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Abstract6

Understanding the effect of edge removal on the basic reproduction7

numberR0 for disease spread on contact networks is important for dis-8

ease management. The formula for the basic reproduction number R09

in random network SIR models of configuration type suggests that for10

degree distributions with large variance, a reduction of the average de-11

gree may actually increase R0. To understand this phenomenon, we12

develop a dynamical model for the evolution of the degree distribu-13

tion under random edge removal, and show that truly random removal14

always reduces R0. The discrepancy implies that any increase in R015

must result from edge removal changing the network type, invalidating16

the use of the basic reproduction number formula for a random con-17

tact network. We further develop an epidemic model incorporating a18

contact network consisting of two groups of nodes with random intra-19

and inter-group connections, and derive its basic reproduction num-20

ber. We then prove that random edge removal within either group,21

and between groups, always decreases the appropriately defined R0.22

Our models also allow an estimation of the number of edges that need23

to be removed in order to curtail an epidemic.24
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1 Introduction28

The problem of mathematically describing the progression of an SIR disease29

is usually simplified by assuming that individuals in the population are well30

mixed [4]. Transmission events are then governed by a mass-action law, with31

the underlying assumption that encounters between any two individuals in32

the population occur with equal probability. Individuals belong to one of33

three states: susceptible, infective, and removed/recovered with immunity;34

the fraction of the population contained in each state is denoted by S, I, and35

R, respectively. A pairing of (or contact between) individuals is sufficient for36

the disease to jump from an infective to a susceptible, and all such pairings37

are assumed to happen with equal likelihood. If β is the rate in time at which38

pairings leading to infection occur, and γ is the rate of recovery, then the39

familiar Kermack-McKendrick SIR model, which is a special case of a much40

more general model presented in [7], is41

S ′ = −βSI , I ′ = βSI − γI , R′ = γI . (1)42

However, in a real world population certain pairings almost never happen,43

while other pairings are exceedingly common. Encounters between family44

members, spouses, and friends, for example, are far more probable than the45

average random pairing. By accounting for these close-knit connections in46

the population structure, one can expect to model disease spread more re-47

alistically. There are other pairings which occur less frequently but reliably,48

for example encounters with doctors or nurses in a clinic or hospital. These49

latter pairings become particularly important during an epidemic, and while50

the rate of transmission for such pairings may be different from the rate51

for more casual encounters, pairings with hospital employees cannot be pre-52

vented during time of disease.53

A contact network is a network representation of the contact structures54

in a population, where individuals are represented by nodes, and if there55

are contacts between two individuals, there is an edge connecting the two56

corresponding nodes; see, for example, [13]. Following [13], we will call such57
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a random network a network of configuration type if there is a degree dis-58

tribution Pk, k = 0, 1, 2, . . . such that a randomly chosen network node (a59

vertex) has, with probability Pk, k connections to other nodes. To construct60

a random graph with these properties, first chose the desired number of ver-61

tices N , then draw a degree sequence {ki} from the distribution and attach ki62

“stubs” to the i−th node. Finally, randomly choose pairs of these stubs from63

two nodes that are not already neighbours, and connect them to form edges.64

The process of stub connection is repeated until no edge can be formed. Any65

remaining stubs are then discarded.66

Disease threshold conditions, i.e., conditions that determine whether a67

disease can invade a population, are of tremendous public health interest.68

Traditionally, the basic reproduction number R0, which is the average num-69

ber of secondary infections caused by a typical infectious individual during70

one’s course of infection in a completely susceptible population, is the most71

commonly used one. Disease can invade if and only if R0 > 1. For network72

models, another commonly used threshold is the critical transmissibility Tc.73

Disease can invade if and only if the per edge transmission probability T > Tc.74

Assuming exponentially distributed waiting times for transmission and re-75

covery events, T = β
β+γ

. For disease dynamics on configuration type contact76

networks, the basic reproduction number R0 and the critical transmissibility77

Tc are defined below.78

Using bond percolation theory, Newman [13] studied the final state of an79

epidemic on a random contact network of configuration type without degree80

correlation or clustering. The critical transmissibility was shown to be81

Tc =
⟨k⟩

⟨k2⟩ − ⟨k⟩
.82

Newman further found that the disease may cause an epidemic if and only83

if the transmissibility along an edge is large enough, which is equivalent to84

R0 > 1, where85

R0 = T

(
⟨k2⟩
⟨k⟩

− 1

)
= T

(
⟨k⟩ − 1 +

Var [k]

⟨k⟩

)
. (2)86

Here ⟨k⟩, ⟨k2⟩, and Var [k] = ⟨k2⟩−⟨k⟩2 are the average, the second moment,87

and the variance of the degree distribution. Note that, at the beginning88

of an epidemic on a random network, because the degree distribution of89

a node found by following a random edge is {kPk/ ⟨k⟩} where Pk is the90
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network degree distribution, the factor inside the parentheses is the average91

number of transmissible neighbors of the node after it is infected by one of its92

neighbors. Thus R0 is the basic reproduction number. Equation (2) shows93

that, in contact network models, R0 depends on both the transmissibility94

and the degree distribution. R0 > 1 is equivalent to the transmissibility95

threshold condition96

T > Tc =
⟨k⟩

⟨k2⟩ − ⟨k⟩
.97

The first model describing the disease dynamics on contact networks was98

developed by Pastor-Satarrass and Vespignani [15] and is related to work of99

Anderson and May [10]. The Pastor-Satarrass and Vespignani model divides100

the population into degree classes (the number of contacts that an individual101

has), and assumes random mixing among these classes. It yields a larger ba-102

sic reproduction number than (2), and thus predicts a faster growth of disease103

epidemic, because this model does not consider the fact that the disease can-104

not transmit along an edge more than once until one of its nodes recovers and105

becomes susceptible again. A few extensions of this model (see, for example,106

[1, 9], keep track of the number of “effective” (i.e., transmissible) neighbors,107

and yield basic reproduction numbers as in (2). These models employ a large108

number of equations and are therefore difficult to analyze. For SIR epidemics,109

