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Abstract. We present an extended discussion of a macroscopic traffic flow

model [18] which includes non-local and relaxation terms for vehicular traffic

flow on unidirectional roads. The braking and acceleration forces are based on
a behavioural model and on free flow dynamics. The latter are modelled by

using different fundamental diagrams. Numerical investigations for different
situations illustrate the properties of the mathematical model. In particular,

the emergence of stop-and-go waves is observed for suitable parameter ranges.

1. Motivation and Introduction. We are concerned with refinements of the
non-local traffic models previously introduced in [17] and [18], and this paper is a
continuation of [18]. The studies done there show how non-local macroscopic models
can be derived from kinetic models of Vlasov-type. They further contain a number
of analytical and numerical investigations concerning the qualitative behaviour of
solutions, such as the formation and propagation of traveling wave solutions, the
impact of a local speed limit, and the origin of stop-and-go waves. In [22] the
functional-differential equation arising for the propagation of a traveling braking
wave is discussed as an interesting mathematical object in its own right.

The models are generalizations of the macroscopic model first suggested by Aw-
Rascle [1] and Zhang [39]. In the form considered in [18] we observed that maximum
principles are satisfied; while this is a pleasant feature from a mathematical point
of view, it is rather unrealistic in real traffic. For example, consider a situation
where traffic moves at a constant large speed u and a very high density ρ. The
constant pair (ρ, u) will formally be a steady solution of the models from [18], but
in reality drivers in such a situation would (because of safety concerns) make an
effort to reduce density and speed and would slow down to this end. In versions
of the Aw-Rascle model this is usually achieved by the inclusion of a relaxation
term based on a fundamental diagram. In the simplest form, this means that in
the absence of other stimuli drivers will brake or accelerate towards a comfortable
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target speed Ue(ρ), and the corresponding force term, to be used on the right hand
side of the momentum transfer equation, is

1

T0
(Ue(ρ)− u).

Here T0 is a characteristic relaxation time. The target speed Ue(ρ) is also called
equilibrium velocity–density relation. The associated equilibrium flux–density rela-
tion ρUe(ρ) =: q(ρ) is called fundamental diagram.

Models of Aw-Rascle–Zhang type with these right hand sides have been studied
extensively and with different versions of fundamental diagrams ρUe(ρ). We refer to
[2, 11, 27] for such research. Kimathi et al. [27] considered in particular the situation
of three-phase traffic which emerges when fundamental diagrams are multi-valued,
as suggested by B. Kerner [26]. Nonconcave fundamental diagrams for the Aw–
Rascle–Zhang model have been studied e.g. by T. Li [30].

In this current work we consider the coupling of a variety of fundamental diagrams
(including a multi-valued FD) with the non-local models introduced in [17, 18].
The full model will be introduced in Section 2. One of the features it displays is
evaluation of the density and speed variables over stretches of the road which cover
(in practice) 20 to 100 meters; if this is to be taken seriously, one has to include a
discussion of the meaning to ρ and u. Such a discussion is often missing in papers
on traffic, leading to confusion even among experts.

In continuum physics macroscopic variables emerge in what is usually referred
to as the mean field limit; density, for example, is defined as the average number
of particles (here cars) over a length ∆x, such that the real number of particles in
[x, x + ∆x] is ρ(x)∆x. For this interpretation is is certainly necessary that many
particles fit in the reference interval; for cars, this means that ∆x should have to
be of the order of magnitude of at least hundreds of meters. The downside of such
an interpretation would be that a macroscopic model would in principle be unable
to resolve features which happen on shorter scales, or that emerging features on
shorter scales have no meaning in the real world.

Fortunately, there is a second interpretation of the dependent variable ρ, u which
does not face this problem. Simply define ρ to be the inverse to the distance to the
lead car, or, a little more general, an inverse of the average of the distances to the
leading cars within a visible window (and similarly for u). As was demonstrated
convincingly in [2], this allows a reinterpretation of microscopic models in terms
of macroscopic variables, and permits the use of the numerical tools available for
nonlinear hyperbolic systems of equations. It is this interpretation which we will
adopt for our purposes.

