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Abstract. The Cucker-Smale model for flocking or swarming of birds or in-
sects is generalized to scenarios where a typical bird will be subject to a) a
friction force term driving it to fly at optimal speed, b) a repulsive short range
force to avoid collisions, c) an attractive “flocking” force computed from the
birds seen by each bird inside its vision cone, and d) a “boundary” force which
will entice birds to search for and return to the flock if they find themselves at
some distance from the flock. We introduce these forces in detail, discuss the
required cutoffs and their implications and show that there are natural bounds
in velocity space. Well-posedness of the initial value problem is discussed in

spaces of measure-valued functions. We conclude with a series of numerical
simulations.

1. Introduction. Flocking and swarming is a phenomenon widely observed in an-
imal populations such as birds, insects, fish and even some mammals like sheep or
goats. There has been significant interest in flocking among researchers with back-
grounds in biology, population dynamics, ecology, engineering and applied mathe-
matics. The advent of powerful modern computers has made it possible to replicate
complex observed behaviours in computer simulations [6, 12, 15, 16, 17, 21, 22, 23].
Recently, models of Cucker-Smale type [7, 8] have attracted interest among mathe-
maticians because of their relative simplicity, their similarity to existing models of
interacting particles [19, 20], and because of their properties.

The key ingredients in a mathematical model for swarming must of course be
the interaction rules between the individual animals, and it is immediately obvious
that these rules will depend on the species under consideration: birds see their
surroundings differently from locusts, fish eyes perceive a much different angle than
sheep eyes, and so on. Realistic modelling of a swarm should take this into account.
We will in this article generally talk about “birds”, but it should be understood
that much of our work carries over to other types of animals; the interaction rules
will need adjustments from case to case.

Much as in other domains of particle dynamics (gases, plasmas, fluids, stellar
systems, car traffic) there are different levels of description of animals swarms. The
most basic level is that of keeping track of individual birds, leading to a system of
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ordinary differential equations for the positions and velocities of each bird. This
is sufficient for the modelling of a few dozen to a few thousand birds. The well-
posedness of a model at this level is in principle a rather straightforward affair
(although there are interesting twists when cutoff functions are involved, see Section
3); what is more interesting is the stability of the swarm behaviour as the number of
birds grows very large. To this end it is useful to consider the swarm from the point
of view of a kinetic model, as already done in [3, 4, 5, 9, 14]. At this kinetic level one
can consider the state of the swarm as a finite measure in position-velocity space;
the previous discrete level of description is included in this description as a special
case, and one can investigate continuous dependence of solutions with respect to the
initial state in a set of finite (and compactly supported) measures endowed with a
suitable metric. Without restricting the generality, we normalize all such measures
to be probability measures. A metric of choice is then the bounded Lipschitz or
Monge-Kantorovich-Rubinstein distance, defined by

W1(µ, ν) = sup
‖ϕ‖Lip≤1

∫

φd(µ− ν), (1)

or equivalently

W1(µ, ν) = inf
π∈Λ

∫

|P1 − P2| dπ(P1, P2). (2)

The integral in (1) is over R
3
x × R

3
v, Pi = (xi, vi) ∈ R

6, and Λ is the set of all
transference plans between the measures µ and ν (see for e.g., [5, 24]). The purpose
of this metric space in the context under consideration will become transparent in
Section 4, where we address the well-posedness of the initial value problem for large
flocks. In short, by considering measure-valued functions we are able to consider
the conceptual limit of flocks with infinitely many members and show that their
dynamics depend continuously on the initial state.

2. Previous related work and critique.

2.1. The Cucker-Smale model. In [4, 13, 14] the authors discussed a version of
the Cucker-Smale model [8] given in discrete form as

{

ẋi = vi
v̇i =

∑N
j=1 mjH(|xi − xj |)(vj − vi)

(3)

where H(y) = γ
(1+y2)σ , γ, σ are positive parameters and the mj are masses. The

system (3) is the discrete version of a nonlinear “friction” equation

∂tf + v · ∇xf = ∇v · [ξ(f)f ] (4)

with ξ(f)(x, v, t) = γ
∫ ∫

v−w
(1+|x−y|2)σ f(y, w, t) dy dw. The equations (3) and (4) are

really the same equation; the former is a special case of the latter, arising in the
case where f is a discrete measure given by