Volz [17] developed a much simpler model tracking the number of edges that110

connect nodes of different infection status. This model was further simplified111

by Miller [12], who arrived at an effectively one-dimensional model. Both112

models yield basic reproduction numbers equivalent to (2). These papers113

thus confirm that, under the assumption of random contact networks with114

no degree correlation and clustering, the basic reproduction number of an115

SIR epidemic is given by (2). Lindquist et al. [9] showed that for diseases116

with no accquired immunity (SIS), the disease threshold is different from117

(2). However, for simplicity, in this present work we restrict ourselves to SIR118

epidemics.119

It is a question of some significant practical relevance how the basic re-120

production number will behave if the network is altered. These alteration121

may be caused by finding or losing friends, a change of jobs, or more in-122

terestingly, interventions such as vaccination, isolation and quarantine, and123

social distancing. It is a challenge to study the disease spread on an evolving124

network, because of the coupling of the disease dynamics and the network125

evolution dynamics. In this paper, we study the effect of dropping contacts126

(edges) before an epidemic. Doing so effectively decouples the two dynamics.127
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Because the transmission probability T is independent of the network struc-128

ture, Equation (2) shows that the change of R0 is determined by the change129

of ⟨k⟩ and Var [k].130

1.1 Counterintuitive results from a simple analysis of131

bi-modal networks: a paradox?132

Common sense states that R0 should decrease as edges are severed (this133

is the basic tenet of quarantine and isolation). In other words, one would134

expect R0 to be an increasing function of the average degree ⟨k⟩, and this135

is indeed true if the degree distribution of the random contact network is136

Poisson. In that case, ⟨k2⟩ = ⟨k⟩2 + ⟨k⟩, and R0 = β
β+γ

⟨k⟩. However, for137

other distributions this calculation does not apply. As x edges are randomly138

removed, ⟨k⟩ decreases with x. Var [k] is also a function of x, and therefore139

d

dx
R0 = T

[(
1− Var [k]

⟨k⟩2

)
d

dx
⟨k⟩+ 1

⟨k⟩
d

dx
Var [k]

]
. (3)140

This suggests that, if the variance of the degree distribution is kept constant,141

then R0 could increase when ⟨k⟩2 < Var [k], i.e., when the variance is large,142

dropping edges may accelerate the epidemic. In fact, this effect becomes143

exaggerated if Var [k] increases with edge removal.144

To illustrate this possibility we present a simple example of a network145

with bimodal degree distribution, i.e., a fraction p of the nodes with degree146

k1, the other (1 − p) with degree k2 > k1. Assuming that T and p remain147

constant, we ask how R0 responds to changes in k1 and k2 in the following148

two scenarios.149

1.1.1 Constant variance150

Let k1 and k2 both increase by the same amount, keeping d = k2−k1 constant.151

Consequently, the variance, V ar[k] = d2p(1 − p) stays constant while the152

average degree increases.153

Using k2 = k1 + d, we can write Equation (2) as154

R0 = T

(
k2
1p+ (k1 + d)2(1− p)

k1p+ (k1 + d)(1− p)
− 1

)
155

As we are interested only in the sign of ∂R0

∂k1
, we discard the positive-valued156

factors T and the denominator of the derivative after differentiation. This157
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yields158

∂

∂k1
R0 ∝ 2[k1 + d(1− p)]2 − [k2

1p+ (k1 + d)2(1− p)]159

∝ k2
1 + 2k1d(1− p) + d2(1− p)(1− 2p) .160

161

We can read off this formula that R0 decreases with k1 > 0 if p > 1/2 and162

0 < k1 < d
[
(p− 1) +

√
p(1− p)

]
.163

Note that the right hand side is positive if p > 1/2. Conversely, R0 will164

increase as k1 decreases inside the computed range.165

1.1.2 Constant high degree166

Here we let k1 change, while k2 is held constant. Thus, the standard deviation167

increases linearly with k1, while the variance (k2 − k1)
2p(1 − p) increases.168

Again, we have169

R0 = T

(
k2
1p+ k2

2(1− p)

k1p+ k2(1− p)
− 1

)
170

and as we increase k1,171

∂

∂k1
R0 ∝ k2

1p
2 + 2k1k2p(1− p)− k2

2p(1− p)172

a quadratic in k1. Thus, R0 decreases with increasing k1 > 0 if173

k1 < k2

√
1− p− (1− p)

p
.174

We found that by manipulating the edge distribution in certain ways,175

R0 as defined above can increase in value despite a decreasing ⟨k⟩. This176

contradicts the basic tenet of quarantine — or does it? By decreasing the177

total number of edges in the network we are, in a sense, limiting the number178

of paths available to the disease, so one would expect a reduced growth rate.179

We leave the resolution of this paradox to the end of the paper, but give180

a hint. The problem with the above reasoning is that the removal of edges181

subject to the rules given above leaves us with networks which are no longer182

configuration type (see the discussion at the end), and in a network which183
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is not of this class, R0 as defined above is no longer the basic reproduction184