We conclude this introduction by a (very) brief review of other approaches to
traffic modeling. Indeed, our models belong to only one class of possible models
and ignore aspects of traffic such as variations in vehicle size and mass, driver
behaviour, random fluctuations, etc. While it is possible to include such effects,
our first priority here is simplicity in order to identify basic structures and explain
arising phenomena.

Our model is a macroscopic model derived from a Fokker–Planck ansatz, see
[24, 17, 19, 23]. Macroscopic models have been studied intensively in recent years
and an incomplete list of references includes [1, 5, 6, 9, 10, 11, 12, 14, 20, 21,
28, 31, 33, 39]. Second order macroscopic models use equations similar to fluid
dynamics models to describe the evolution of traffic density and velocity profiles. In
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contrast, microscopic models keep track of individual drivers and their interactions
in order to explain traffic phenomena. Some references on microscopic models are
[7, 8, 15, 16, 26, 38, 34, 35]. Microscopic models can take the form of systems
of ordinary differential-delay equations, or of discretized versions such as cellular
automata. These models have been extended to include stoachstic effects, see e.g.,
[32], [36, 37]. Finally, there is a class of kinetic models of Enskog–type which relates
to microscopic and macroscopic models, see e.g. [25].

2. Modelling.

2.1. Parameters and Notation. Throughout this paper x, t will denote position
(on the road) and time.
ρ = ρ(x, t), u = u(x, t) denote the macroscopic density and the macroscopic (aver-
age) speed of cars on a highway (freeway) lane. Lane changing is included in the
sense that certain types of fundamental diagrams (to be introduced later) emerge
only when lane changes are possible and occur.

The non-local model includes three parameters which exist in real traffic: A
minimum safety distance H > 0 of the order of magnitude of 8 meters (measured
from the front of a car to the front of the lead car; this applies in moving traffic
and is larger than the minimum distance in standing traffic, which is the inverse
of the maximal density), a characteristic reaction time T > 0, which multiplies the
driver’s speed such that [x, x + H + Tu] is the window from which a driver at x
and moving with speed u draws (visual) information, and finally a reaction time
τ > 0. T should be thought of as being about 2 seconds, τ ≤ 1 second. At a
typical speed of 15 meters per second, the window would then be 38 meters long.

With u, ρ taken at (x, t) we introduce the abbreviations

uX(x, t) = inf
σ∈[x,x+H+Tu]

u(σ, t− τ), (1)

(the smallest speed observed in the visible window)

ρ+(x, t) = sup
σ∈[x,x+H+Tu]

ρ(σ, t− τ), (2)

uY (x, t) = sup
σ∈[x,x+H+Tu]

u(σ, t− τ), (3)

and
ρ−(x, t) = inf

σ∈[x,x+H+Tu]
ρ(σ, t− τ). (4)

2.2. The Fundamental Diagram. Braking and Acceleration Forces. Dri-
vers are assumed to have a target speed in mind associated with a certain density,
and if no other inputs are active, they will brake or accelerate towards this target
speed. We assert that this behaviour produces a force F given by relaxation towards
the equilibrium velocity–density relation Ue(ρ). In the simplest case

F =
1

T0
(Ue(ρ)− u) . (5)

As indicated earlier, Ue may be a multi-valued function. This is best expressed as
an additional dependence Ue(ρ, u). We will provide and use an example below; the
structure of a multi-valued Ue is best understood from a graphical representation
(see Figure 1).

We emphasize that the force F is active only if no other (overriding) forces apply.
Such forces are active if the driver is in a “compelling” braking or acceleration
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situation. The word “compelling” here means that the driver realizes the need to
brake or accelerate; to this end we introduce one more parameter ε ≥ 0, a (low)
threshold for reaction. The force term which is active on the right hand side of
the speed (or momentum transfer) equation is then defined for all possible cases, as
follows (we distinguish cases A to D):

A.

If u− uX > ε let B = min{c1
(

ρmaxρ
+

ρmax − ρ+

)
(uX − u), F} (6)

This means that braking dominates, and the braking force is the stronger of the two
given by the speed relative to uX and the one given by the equilibrium velocity. The
factor multiplying uX − u is sometimes called “speed adaptation coefficient” (see
[27] and the references therein). It has been introduced in [3] for the Aw–Rascle
model to avoid inconsistencies concerning the maximal density. The precise form
is not important but it needs to be guaranteed that the factor diverges to ∞ as ρ+

approaches the possible maximum.