∑

miδ(x− xi(t))δ(v − vi(t)).
In [13] Ha and Liu established global well-posedness of the initial value problem

for (3) and (4); the solutions preserve mass and momentum, remain compactly
supported in both position and velocity space if the data are, and the method of
characteristics applies. In [4] it was shown further that the velocity support of the
solutions to the kinetic equation (4) will collapse to a single point at an exponential
rate, in the whole range of interaction, for β ≤ 1/2. This is ”unconditional flocking”.
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This result reproduces at the continuous level those obtained in [7, 8] for the discrete
model (3), and also extends partial results (β ≤ 1/4 and β = 1/2) obtained in
[13, 14] for the continuous model (4). While the ”unconditional flocking” is a nice
feature to emerge from a model, it is not what we generally see in swarms. It is
not hard to see that the key ingredient in the proof of unconditional flocking is
momentum conservation, and we will now discuss why this is an excessively strong
constraint on the model.

2.2. A weakness of the model. The results from the previous references are
satisfactory from a mathematical point of view, but less so from the viewpoint of
a biologist. Observations (even casual observations!) suggest that while a swarm
will persist for a long time, not all birds will in general acquire the same velocity.
Swarms undulate, grow branches, disperse, and so on. Some of these effects can
of course be attributed to interference from the outside (predators, wind, other
swarms), but some are certainly intrinsic to the swarm.

The Cucker-Smale model contains in particular one feature which is unrealis-
tic: momentum conservation, a consequence of the symmetry of the force term
in (3). This is the key ingredient in the proofs of unconditional flocking given in
[4, 14]. However, it is immediately clear that momentum conservation is violated
even among two birds if bird 1 tries to follow bird 2, but bird 2 does not see bird 1
and hence does not react to its presence. This is one of the main issues addressed
in this paper.

3. A refined model.

3.1. Ingredients. In this note we present a modified Cucker-Smale model which
includes specific local rules of behaviour but does not satisfy momentum conserva-
tion. The key ideas are the following.

• Birds will make an effort to put distance between themselves and very close
neighbors (short-range repulsion). We will introduce a corresponding repulsive
force, independent of relative velocity. This force may or may not be included
in numerical simulations - if it is neglected its only effect will be to allow for
birds to “fly through” each other, or stay close together for long periods of
time.

• Slow birds will conform with the above rule but will otherwise attempt to
align themselves with all birds within intermediate distances; this behaviour
is as depicted by the standard Cucker-Smale model.

• A bird moving with sufficiently large velocity v will react only to birds observed
within a conic - shaped observation domain (with a characteristic opening
angle).

• Finally, fast birds (as in the previous item) close to the edge of the swarm will
correct to stay inside the swarm. This is a surface effect which will only be
significant at and near the boundary of the swarm, or at the edge of “voids”
inside the swarm. This effect is important to keep the swarm together.

A mathematical description of these rules requires several cut-off functions. We will
generally assume that all such cut-offs are smooth; this is not a trivial assumption,
as discussed later. For a finite number N of birds with equal mass m, positions
xi(t) and velocities vi(t), we obtain a system
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ẋi = vi (5)

mv̇i = Ri +Ai +Bi + (α− β|vi|
2)vi (6)

where Ri and Ai denote the repulsive and attractive parts of the interaction forces
between birds, Bi is the boundary effect and the final term is a friction term (in the

absence of all other forces, bird i will accelerate or slow down to a speed
√

α/β). To
implement our assumptions into these forces, we introduce a first (smooth) cutoff
function S0 = S0(r), i.e., S0(r) = 1 for r ≤ d0, S0(r) = 0 for r > d0 + ǫ0, and S0 is
decreasing smoothly in between (see Figure 1).

Figure 1. The cutoff function S0

We set

Ri =
ρ1
N

N
∑

j=1

S0(|xi − xj |)
xi − xj

(1 + |xi − xj |2)β1

. (7)

Here, ρ1 is a (large) positive parameter and β1 > 0. There is a repulsive force
between any two birds closer than d0. One could argue that this force should become
even stronger as the distance diminishes, but this is not depicted in our term - in
fact, our force vanishes as |xj − xi| approaches 0; we choose the depicted form in
order to arrive at a smooth force term. In reality, birds will do their utmost to
avoid collisions, but the forces they can apply to distance themselves from each
other are naturally bounded. As a consequence, there may be (rare) collisions
between birds, events that will be ignored here: rather, we include the theoretical
possibility that birds may pass through each other, not because that is realistic, but
as a mathematical convenience: a smooth interaction force permits well-posedness
and stability analysis for swarms of any size.