number — one has to use a different definition.185

In Section 2 we provide an argument which shows that R0 will always186

decrease if the edge removal is truly random. In fact, we can show that187

Newman’s R0 is a Lyapunov functional for the system relative to a variable188

measuring random edge removal.189

In Section 3 we extend the Miller network SIR model [11] to describe a190

population split into two subnetworks in order to allow random edge removal191

from just a subset of the entire population. We then derive the basic re-192

productive number R0 for the model and prove that R0 will indeed always193

decrease under random edge removal. The result from Section 2 is a critical194

ingredient in this analysis.195

In summary, the conclusion of our work is that the basic tenet of quaran-196

tine holds rigorously for the models under consideration, and that conceivable197

exceptions are based on logical errors as are common in probabilistic models.198

We have chosen to include this “paradox” for motivational and pedagogical199

reasons.200

2 Random edge removal in a random network201

In this section we discuss random edge removal and its effect on the disease202

dynamics. Here we discuss two processes: one is to simply uniformly choose203

an edge for removal, the other is to first uniformly choose a node (disregarding204

its degree) and then uniformly choose one of its edges for removal. In the205

latter approach the edges are not uniformly chosen for removal. In fact, edges206

of low degree nodes will have a larger probability for removal than edges of207

high degree nodes. However, the second scenario may be more relevant for208

disease dynamics, as edge removal decisions are normally individual based209

rather than edge based.210

2.1 Uniform edge removal211

Assume that a fraction p of the edges will be removed. Because we assume212

that these edges are uniformly chosen for removal, each edge removal is thus a213

Bernoulli trial with success probability p. Assuming that the contact network214

has a degree distribution Pk (i.e., the probability that a node has degree k is215
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Pk), its probability generating function is216

G(x) =
∞∑
k=0

xkPk ,217

After the removal, the probability generating function for the degree distri-218

bution is then219

Gr(x) = G(p+ x(1− p))220

Thus, after removal, the average degree is221

⟨k⟩r =
d

dx
Gr(1) = (1− p)G′(1) = (1− p) ⟨k⟩ ,222

where ⟨k⟩ is the average degree before removal. In addition, the second223

moment is224

⟨k(k − 1)⟩r =
d2

dx2
Gr(1) = (1− p)2G′′(1) = (1− p)2 ⟨k(k − 1)⟩ .225

Thus, the basic reproduction number R0 as a function of the removal prob-226

ability p is227

R0(p) =
β

β + γ

⟨k(k − 1)⟩r
⟨k⟩r

= (1− p)
β

β + γ

⟨k(k − 1)⟩
⟨k⟩

228

which is a decreasing function of p. That is, truly random edge removal229

reduces R0.230

2.2 Edge removal of a random node231

When a random edge of a uniformly chosen node is removed, the above232

moment generating function method cannot be easily applied. In this case,233

we develop a model for the dynamics of degree distribution with edge removal.234

Given the transmission probability T along an edge, the basic reproduc-235

tion number (2) is only a function of the network degree distribution Nk (the236

number of nodes of degree k). We thus need to model how degree distribution237

evolves with edge removal. Let N =
∑∞

k=0Nk be the total number of nodes,238

and L =
∑∞

k=0 kNk be the sum of degrees (twice the number of edges) in the239

network. Here we use a simplified network evolution model [8] to describe240
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the evolution of the network degree distribution. For simplification, we pick241

the time scale such that the edge removal process occurs with rate one.242

The probability that a random node of nonzero degree, selected for edge243

removal, has degree k ≥ 1 is Nk/(N −N0). Having selected one of its edges,244

the probability that the neighbor has degree k ≥ 1 is proportional to the245

sum of the degrees of all nodes in Nk, i.e., kNk/L. Both nodes reduce their246

degree by one, thus entering Nk−1 if they are in Nk. Hence, the dynamics of247

the degree distribution Nk can be modeled as248

d

dτ
Nk =

1

N −N0

(Nk+1 −Nk) +
1

L
[(k + 1)Nk+1 − kNk] , k ≥ 1 , (4)249

d

dτ
N0 =

N1

N −N0

+
N1

L
, (5)250

251

2.3 The rate of change of the basic reproduction num-252

ber253

From Equation (2),254

R0 = T

(
⟨k2⟩
⟨k⟩

− 1

)
= T

(∑∞
k=0 k

2Nk∑∞
k=0 kNk

)
. (6)255

Using Equations (4) and (5), it can be derived that (see Appendix A),256

d

dτ
R0 = 2T

(
1

L
− 1

N −N0

)
< 0 . (7)257

In fact, because by definition τ is a measure of the number of edges258

removed, given that the initial total degree is L(0), the total degree at time τ259

is L(τ) = L(0)−2τ . During the initial phase of edge removal, the probability260

that a node loses all its edges is small, and thus N0 can be treated as a261

constant. We can thus solve Equation (7) approximately for small τ ,262

R0(τ)−R0(0) = −T

[
log

(
1− 2τ

L(0)