B.
If u− uX ≤ ε and F < 0 let B = F. (7)

This means that braking still dominates if the equilibrium velocity calls for braking,
even if the relative speed is close to 0 or negative.

C.
If u− uX ≤ ε, F ≥ 0 and uY − u > ε

apply an acceleration force A be defined by

A = max{c2(ρmax − ρ−)(uY − u), F} (8)

This is an acceleration scenario, and we accelerate by either the force suggested
by the speed relative to uY , or by the equilibrium velocity. Notice that the speed
adaptation coefficient is now taken as a decreasing function of ρ− – higher densities
should imply reduced acceleration.

D. And finally, if none of the above apply, the force is simply

F = F (ρ, u) =
1

T0
(Ue(ρ, u)− u) . (9)

– the equilibrium velocity–density relation is the only remaining input.

In the following numerical simulations we allow different Ue(ρ) and depicte in
Figure 1 some choices explained in detail below.

I The Greenshields model [13], which we include here for completeness, with the
two parameters maximal velocity vmax and maximal density ρmax, is given by

Ueq(ρ) = vmax(ρ− ρmax). (10)

We conducted but do for conciseness not include numerical experiments.
II A more realistic nonlinear equilibrium velocity is

Ue(ρ) = vmax

(
1− 1

π

(
atan

(
30π

(
ρ− ρmax

3

))
+
π

2

))
. (11)

The shape of this function is similar to the examples considered in [25, 27]. It
is a better match to traffic data due to the small transition zone between free
flow ρ < ρmax

3 and congested traffic.



NON-LOCAL DRIVING BEHAVIOUR AND FUNDAMENTAL DIAGRAMS 5

III An example of equilibrium velocity relation attaining multiple values in the
region I := [ρ−, ρ+] given by

Ue(ρ, u) =

Ue (ρ+ ρmax

3 − 5
4ρ+

)
u > u∗(ρ), ρ ∈ I or ρ < ρ−

u∗(ρ) u = u∗(ρ), ρ ∈ I
Ue
(
ρ+ ρmax

3 − 3
4ρ−

)
u < u∗(ρ), ρ ∈ I or ρ > ρ+

 (12)

Here, we choose Ue(ρ) given by (11). The other parameters are as follows

ρ± = ρmax

3 ± 1
20ρmax, u∗(ρ) = u+−u−

ρ+−ρ− (ρ − ρ−) + u− for u− = Ue( 1
2ρ−) and

u+ = Ue(− 1
4ρ−). Similar diagrams were discussed in [27], where is was shown

how these mutli–valued diagrams help to explain stop–and–go waves. It has
been argued [27, 25]that the existence of multi–valued functions is due to
the possibility of cars changing lanes. In [24] a kinetic multi–lane model for
vehicular flow has been proposed. By moment approximations single lane
models with multi–valued functions Ue(ρ) could be obtained due to the lane
changing terms.

These definitions define forces for all possible scenarios as a functional of the
(delayed, non-local) traffic state. If we write R for the functional defined by cases
A to D , our traffic model is in short

∂

∂t
ρ+

∂

∂x
(ρu) = 0 (13)

and

∂

∂t
u+ u

∂

∂x
u = R (14)

To summarize we have for fixed parameters ε and τ the functional
R = R(ρ−, ρ+, ρ, uX , uY , u) given by either (6), (7), (8) or (9) depending on the size
of the relative velocity u− uX and u− uY and the sign of F . Further, F = F (ρ, u)
is given by either equation (11) or (12).

Notice that the B which arises in braking scenarios is by construction always
nonpositive. The definition of the force term R is asymmetric in preference of
braking, a reasonable construction in view of safety considerations.

3. Numerical simulations. The system of balance laws (13-14) is solved numer-
ically by a first–order finite volume method on a uniform grid with Nx grid points
in space. Prior to discretization, the momentum equation is rewritten in the con-
servative variable (ρu). We then apply a first–order time–splitting procedure and
obtain a system of conservation laws and the ordinary differential equation

d

dt
ρ = 0,

d

dt
u = R.

