behaviour (a very small symptom of stop-and-go waves).

Time=102.2

Figure 3: The traffic state of one particular simulation at time ¢ = 102.2

In Figure 4, a small pile-up of cars are merging at the bottleneck. The
cars in lanes 1 and 2 directly behind this pile-up “see” the traffic jam ahead
and slow down as designed in our model in Section 2. In turn, these cars
create what appears to be a minor jam-up to the drivers further back down
the road. This means that they too slow down and wait for this minor jam
to clear before speeding up again. Notice that this creates pockets of high
density regions where the jams occur on the road and pockets of low density
regions of gaps between the groups of cars. Our microscopic model thus
shows a type of driver behaviour that could explain density “spikes” found



in macroscopic models, as in Ref. [2]. Once the pile-up at the bottleneck
clears, the next minor jam of cars then speed up, followed by the cars behind
them speeding up as that minor jam clears. The new front group of cars then
reach the bottleneck and again create a jam while they merge into lane 3.
The group of cars behind them again slow down and wait for this new jam to
clear before once again speeding up towards the merging point. Thus, many
individual cars experience a slow down, speed up, slow down, speed up cycle.
These are not pure stop-and-go waves since cars behind the bottleneck rarely
ever come to a full stop, but our model certainly provides a strong symptom
of such wave formation in traffic flow.

Time = 631.0

Figure 4: The traffic state for the same simulation at time ¢ = 631.0

Other values for p; and p, were also simulated. We found that for p; =
0.001 and ps = 0.002, the car insertion rates were too low to produce the stop-
and-go waves found in Figure 4. For p; = 0.005 and p, = 0.01, traffic became
very dense after just a short while in the simulation and the amplitudes of the
stop-and-go waves appeared to flatten out. As was expected, there seems to
be a specific density regime where the formation of good stop-and-go waves
occur; outside of this regime, they either are very small in amplitude or don’t
exist at all.

The most significant cause of the stop-and-go waves is the adjustment to
the flow of traffic made by R; in Case 3 of Section 2.2 (braking scenario). We
ran a simulation with co = 0 and found that stop-and-go waves disappeared
completely. This is understandable since co = 0 implies that R; will not
brake until it passes its optimal distance from R; i, but since R; can only
brake so fast it will end up much closer to R;_; than desired. This behaviour
is much too aggressive. In addition, we set p = 0 for one simulation (no
lane changing). Although the stop-and-go waves did not vanish from the
traffic flow entirely, they certainly were much less magnified compared to
our model where p is nonzero. We also adjusted the rate parameters p; and
po and found that the density regime for stop-and-go wave formation was
smaller with p = 0. Finally, a simulation was run with each car given the
same initial speeds and the same speed limits. This resulted in no change to



the stop-and-go waves.

In previous versions of our model, R; observed the density of traffic ahead
and would attempt to stay further back from R; ; as the density ahead
increased. To this end, we had OD = (kg + ksv/n — 1)v; + (L + S), where
n was the number of cars ahead of R; within its look-ahead distance and k3
was a constant. This actually had little effect on stop-and-go wave formation.
If anything, it did more harm than good because some cars were becoming
too spaced out and were not creating good enough jams to produce nice
propagating stop-and-go waves. Thus, we have not included such terms since
they are unneccessary and only further complicate the model.

In summary, it appears that the key ingredients of stop-and-go wave
formation are a bottleneck where cars must merge from a multilane highway
to a single lane road and driver behaviour that promotes drivers to adjust
to the flow of traffic ahead of them. Lane changing also helps to widen the
density regime where stop-and-go waves are found.
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