)
+

2τ

N −N0

]
. (8)263

Note that this fails as a good approximation of R0 when N0 becomes large.264

Equation (7) shows that the basic reproduction number R0 will decrease265

under random edge removal. This holds for any random network without266

degree correlation and clustering, regardless of degree distribution. Thus267
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we find some disparity with the examples of bimodal degree distributions in268

section 1.269

Yet, for the first bimodal example, the number of edges removed from270

the low and high degree nodes are proportional to ∆k1p and ∆k1(1 − p),271

respectively. Clearly, when p > 0.5, the number of edges removed from272

the low degree nodes exceed those from high degree nodes. For the second273

example where the high degree is fixed while the low degree is reduced, only274

low-to-low edges can be removed. On the other hand, equations (4)–(5) are275

only applicable for random edge removal from the whole network, i.e., every276

node has the same probability to be selected for edge removal. We address277

this problem in Section 3278

3 Edge removal from part of the network279

The apparent paradox presented at the end of Section 2 arises because the280

unintuitive results presented in Section 1 are derived using the basic repro-281

duction number formula suitable only for random contact networks generated282

from configuration models, yet the edge removal scenarios presented in Sec-283

tion 1 break the configuration model assumption. Thus, if we derive the284

correct formula for R0 for contact networks that are not of configuration285

model type, for example networks resulting from edge removal restricted to286

a component of a network, we should still see R0 decrease with random edge287

removal. In this section, we verify this conjecture.288

We model edge removal from a network consisting of two groups of nodes,289

A and B, with random intra- and inter-group edges. Let NA and NB be the290

number of nodes in each group. For a node in group A, its edge is labeled291

either AA or AB if it connects to a neighbor in group A or B, respectively.292

The BB and BA edges are similarly labeled for target nodes in group B.293

We assume that the intra- and inter-group connections are random with no294

degree correlation. Further, for individual nodes, there must be no correlation295

between the number of intra and inter-group edges. Since each connection296

between group A and B is both of type AB and BA, the total number of AB297

edges must equal the total number of BA edges.298

We assume that edge removal in either group, and between groups, may299

occur at different rates. In this section, we model the disease dynamics,300

derive the basic reproduction number, and study the change of the basic301

reproduction number with edge removal.302
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3.1 Disease dynamics303

First we need to model the disease dynamics. We extend the Miller model304

[11], which describes the SIR disease dynamics on a random network without305

degree correlation and clustering, to two randomly connected subnetworks.306

3.1.1 The Miller Model307

Consider a susceptible node with degree k. This node remains susceptible308

as long as none of its k edges has transmitted disease. Let θ(t) be the309

probability that such an edge has not transmitted disease by time t, then310

the probability that this node remains susceptible is θk. We are interested in311

how fast this susceptible node becomes infected, which is solely determined312

by the dynamics of θ. In addition, while this node remains susceptible,313

the infection events along each edge are independent of each other. Thus, to314

understand the dynamics of θ, we can restrict the analysis to one of its edges,315

and assume that transmission can only be passed through this edge to the316

susceptible node. That is, the edge can be considered as if it was connected317

to a degree-1 susceptible node.318

Let Pk be the degree distribution, which is generated by the probability319

generating function320

Ψ(x) =
∞∑
n=0

xkPk . (9)321

Then the probability that a randomly selected node remains susceptible at322

time t is Ψ(θ). Thus, the fraction of nodes that are susceptible at time t is323

S = Ψ(θ) . (10)324

We now describe the dynamics of θ. Let PI(t) be the probability that the325

neighbor connected by this edge is infectious at time t, and β be the trans-326

mission rate along an random edge. Then βPI is the attack rate on the edge,327

and θ is the survival probability, thus,328

θ′ = −βPIθ .329

Let ϕ = PIθ, which is the probability that a random edge connects a (degree-330

1, see the paragraph above) susceptible node to an infectious node. Then,331

the above equation becomes332

θ′ = −βϕ . (11)333
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We need to describe the dynamics of ϕ, i.e., the class of edges connecting334

a degree-1 suceptible node to a infectious node. An edge leaves class ϕ either335

because transmission occurred along it (with rate β), or the infectious node336

recovers (with rate γ). An edge of a susceptible node enters class ϕ because337

its other neighbor becomes infected, which happens at a rate −h′(t), where338

h(t) is the probability that we arrive at a susceptible node when following a339

random edge that has not transmitted disease. Thus,340

ϕ′ = −βϕ− γϕ− h′(t) .341

We now model h(t). Note that the probability that we arrive at a given342

node when following a random edge is proportional to its degree (because of343

the random network assumption). The probability that we arrive at a degree-344

k node is then qk = kPk/
∑∞

k=0 kPk = kPk/Ψ
′(1). Thus, the probability that345

this node is susceptible is θk−1qk and we arrive at346

h(t) =
∞∑
k=0

θk−1 kPk

Ψ′(1)
=

Ψ′(θ)

Ψ′(1)
. (12)347

The equation for ϕ′ can now be rewritten as348

ϕ′ = −(β + γ)ϕ− Ψ′′(θ)

Ψ′(1)
θ′ = −(β + γ)ϕ+ βϕ

Ψ′′(θ)

Ψ′(1)
. (13)349

The dynamics of the disease are thus determined by (11) and (13). The350

fraction of nodes which are infectious at time t changes according to351

I ′(t) = −S ′ − γI = βϕΨ′(θ)− γI . (14)352

3.1.2 Our two-group model353

We now extend the Miller model to describe the disease dynamics on our two-354

group network. Assume that, in this two-group network, the distribution PAA355

of the number of AA edges attached to a node in group A is generated by356

the probability generating function ΨAA(x), defined as357

ΨAA(x) =
∞∑
i=0

PAA(i)x
i ,358
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The distributions PAB, PBA, and PBB and their generating functions ΨAB(x),359