There are several other comments in order at this point. First, since a smooth
repulsive force cannot prevent collisions completely, and since we choose to ignore
collisions anyway, why do we include repulsive forces at all? The answer is simple-
because they are probably there in reality! Second, why don’t we include force
terms that really will keep birds apart, like a repulsive Coulomb-type potential?
The answer to this is twofold- a) this isn’t realistic at all, and b) it would introduce
a serious artificial (and unneeded) difficulty into the analysis (Coulomb forces are, of
course, studied in the Vlasov-Poisson and related systems and are a principal cause
for the analytical challenges in this area, but there we are talking about electrons,
not birds).
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We return to the description of the force terms. For larger distances the repulsive
forces disappear and are replaced by swarming effects, expressed in

Ai =
1

N

N
∑

j=1

(1− S0)(|xi − xj |)w̃(xi − xj , vi)(vj − vi), (8)

where the function w̃ is modeled after the function appearing in the standard
Cucker-Smale model, with some additional cutoffs. To this end, let S1(v) be a
velocity cutoff much like S0 is a position cutoff: S1(|v|) = 1 for |v| ≤ d1, and
S1(|v|) = 0 for |v| > d1 + ǫ1 (analogous to the setup for S0); furthermore, for large
enough bird speed we introduce a ”vision” cutoff: assume that a reference bird (bird
1) is at x and moves with v, where |v| > d1 + ǫ1, and this reference bird will react
only to a bird at position y (bird 2) if bird 2 is inside its observation cone, defined
by cos∠(y− x, v) > δ1. Here, δ1 is assumed given (but it could depend on |v|). We
will assume further that there is a δ2 < δ1, such that if cos∠(y − x, v) ∈ (δ2, δ1)
bird 2 is seen by bird 1 peripherally (see Figure 2). Denoting κ = cos∠(y − x, v)
we define the cutoff S2 on [−1, 1] by S2(κ) = 0 for κ ≤ δ2,= 1 for κ > δ1, and
smoothly increasing on [δ2, δ1]; e.g., S2 = 1− S0.

The interpretation of this cutoff is that while the angle ∠(y−x, v) increases from
cos−1 δ1 to cos−1 δ2, bird 2 is in the range of peripheral vision of bird 1, which
gradually diminishes as the angle increases and is zero once the bird is outside the
cone with angle cos−1 δ2.

Figure 2. The vision cone

After these preparations we present w̃ :

w̃(x− y, v) =
γ

(1 + |x− y|2)σ

{

S1(|v|) + (1− S1(|v|))S2

(

(y − x) · v

|y − x||v|

)}

.

Please note that this function does indeed depend explicitly on v, in contrast to
the H in the original Cucker-Smale model (3). The reason for the cutoff enforced
by S1 is that smoothness in v requires that angular dependence disappears for very
low speeds. γ is a positive parameter, calibrating the “attraction” of the swarm. In
fact, the need for this cutoff is largely academic: if a bird moves a very low speed
at some time, then the friction term will force it to rapidly speed up and therefore
leave the velocity domain where S1 is active. It is, of course, conceivable that the
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other forces (repulsion, flocking) will conspire to bring a bird towards a very low
speed for a short time. This is the rare scenario when the cutoff S1 matters.

Finally, should there be a force that prevents the swarm from breaking up?
In reality, swarms do of course break up; there may be conditions which remove
the rationale for swarming (whatever that may be), and the behavior of the birds
will change. In the traditional Cucker-Smale model breakup of a swarm happens
only very gradually or not at all, because of the symmetry in attractive forces;
our main point here is that this symmetry is unrealistic, hence we lose momentum
conservation, and hence breakup of a swarm is possible. Specifically, for a fast bird
on the edge of the swarm and flying outward, w̃ will be negligibly small, so this
bird will simply continue to fly outward and not change speed or direction unless
overtaken by other birds.