The transport part are then the well–known equations of pressure-less gas dy-
namics. A Godunov scheme in the conservative variables (ρ, ρu) for these equations
can be found in [29]. We use precisely this scheme for discretization of the trans-
port part. Time and spatial discretization are chosen such that the CFL condition
is satisfied. Alternative discretizations can be found in [4] or the references therein.
The source term R depends on local and nonlocal terms and we may write

R = R(ρ−, ρ+, ρ, uX , uY , u).

Depending on the actions of braking, acceleration and equilibrium flow the depen-
dence on the u variable is either uX−u, uY −u or Ueq(ρ)−u. In space we discretize
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Figure 1. Equilibrium velocities Ue and Ue(ρ, u) (dotted red
line) given by (10)-(12), respectively. Also shown are the contour
lines of the acting forces Ue(ρ, u)− u.
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all arguments of R at at the center of each cell with piecewise constant reconstruc-
tion of ρ and u. To compute uX we simply use the nearest neighbours and linear
interpolation. In the splitting the ordinary differential equation is solved by a mix-
ture of an implicit and explicit Euler method. To be more precise, the discretization
at time tn and location xi and for un,i = u(tn, xi) is

un+1,i = un,i + ∆tR(ρ−n,i1 , ρ
+
n,i2

, ρn,i, u
X
n,i3 , u

Y
n,i4 , un+1,i).

Here, the index ij for j = 1, . . . , 4 is computed according to equations (1)-(4). The
discretization is only implicit in the variable u. Higher–order spatial and temporal
discretizations could also be used in order to solve the equations numerically. How-
ever, since the problem is one–dimensional in space the computational time even
on very fine grids is within minutes. If not stated otherwise we set up a “circular”
road (using periodic boundary conditions) and use parameter values as given in
table 1. Initial data are prescribed as discussed below. All computations have been
performed on a 2.4 GHz Intel Core 2 Duo.

3.1. Parameters. The source term R in the equation (14) contains a number of
parameters. The safety distance is about twice the length of a car, giving rise to
a maximal density of ρmax = 0.2. This means that 5 meters is the average length
of a car. The anticipation time of the drivers is two seconds, which, at maximal
speed, yields an additional look-ahead distance of 60 m. The maximal velocity is
set at 108 km/h — a model for highway traffic in the USA and Canada. For the
reaction time of the drivers we choose τ = 0.5sec. We also present results with zero
reaction time. The weights c1, c2, c3 for braking, acceleration and free flow traffic
are a priori unknown. We assume that the drivers have a tendency to brake harder
than to accelerate, or to react to free flow traffic. We simulate traffic for 20 second
periods on a strip of the highway of length 4 km. The mesh consists of 20,000 points
which means one grid point per 20 cm. All parameters are summarized in Table 1.

In contrast to the simulations in [18] there is no additional trigger involved in
the simulations.

Name Description Value Unit
H safety distance 10 m
T anticipation time 2 s
ρmax maximal density 0.2 1/m
umax maximal velocity 30 m/s
τ reaction time ∈ {0, 12} s
c1 weight (braking) 16 1/s
c2 weight (acceleration) 3 1/s
c3 ≡ 1

T0
weight (equilibrium) 0.05 1/(ms)

ε velocity threshold 0.15 m/s
Lmax length of the road 4,000 m
Lres length of speed limit 200 m
ulim speed limit velocity 15 m/s
Tmax time horizon of the simulation 20 s
Nx gridpoints in spatial domain 20,000

Table 1. Parameters of the numerical integrations
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3.2. A lane reduction. We next study the effect of a lane reduction on the evo-
lution of the downstream traffic flow. This is modelled by increasing the initially
constant density of ρ0 = 0.2ρmax to 0.3ρmax on a strip of length 40% of the road
starting at x = 2000m. The initial transition from the lower to higher density is
smooth. The smooth connection on a length of 10m is obtained by suitable adjusted
atan function. The initial velocity is always the equilibrium velocity corresponding
to the lower density. Hence, in this setup the cars within the lane reduction area are
moving uncomfortably fast (as defined by the function Ue(ρ)) and start braking.
Due to the length of the lane reduction the effects of acceleration at the exit point
of the lane reduction area and the braking in the beginning do not interact. In
Figure 2 we present density and velocity at time Tmax using different fundamental
diagrams in the simulation and zero reaction time. In Figure 3 and Figure 4 the
same result using a reaction time of τ = 1