ΨBA(x) and ΨBB(x) can be similarly defined. Thus, the balance condition360

equating the number of AB and BA edges can be written as361

NAΨ
′
AB(1) = NBΨ

′
BA(1) , (15)362

where Ψ′
ij(1), i, j =A and B, are the average number of neighbors in each363

type.364

Let α be the rate of transmission along edges between A and B; βA and βB365

be the corresponding transmission rates within groups A and B, respectively.366

As before, we define γ to be the per-infective recovery rate.367

For a susceptible node in group A, let θAA(t) be the probability that one368

of its edges has never transmitted disease by time t. The expression for θAA369

is similar to the Miller model. That is, if ϕAA(t) denotes the probability370

that an edge connected to a susceptible node in group A is connected to an371

infectious node and the edge has not transmitted disease, then372

θ′AA = −βAϕAA , (16)373

and374

ϕ′
AA = −(β + γ)ϕAA − h′

AA(t) ,375

where hAA(t) is the probability that we arrive at a susceptible node in group376

A when following a random AA edge.377

However, the dynamics of hAA must reflect the fact that a neighbor of378

a group A node can be in either group A or group B. By the independence379

assumption made on the intra- and inter-group connections, the generating380

function for the degree distribution of a given node in group A is the product381

of the generating functions for its AA and AB degree distributions. Thus,382

having followed a random AA edge to arrive at a different node in group A,383

the probability that this node has i neighbors in A and j neighbors in B is384 [
iPAA(i)/

∞∑
k=0

kPAA(k)

]
PAB(j) ,385

and386

hAA(t) =

[
∞∑
i=0

θi−1
AA

iPAA(i)∑∞
k=0 kPAA(k)

][
∞∑
j=0

θjABPAB(j)

]
387

=
Ψ′

AA(θAA)

Ψ′
AA(1)

ΨAB(θAB) .388

389
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Hence, the dynamics of ϕAA becomes390

ϕ′
AA =− γϕAA − βAϕAA + [−h′

AA(t)]391

=− γϕAA − βAϕAA + βAϕAA
Ψ′′

AA(θAA)

Ψ′
AA(1)

ΨAB(θAB)+392

αϕAB
Ψ′

AA(θAA)

Ψ′
AA(1)

Ψ′
AB(θAB) . (17)393

394

We can follow the same reasoning and derive the probability that an395

edge of a group A susceptible node connected to a group B node has not396

transmitted disease at time t, θAB(t), and the probability that an edge of a397

susceptible group A node connected to an infectious node in group B yet has398

not transmitted disease by time t, ϕAB(t). In like manner we define θBA(t),399

ϕBA(t), θBB(t) and ϕBB(t).400

θ′AB =− αϕAB , (18)401

θ′BA =− αϕBA , (19)402

θ′BB =− βBϕBB , (20)403

ϕ′
BB =− γϕBB − βBϕBB + βBϕBB

Ψ′′
BB(θBB)

Ψ′
BB(1)

ΨBA(θBA)404

αϕBA
Ψ′

BB(θBB)

Ψ′
BB(1)

Ψ′
BA(θBA) . (21)405

ϕ′
AB =− γϕAB − αϕAB + αϕBA

Ψ′′
BA(θBA)

Ψ′
BA(1)

ΨBB(θBB)+406

βBϕBB
Ψ′

BA(θBA)

Ψ′
BA(1)

Ψ′
BB(θBB) , (22)407

ϕ′
BA =− γϕBA − αϕBA + αϕAB

Ψ′′
AB(θAB)

Ψ′
AB(1)

ΨAA(θAA)+408

βAϕAA
Ψ′

AB(θAB)

Ψ′
AB(1)

Ψ′
AA(θAA) , (23)409

410

Consider a node in group A that has i neighbors in A and j neighbors in B.411

The probability that the node is susceptible is θiAAθ
j
AB. The probability that412

a random node in group A is not infected from A is then
∑∞

i=0 θ
i
AAPAA(i),413

and similarly for infections from B. Thus, the fraction of susceptible nodes414
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in A is415

SA =

[
∞∑
i=0

θiAAPAA(i)

][
∞∑
j=0

θjABPAB(j)

]
= ΨAA(θAA)ΨAB(θAB) ,416

Similarly,417

SB = ΨBB(θBB)ΨBA(θBA) ,418

The fractions of infectious individuals in groups A and B change according419

to420

I ′A = −S ′
A − γIA421

= βAϕAAΨ
′
AA(θAA)ΨAB(θAB) + αϕABΨAA(θAA)Ψ

′
AB(θAB)− γIA . (24)422

I ′B = −S ′
B − γIB423

= βBϕBBΨ
′
BB(θBB)ΨBA(θBA) + αϕBAΨBB(θBB)Ψ

′
BA(θBA)− γIB . (25)424

425

Equations (16)–(25) give the full model. Note that the dynamics of IA and426

IB are determined by the dynamics of θ and ϕ.427

3.2 Comparison with stochastic simulations428

To verify our model, we compare the numerical solutions of the model (17)–429

(25) to stochastic simulations of the underlying epidemic process. Given a430

network degree distributions for group A, we construct a random network431

without degree correlation and clustering using the configuration model [2,432

3, 14]. Specifically, each node is assigned a number of stubs from the given433

degree distribution, then stubs from two different nodes which are not already434

neighbors are randomly connected to form an edge; this process is repeated435

until no stubs can be connected. Group B is constructed similarly. Then436

each node in A and B is assigned a number of stubs from the AB and BA437

degree distributions, respectively, and pairs of stubs from A and B are then438

connected at random to form inter-group edges, until none remain. Notice439

that the balance condition (15) must be satisfied in the choice of the AB440

and BA degree distributions. Each node is then labeled with a infection441

status, i.e., one of susceptible, infectious, and recovered. An infectious node442

stays infectious for an exponentially distributed time with mean 1/γ, then443

its status is changed to recovered. A susceptible node stays susceptible for444

an exponentially distributed time with mean 1/(βi) where i is the number of445

15



its infectious neighbors, then its status is changed to infectious. Recovered446

nodes remain recovered. The status of each node is updated until there is447

no infectious node or a given terminal time is reached. The simulation is448

implemented using the Gillespie algorithm [5, 6].449

To compare the stochastic simulations with our ODE model (16)–(25),450

the degree distributions are fed into the model together with identical initial451

infections. The ODE model is then numerically solved, and I(t) = IA + IB452

is compared with the average of the epidemic curves from the stochastic453

simulations.454

Figure 1 shows that, on contact networks with various degree distributions455

in groups A and B, the epidemic curves from the ODE model agrees well with456

the ensemble averages of the epidemic curves from the stochastic processes.457

3.3 Basic reproduction number458

For i, j =A or B, let459

Rij =
βij

βij + γ

Ψ′′
ij(1)