In reality, birds “facing a void” in this way will make an effort to stay with the
swarm. We will model this by requiring that birds experience a “turning” force
which smoothly increases with growing “loneliness”. Let us assume that we are in
three dimensions and include gravity as a guiding force, pointing in the direction
−k = 〈0, 0,−1〉. We set

Bi = CS3(ρi)(vi × k), (9)

where ρi =
1
N

∑N
j=1

1
1+|xi−xj |2

, C is a parameter, and S3 is a smooth cutoff function

with S3(ρi) = 1 for ρi ≤ d3 and S3(ρi) = 0 for ρi > d3 + ǫ3. The quantity ρi is a
possible measure of “loneliness”: as ρi decreases, the bird will be more and more
distant from other birds and will “look for the swarm”. In our model it does so by
flying a turn, a trend which is always active but becomes small relative to other
forces if the observed “density” ρi is large enough. The trend to fly a turn includes
a choice, and the way we have set this up assumes that the turn is flown around
a vertical axis and in a clockwise direction as seen from above (the vertical axis is
natural and given by gravity; the direction is arbitrary and could easily be chosen
counter-clockwise. It could even vary from bird to bird, with a random variable
making the choice. Here there is a lot of freedom for future numerical experiments).

Notice that the sectorial dependence which we employed for the flocking forces
earlier is not used in the definition of ρi. One certainly has the option to do so
(leading to a modification of our model), but there are arguments which can be
used to justify the above ansatz. For example, birds may not only use their vision
to decide that they are leaving the swarm—a bird may hear that it is at the edge
of the swarm or even at some distance from the edge, and may turn around.

We summarize. Our model includes four different forces:

• Friction, which will drive each bird to fly at speed
√

α/β in the absence of
other forces

• Short-range repulsive forces to avoid collisions
• Flocking forces of Cucker-Smale type, with sectorial dependence on the bird’s
flight direction

• Boundary effects, bringing stray birds back to the flock.
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3.2. On cutoffs. The model described above seems unnecessarily complicated.
Why the many cutoffs, and why the effort to keep them smooth? Let us briefly
discuss what happens without this effort.

Consider a much simpler model, similar to the one given above, in which we
completely ignore the repulsive and friction terms. As for the attractive terms, let
us ignore the small velocity cutoff and assume a sharp sectorial cutoff; the simplified
attraction force will read

Ãi =
1

N

N
∑

j=1

w̃(xi − xj , vi)(vj − vi), (10)

where the function w̃ is modeled as before, but with simpler and discontinuous
cutoffs. Assume that a reference bird (bird 1) is at x and moves with v 6= 0, where
then this reference bird will react only to a bird at position y (bird 2) if bird 2
is inside its observation cone, defined by cos∠(y − x, v) ≥ δ1. Here, δ1 is assumed
given (but it could depend on |v|). If cos∠(y−x, v) < δ1, bird 2 is not seen by bird
1. Denoting κ = cos∠(y − x, v), we define the sharp cutoff S4 on [−1, 1] (S4 is the
discontinuous version of S2) by S4(κ) = 0 for κ ≤ δ1, and = 1 for κ > δ1, .

The simpler w̃ then reads

w̃(x − y, v) =
γ

(1 + |x− y|2)σ

{

S4

(

(y − x) · v

|y − x||v|

)}

.

This introduces several discontinuities into the force term. First, the sectorial depen-
dence is undefined for |v| = 0 (which may not matter, because it’s a set of measure
0). This is the reason why we treated very slow birds separately. In practice this will
not matter because birds will not stay at 0 velocity, but the mathematical problem
needs attention anyway. Further, there is a discontinuity caused by the boundary
of the vision cone - as the bird turns, other birds may float in and out of that cone,
and the simpler attraction force based on (10) will jump every time. This is clearly
a problem from both an analytical and numerical point of view, and avoided by
smoothing peripheral vision, as done above. If no smoothing is done then one faces
a system of ordinary differential equations with discontinuous right-hand sides, as
discussed in [1, 2, 11].

As for the turning force, it is tempting to simply use

B̃i = Cχ{|Ãi|<ǫ} · (vi × k),

with a resulting acceleration equation

mv̇i = Ãi + B̃i.