2 are presented. A contour plot of the full

solution over space and time for choice (12) and a reaction time τ = 1
2 is given in

Figure 5.
We observe finite oscillations in the density. Those are expected and they do not

reach or exceed the maximal density in the simulation. They arise from changes in
the velocity profile. Due to the pressureless gas dynamics model such oscillations
lead to oscillations in the density. The frequency of this oscillations is related to
the non–local effect in the equation. In particular, in Figure 4 the occurrence of
stop–and–go waves with wavelength of about 50 m are observed.

We conducted but do not present the same experiments with reaction time τ = 1.
In this case the density exceeded ρmax, at which point the model loses its meaning
(the interpretation would be that an accident has happened).
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Figure 2. Density and velocity at time Tmax for initial data cor-
responding to a lane reduction and constant initial velocity. Dif-
ferent colors correspond to the different choices of Ue(ρ) used in
the simulation: blue and black correspond to equations (11) and
(12), respectively. Initial data is depicted in green. Reaction time
is zero. Left: density, right: velocity .
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Figure 3. Density and velocity at time Tmax for initial data cor-
responding to a lane reduction and constant initial velocity. Dif-
ferent colors correspond to the different choices of Ue(ρ) used in
the simulation: blue and black correspond to equations (11) and
(12), respectively. Initial data is depicted in green. Reaction time
is τ = 1

2 . Left: density, right: velocity.
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simulation: blue and black correspond to the equations (11) and
(12), respectively. Reaction time is τ = 1

2 . Left: density, right:
velocity.
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3.3. The effect of a speed limit. As in [18] we finally consider a speed limit. In
order to treat the effect of the speed limit on the dynamics we proceed as in [18,
4.2.2]. We assume the speed limit is active in an interval I of length Lres = 200m
centered at x = 2000m. The velocity within the speed limit is ulim = 15m/s. In the
area of the speed limit the braking term is modified as follows:

B = min{c1
(

ρmaxρ
+

ρmax − ρ+

)
(u− ulim), F} if x ∈ I and u > ulim.

No further changes are applied to the model. We start with initial constant
densities in the range of 10% − 40% of the maximal density and constant velocity
of Ue(ρ). As always, we study the arising wave patterns. The solution is presented
in Figure 6 and Figure 7 for the case of a reaction time of τ = 1

2 and equilibrium
velocities (11) and (12), respectively. The area of the speed limit is depicted by red
dots. Due to the different shapes of Ue(ρ) different densities give rise to different
initial velocities. Therefore, the braking patterns are more pronounced in Figure
7. As in previous situations we observe a step-like behaviour in the speed profile
and high oscillations in the density evolution. For the intermediate density and
equation (12) we observe a density equal to ρmax which is the maximal density. As
mentioned earlier, this means that a road accident has occurred and the model is
not valid any more. In Figure 6 this case occured at time T ∗ = 1.08 and T ∗ = 1.77
for the medium and large density, respectively. In Figure 7 this happened at time
T ∗ = 2.75 and T ∗ = 1.77 for medium and large density, respectively. In the case
of zero reaction time or low initial density there is no accident observed in the
simulation. The results for zero reaction time are given in Figure 8 and Figure 9,
respectively.
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Figure 6. Density and velocity at time T ∗ where either T ∗ =
Tmax or at time T when the density exceeds the maximal density
ρmax. Different initial densities correspond to different colors with
blue being light traffic, black intermediate traffic and green mod-
erately dense traffic. The speed limit of ulim is imposed within the
red area. Equilibrium velocity (11) and a reaction time of τ = 1

2
are used in the simulations. Left: density, right: velocity.