Ψ′
ij(1)

,460

and461

rij =
βij

βij + γ
Ψ′

ij(1) ,462

where βAA = βA, βBB = βB, βAB = βBA = α. Note that βij/(βij + γ) is the463

transmission probability along an edge between Groups i and j. At the be-464

ginning of an epidemic, Ψ′′
ij(1)/Ψ

′
ij(1) is the average number of transmissible465

neighbors in Group j of a newly infected node in Group i that was infected466

by a node in Group j, and thus Rij is the number of secondary infections467

in Group j caused by infectious nodes in Group i who have been infected468

by ones in Group j. Similarly, rij is the number of secondary infections in469

Group i caused by infectious nodes in Group i who have been infected by470

ones not in Group j. Thus the matrix471

G =


RAA 0 rAB 0
0 RBB 0 rBA

0 rBB 0 RBA

rAA 0 RAB 0

 (26)472

is the second generation matrix. Its first two rows contain the secondary473

infections caused by nodes in group A and B who have been infected by474
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(b) Bimodal random network

Figure 1: The epidemic curves of the ODE model (16)–(25) vs the ensemble
averages of the stochastic simulations on two random networks: (a) Poisson
distributed (λ =4, 2, 4, 10 for edge types AA, AB, BB, and BA, respectively),
and (b) bimodal (with degrees fixed at 3, 2, 7, 10 for edge types AA, AB,
BB, and BA, respectively). The population size of group A is NA = 25000,
and group B NB = 5000, transmission rates βA = βB = α = 0.014, recovery
rate γ = 0.05. Note that the constraint (15) is satisfied.

nodes in the same group, respectively; and the last two rows are for cross-475

infected infectious nodes in A and B, respectively.476

Using the second generation matrix method [16], the basic reproduction477

number for the two-group model is computed in Appendix B to be the spec-478

tral radius of the matrix G, i.e., R0 = ρ(G). In general, this is not equivalent479

to Equation (2) because here the network has more structure than a random480

network.481

Note that, when the network is bipartite (i.e., every edge inter-connects482

nodes in two groups), RAA, RBB, rAA, and rBB all vanish. In this case,483

R0 =
√

RABRBA.484
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It is shown in Appendix C Lemma 1 that R0 > RAA, R0 > RBB, and485

R0 >
√
RABRBA, i.e., R0 is larger than the basic reproduction number of486

the disease when restricted to each component.487

Assume that each type of edge is randomly removed (by choosing a node488

randomly then removing a random edge from that node), and this may occur489

with different rates for each type. Then the random edge removal model (4)–490

(5) describes the evolution for the degree distribution for each type of edge.491

From Appendix A, ⟨k⟩ = Ψ′
ij(1) and ⟨k2⟩ / ⟨k⟩ = Ψ′′

ij(1)/Ψ
′
ij(1) for all i, j =A492

and B decrease with edge removal. In Appendix C it is shown that, because493

of this,494

d

dτ
R0 < 0495

with edge removal. As a special case, removing edges from any part of the496

network reduces R0.497

4 Discussion and Conclusions498

It would appear obvious that in any population if the total number of po-499

tentially disease-causing contacts were to drop before an epidemic (say, as a500

result of vaccinations and the closing down of public places), so should the501

basic reproduction number. This follows from reasoning that if the average502

individual has fewer contacts, then the disease has fewer channels available503

by which to spread. Indeed, we proved in Section 2 that if the edge removal504

process is truly random, as given by the system of differential equations (4)505

and (5), then the basic reproduction numberR0 decreases, as expected, when506

edges are removed.507

In contrast, the mathematical arguments in the introduction seemed to508

indicate that for certain networks, we may see the opposite effect. In the case509

of a simple bimodal degree distribution, we described schemes for modifying510

the network in such a way that the average degree decreases, yet R0 as511

defined by (2) increases. Apparently all that is required is an edge-deletion512

process that causes either a tandem decrease in both the low degree k1 and513

the high degree k2, or a decrease in k1 while k2 remains fixed.514

The reason for the “paradox” becomes clear if we pay closer attention515

to the definition of the basic reproduction number. The calculations from516

the introduction make use of the fact that for a random contact network517

of configuration type the basic reproduction number R0 is defined in (2).518
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However, as already indicated in the introduction, once we begin to remove519

edges subject to constraints the network changes character. Say, for example,520

we are ensuring that k1 and k2 change (or stay fixed) in a very particular521

way. To accomplish this, the edge deletion process must be selective rather522

than haphazard, and thus the network is no longer of the configuration type.523

TheR0 defined in (2) applies to networks which are randomly constructed524

from a given degree distribution. So by artificially manipulating the degree525

distribution, we in fact simulate a reconstruction of the network, rather than526

simple edge deletion. For this reason we cannot use this formula to illustrate527

a before and after picture of the basic reproduction number in networks which528

have had a few edges selectively deleted, but are otherwise structurally the529

same. In fact we are modeling a reorganization of the network, where the530

degree distribution is altered slightly and then the entire network is rebuilt.531