However, the on-off character of this turning force as a function of the birds’ location
is a problematic and unrealistic feature, as already mentioned earlier. One could
study a model with such discontinuous force terms by using the methods introduced
in the above-mentioned references, obtaining existence of solutions and numerical
approximation schemes. However, in reality transitions such as peripheral vision
and the drive to turn around will not happen abruptly, but according to some
smooth transition law. This suggests that our mollified force terms should be more
realistic than their simpler hard cutoff counterparts.

To provide an elementary example showing the issue, consider

ẋ(t) = 1− 2χ{x(t)>1}, x(0) = 0.
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Trivially, x(t) = t while t < 1, then x(1) = 1, and formally still ẋ(1) = 1. However,
x(t) cannot really exceed 1, because as soon as that would happen we would have
ẋ(t) = −1, which in turn would force x below 1, and so on. This seems to suggest
that x ≡ 1 should be a stable stationary solution, but it isn’t from a formal point
of view, as it does not satisfy the equation.

The problem is trivially overcome by smoothing the characteristic function
χ{x>1}, and if this is done with a smooth and monotone approximation the new
system will have the same overall qualitative behaviour and a stable steady solution
close to 1.

3.3. Velocity bounds. For the rest of the paper we will consider the model with
the smoothed force laws. While it is not possible to make assertions about the
asymptotic behaviour of the swarm, some things are easily seen. Let us ignore the
repulsive forces (i.e., set S0 = 0). We can then prove the following results on the
velocity support of the swarm.

Theorem 3.1. Let R(t) = maxi |vi(t)| and assume that R(0) ≥
√

α
β
. Then the

velocity support of the swarm stays bounded by R(0).

Proof. Since t → |vi(t)|
2 are C1− functions, we can for each t find a time interval

[a, b] which contains t, and an index i0 such that R(τ) = |vi0(τ)| for all τ ∈ [a, b].
We may therefore assume without restricting the generality that R(t) = |v1(t)| and

that |v1(t)| ≥
√

α
β
. Then by Cauchy’s inequality, v21 − vj · v1 ≥ 0, and therefore

d

dt
R2(t) = 2v1 · v̇1

=
1

m



2(α− β|v1|
2)v21 +

2

N

N
∑

j=1

w̃(x1 − xj , v1)(vj − v1) · v1 + 2B1 · v1





≤ 0.

The last inequality holds because the first term on the right is nonpositive, the
w̃(x1 − xj , v1) in the second term are nonnegative, and hence the second term is
also nonpositive, and the last term is zero. We have in particular proved that

Ṙ(t) ≤ 0 while R(t) ≥
√

α
β
. This completes the proof.

3.4. The associated kinetic equation. As in [5] we use f = f(x, v, t) to de-
note a measure-valued function whose value at time t is the measure dµt(x, v) =
f(x, v, t)dvdx. This notation suggests that we are only considering measures which
are absolutely continuous with densities f(·, t); however, general finite measures are
possible. We simply continue to use the above notation for convenience, and the
subsequent partial differential equation is to be interpreted in the weak sense.

The measure-valued function t → µt is the natural extension of the previously
discussed finite model as the number of birds goes to ∞. The previous system of
equations for the swarm then turns (formally, and, as shown later, rigorously) into
the kinetic equation
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∂tf + v · ∇xf = −divv

{

[

ξ(f) + (α− β|v|2)v
]

f
}

(11)

with ξ(f) = ξR(f) + ξA(f) + ξB(f), and

ξR(f)(t, x) = ρ1

∫ ∫

x− y

(1 + |x− y|2)β1

S0(|x− y|)f(y, w, t) dw dy, (12)

ξA(f)(t, x, v) =

∫ ∫

w̃(x− y, v)(w − v)(1 − S0(|x− y|))f(y, w, t) dw dy, (13)

and

ξB(f)(t, x, v) = CS3(ρ̃(x, t))(v × k). (14)

where ρ̃(x, t) =
∫ ∫

f(y,w,t)
1+|x−y|2 dw dy

4. On well-posedness. For the purpose of this section the specific form of the
force terms in Section 3 is not important. What matters is that the force fields
ξR(f)(x), ξA(f)(x, v) and ξB(f)(x, v) satisfy uniform Lipschitz estimates on com-
pact sets, a property which is guaranteed by the smooth cutoffs and the structure
of these forces. Assume for the moment that the measure valued function t → µ̃t

is given and uniformly (for t ∈ [0, T ]) compactly supported in x, v. Abusing the

notation as indicated earlier, we also just write f̃(x, v, t) for this measure. We then

abbreviate E(t, x, v) = Eµ̃(t, x, v) := ξ(f̃)(t, x, v).