4. Conclusions. We presented a refined model of traffic flow, in which non-local
braking and acceleration terms are augmented by forces given by an equilibrium
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Figure 7. Density and velocity at time T ∗ where either T ∗ = Tmax

or at time T when the density exceeds the maximal density ρmax.
Different initial densities correspond to different colors with blue
being light traffic, black intermediate traffic and green moderately
dense traffic. The speed limit of ulim is imposed within the red
area. Equilibrium velocity (12) and a reaction time of τ = 1

2 are
used in the simulations. Left: density, right: velocity.
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Figure 8. Density and velocity at time Tmax. Different initial
densities correspond to different colors with blue being light traf-
fic, black intermediate traffic and green moderately dense traffic.
The speed limit of ulim is imposed within the red area. Equilib-
rium velocity (11) and a reaction time of τ = 0 are used in the
simulations. Left: density, right: velocity.

velocity. By two numerical experiments (lane reduction and implementation of a
local speed limit) we indicate the following features, consistent with expectations.

• Non–locality has a significant effect, generating all by itself traffic waves of
realistic wave lengths.

• These effects are amplified if traffic densities are in a range where the funda-
mental diagram has steep slope, or worse, is multi-valued.

• Larger individual reaction times have a destabilizing effect, to the point where
there are collisions.
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Figure 9. Density and velocity at time Tmax. Different initial den-
sities correspond to different colors with blue being light traffic,
black intermediate traffic and green moderately dense traffic. The
speed limit of ulim is imposed within the red area. Equilibrium ve-
locity (12) and a reaction time of τ = 0 are used in the simulations.
Left: density, right: velocity.

Acknowledgments. This work has been supported by HE5386/8-1, DAAD 54365630,
and by Discovery grant No. 7847 of the Natural Sciences and Engineering Research
Council of Canada.

REFERENCES

[1] A. Aw and M. Rascle, Resurrection of “second order” models of traffic flow., SIAM J. Appl.

Math., 60 (2000), pp. 916–938.
[2] A. Aw, A. Klar, Th. Materne and M. Rascle,Derivation of continuum traffic flow models

from microscopic follow-the-leader models., SIAM J. Appl. Math., 63 (2002), pp. 259–278.

[3] F. Berthelin, P. Degond, M. Delitala, and M. Rascle, A model for the formation and
evolution of traffic jams, Arch. Ration. Mech. Anal., 187 (2008), pp. 185–220.

[4] A. Chertock, A. Kurganov, Y. Rykov, A New Sticky Particle Method for Pressureless

Gas Dynamics, SIAM J. on Numerical Analysis, Vol. 45 (2007), pp. 2408–2441
[5] G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J.

Math. Anal., 36 (2005), pp. 1862–1886.
[6] C. F. Daganzo, The cell transmission model : A dynamic representation of highway traffic

consistent with the hydrodynamic theory, Transp. Res. B, 28 (1994), pp. 269-287.

[7] I. Gasser, T. Seidel, G. Sirito, and B. Werner, Bifurcation Analysis of a Class of Car
Following Traffic Models II: Variable Reaction Times and Agressive Drivers, Bulletin of the

Institute of Mathematics, Academica Sinica (New Series), 2 (2007), pp. 587–607.

[8] I. Gasser, G. Sirito, and B. Werner, Bifurcation analysis of a class of ‘car following’
traffic models., Physica D, 197 (2004), pp. 222–241.

[9] J. Greenberg, Extensions and amplifications of a traffic model of Aw and Rascle., SIAM J.

Appl. Math., 62 (2001), pp. 729–745.
[10] , Congestion redux., SIAM J. Appl. Math., 64 (2004), pp. 1175–1185.
[11] , Traffic congestion – an instability in a hyperbolic system, Bulletin of the Institute of

Mathematics, Academica Sinica (New Series), 2 (2007), pp. 123–138.
[12] J. Greenberg, A. Klar, and M. Rascle, Congestion on multilane highways., SIAM J.

Appl. Math., 63 (2003), pp. 818–833.
[13] B. D. Greenshields, A study of traffic capacity, Proc. Highway Res., 14 (1935), pp. 448–477.
[14] R. Herman, I. Prigogine, A two-fluid approach to twon traffic, Science, Vol. 204 (1979), oo.

148-151



14 MICHAEL HERTY AND REINHARD ILLNER

[15] D. Helbing, Traffic dynamics. New physical concepts of modelling. (Verkehrsdynamik. Neue
physikalische Modellierungskonzepte.), Berlin: Springer. xii, 308 p. DM 128.00; öS 934.40;
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