As an example, consider the reorganization of a bimodal network where532

k1 decreases and k2 stays fixed. Imagine trying to decrement the degree of533

a low-degree node, chosen at random. We are required to select one of its534

edges and delete it. However, it is forbidden to remove edges belonging to a535

high-degree node. So if it happens that a high-to-low edge is selected, only536

the low-degree half may be discarded. The other half, a stub belonging to537

the high-degree node, must be reconnected somewhere else. The only way to538

“find a node” for it is to identify a second to-be-removed high-to-low edge,539

discard the low-degree half and then connect the leftover high degree stubs540

together, thus creating a new high-to-high edge. In this way we are reducing541

the average degree, while leaving k2 fixed, as intended. However, in the542

end we have increased the proportion of edges that link high-degree nodes543

together, and the effect of this restructuring seems to outweigh the effect of544

a reduction in ⟨k⟩ for certain choices of k1 and k2. In a roundabout way,545

this illustrates the relative importance of connections amongst high-degree546

individuals to the spread of disease on networks.547

The key point is, of course, that the definition of R0 in (2) loses its548

meaning once we introduce changes to the network that render the network549

“non-random”. At that point one needs a different definition for a basic550

reproduction number.551

To incorporate nonuniform edge removal, in Section 3, we extended the552

Miller model [11] model for a contact network consisting two groups of nodes553

with random intra- and inter-group connections; the transmission rates may554

differ inside and between the different parts of the network; the edges could555

be randomly removed from any part of the network. We then derive the basic556
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reproduction number as appropriate for this scenario, and were able to show557

that R0 will always decrease under edge removal. However this model may558

not be suitable for dividing a random network into two subgroups, because559

the resulting inter-group degree distributions may be correlated to intra-560

degree distributions, as confined by the total degree distribution (unless for561

a Poisson random network). On the other hand, this model can be extended562

to such cases by deriving the inter-group degree distribution from the total563

degree distribution and intra-degree distributions.564

Most importantly, the dynamical system approach for the evolution of de-565

gree distribution under random edge removal allows us to estimate the point566

at which R0 drops below unity along the edge removal dynamics. That is, it567

tells us how many edges must be randomly removed to curtail an epidemic.568
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A The rate of change of the basic reproduc-573

tion number574

The expression 7 is obtained as follows. From Equation (6), the rate of575

change of R0 along solutions to Equations (4) and (5) is576

d

dτ

(
T

∑∞
k=0 k

2Nk∑∞
k=0 kNk

)
= T

(∑∞
k=0 k

2N ′
k

L
− (
∑∞

k=0 k
2Nk)(

∑∞
k=0 kN

′
k)

L2

)
(27)577

We substitute (4) in place of the N ′
k terms. Notice that because of the578

coefficients k and k2, all of the N ′
0 terms vanish in this substitution. We first579
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compute580

1

L

∞∑
k=0

k2N ′
k581

=
1

L(N −N0)

∞∑
k=0

k2(Nk+1 −Nk) +
1

L2

∞∑
k=0

k2[(k + 1)Nk+1 − kNk]582

=
1

L(N −N0)

∞∑
k=1

[(k − 1)2Nk − k2Nk] +
1

L2

∞∑
k=1

[k(k − 1)2Nk − k3Nk]583

=
1

L(N −N0)

∞∑
k=1

(1− 2k)Nk +
1

L2

∞∑
k=1

k(1− 2k)Nk584

=
2

L
− 2

N −N0

− 2

L2

∞∑
k=1

k2Nk .585

586

Then we compute587

∞∑
k=0

kN ′
k =

1

N −N0

∞∑
k=0

k(Nk+1 −Nk) +
1

L

∞∑
k=0

[k(k + 1)Nk+1 − k2Nk]588

=
1

N −N0

∞∑
k=1

[(k − 1)Nk − kNk] +
1

L

∞∑
k=1

[k(k − 1)Nk − k2Nk]589

= − 1

N −N0

∞∑
k=1

Nk −
1

L

∞∑
k=1

kNk590

= −2 .591
592

Thus,593

1

L2

(
∞∑
k=0

k2Nk

)(
∞∑
k=0

kN ′
k

)
= − 2

L2

∞∑
k=0

k2Nk .594

It thus follows that595

d

dτ
R0 = T

[
2

L
− 2

N −N0

− 2

L2

∞∑
k=1

k2Nk +
2

L2

∞∑
k=0

k2Nk

]
596

= 2T

(
1

L
− 1

N −N0

)
.597

598
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Note that599

1

L
− 1

N −N0

=
1∑∞

k=1 kNk

− 1∑∞
k=1 Nk

< 0 .600

Thus,601

d

dτ
R0 < 0 .602

B The basic reproduction number of the two-603

group model604

To compute the basic reproduction numberR0 for the two-group model (16)–605

(21), we employ the second generation matrix method [16]. This method606

identifies R0 as the dominant eigenvalue of the second generation matrix607

FV −1. Here, for a general disease model with some susceptible and infected608

classes at the disease, we restrict our attention to the infected classes about609

the disease free equilibrium. The matrix F is the new infection matrix, whose610

ij entry is the rate of new infections entering class j caused by class i, and V611

is the transition matrix whose ij entry is the rate at which class i transfers to612

class j. And thus the ij entry of V −1 is the amount of time staying in class i613

starting from class j. This implies that the ij entry of the second generation614

matrix FV −1 is the average number of secondary infections in class i caused615

by class j. For our model, the ϕ classes are treated as “infected” classes.616

To determined the matrices F and V , we linearize (17)–(23) about the617

disease-free equilibrium (ϕAA = ϕBB = ϕAB = ϕBA = 0 and θAA = θBB =618

θAB = θBA = 1) to get619

ϕ̇AA = −(βA + γ)ϕAA + βAϕAA
Ψ′′

AA(1)

Ψ′
AA(1)

+ αϕABΨ
′
AB(1)620

ϕ̇BB = −(βB + γ)ϕBB + βBϕBB
Ψ′′

BB(1)

Ψ′
BB(1)

+ αϕBAΨ
′
BA(1)621

ϕ̇AB = −(α + γ)ϕAB + αϕBA
Ψ′′

BA(1)

Ψ′
BA(1)

+ βBϕBBΨ
′
BB(1)622

ϕ̇BA = −(α + γ)ϕBA + αϕAB
Ψ′′

AB(1)

Ψ′
AB(1)

+ βAϕAAΨ
′
AA(1)623

624
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In matrix form, this is625

d

dt


ϕAA

ϕBB

ϕAB

ϕBA

 = (F − V )


ϕAA

ϕBB

ϕAB

ϕBA

 .626

Here the terms related to new infections give627

F =


βA

Ψ′′
AA(1)

Ψ′
AA(1)

0 αΨ′
AB(1) 0

0 βB
Ψ′′

BB(1)

Ψ′
BB(1)

0 αΨ′
BA(1)

0 βBΨ
′
BB(1) 0 α

Ψ′′
BA(1)

Ψ′
BA(1)

βAΨ
′
AA(1) 0 α

Ψ′′
AB(1)

Ψ′
AB(1)

0

 ,628

and the terms not related to new infections give629

V =


βA + γ 0 0 0

0 βB + γ 0 0
0 0 α + γ 0
0 0 0 α+ γ

 .630

Thus, FV −1 is the matrix specified in (26), and the basic reproduction num-631

ber is its spectral radius.632

C The monotonicity of the basic reproduc-633

tion number of the two-group model634

The characteristic equation of this matrix is a fourth order polynomial635

f(x) =(RAA − x)[(RBB − x)(x2 −RABRBA) + rBBRABrBA]+636

rAArAB[(RBB − x)RBA − rBBrBA]637

=0 . (28)638
639

The basic reproduction number R0 is thus the the largest root of f(x) = 0.640

Lemma 1. R0 > RAA, R0 > RBB, and R0 >
√
RAARBB.641
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Proof. Because of the symmetry of the system on A and B, i.e., exchanging642

A and B yields the same system, without loss of generality, we assume that643

RAA ≥ RBB (otherwise, we switch A and B in the proof).644

f(RAA) = rAArAB[(RBB −RAA)RBA − rBBrBA] < 0645

because both terms in the bracket are negative. Note that f(∞) = ∞. Thus,646

the largest root of f(x) satisfies R0 > RAA. Because of symmetry on A and647

B, R0 > RBB. Since f(R0) = 0, from (28),648

R2
0 −RABRBA =

(R0 −RAA)rBBRABrBA

(RAA −R0)(RBB −R0)
+649

rAArAB[(R0 −RBB)RBA + rBBrBA]

(RAA −R0)(RBB −R0)
.650

651

Note that each term on the right hand side is positive because R0 > RAA652

and R0 > RBB. Thus, R0 >
√
RAARBB.653

As stated in Section 3, when the four types of edges are randomly removed654

(possibly with different rates), for all i, j =A and B, d
dτ
Rij < 0 and d

dτ
rij < 0655

with edge removal (where, as in Section 2, τ is the time in the edge removal656

process). We differentiate the expression f(R0) = 0 with respect to τ , which657

is equivalent to the number of edges removed, to investigate how R0 changes658
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under this process. The multivariable chain rule gives659

d

dτ
R0 =−R′

AA

(RBB −R0)(R2
0 −RABRBA) + rBBRABrBA

f ′(R0)
660

−R′
BB

(RAA −R0)(R2
0 −RABRBA) + rAARBArAB

f ′(R0)
661

−R′
AB

[−RBA(RBB −R0) + rBBrBA](RAA −R0)

f ′(R0)
662

−R′
BA

[−RAB(RAA −R0) + rAArAB](RBB −R0)

f ′(R0)
663

− r′AA

rAB[(RBB −R0)RBA − rBBrBA]

f ′(R0)
664

− r′BB

rBA[(RAA −R0)RAB − rAArAB]

f ′(R0)
665

− r′AB

rAA[(RBB −R0)RBA − rBBrBA]

f ′(R0)
666

− r′AB

rBA[(RAA −R0)RAB − rAArAB]

f ′(R0)
.667

668

Because R0 is the largest root of f(x), which is a fourth order polynomial669

opening upward, f ′(R0) > 0. Again, because R0 ≥ RAA and R0 ≥ RBB,670

the last six fractions are all negative. And since f(R0) = 0,671

672

(RBB −R0)(R2
0 −RABRBA) + rBBRABrBA673

= −rAArAB[(RBB −R0)RBA − rBBrBA]

RAA −R0

< 0 .674

675

Similarly.676

(RBB −R0)(R2
0 −RABRBA) + rBBRABrBA < 0 .677

Thus, the coefficients of all Rij and rij for i,=A and B are all positive. This678

implies that, if all the derivatives R′
ij ≤ 0 and r′ij ≤ 0, and at least one is679

strictly negative, then680

d

dτ
R0 < 0 .681
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