As we assume that f̃ is given, E is given, and we can compute the f which evolves
according to the equation (11) by solving the characteristic system of equations

d

dt
x = v (15)

d

dt
v = E(t, x, v) + (α− β|v|2)v. (16)

The solvability on [0, T ] of the initial value problem associated with (15,16) depends,
of course, on the properties of E. We list three desirable properties of E; that our
definition of E actually implies these properties is stated later as a lemma.

P0. E is continuous on [0, T ]× R
6.

P1. There is a C > 0 such that ∀t ∈ [0, T ]

|E(t, x, v)| ≤ C(1 + |x| + |v|)

(sublinear growth).

P2. For each compact subset K ⊂ R
3 × R

3 there is a constant LK such that on K

|E(t, x, v)− E(t, y, w)| ≤ LK(|x − y|+ |v − w|).

The properties P0-P2 provide well-posedness of the initial value problem belong-
ing to (15,16), and we define the flow {T t

E} associated with this system. Abbreviate
P = (x, v), P (t) := (x(t), v(t)), then the family of transformations {T t

E} is given by
T 0
E = id, T t

E(P ) = P (t), where P (t) is the solution to (15,16) satisfying P (0) = P .
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Assume further that µ0 is an initial probability measure, compactly supported in
x, v. If we set µt := T t

E#µ0 (defined by
∫ ∫

ϕ(P ) dµt(P ) =
∫ ∫

ϕ(T t
E(P )) dµ0(P ))

then t → µt is a weak solution of

∂tf + v · ∇xf = −divv

{

[

(E + (α− β|v|2)v
]

f
}

.

Let X := C([0, T ], P1,c(R
6)) be the set of continuous functions t → µt into the

compactly supported probability measures, equipped with the metric
supt∈[0,T ]W1(µt, νt). This set is a subset of the complete metric space C([0, T ], P1(R

6))

equipped with the same metric; here P1(R
6) denotes the set of probability mea-

sures µ on R
6 with

∫ ∫

R6 (|x|+ |v|) dµ(x, v) < ∞. For µ̃. ∈ X we define µt by

µt := T t
Eµ̃.

#µ0, where Eµ̃ = ξ(f̃) = ξR(f̃) + ξA(f̃) + ξB(f̃) is defined by (12)–(14).

This defines a mapping Γ : µ̃. → µ in X . The following properties apply.

Lemma 4.1. The field Eµ̃.
satisfies properties P0, P1 and P2.

Theorem 4.2. The mapping Γ possesses a unique fixed point in X for some con-
veniently chosen T > 0. This fixed point is constructible via a contraction mapping
argument in X and is a unique weak solution of (11).

Theorem 4.3. The solution given by Theorem 4.2 depends continuously on the
initial measure µ0. Specifically, there is a continuous function r : [0, T ] → R+ with
r(0) = 1, such that if µ. and ν. are solutions of (11) with initial measures µ0 and
ν0 respectively, then

W1(µt, νt) ≤ r(t)W1(µ0, ν0).

Details of the proofs of these results are given in [5]. They follow the blueprint
from classical references such as [10], [19] and [20].

The discrete case is included in these results by simply setting µ0 = 1
N

∑

δ(xi,0,vi,0)

and µt =
1
N

∑

δ(xi(t),vi(t)). Theorem 3 above provides in particular convergence of
a “particle” method, where a general µ0 is approximated in the weak sense by a
discrete measure. It follows that the behaviour of a very large flock of birds can (in
principle, and on finite time intervals) be simulated by solving a system of ODEs
for a reasonably large number of birds.

5. Simulations. Numerical simulations were implemented using MATLAB: the
ordinary differential equation is solved using the MATLAB routine ode45 which
requires smooth arguments (this is one reason why smooth cutoffs are used). The
smooth cutoff functions S0(x; d, ǫ), S2(x; d, ǫ), S3(x; d, ǫ) are implemented as in [18]:

Si(x; d, ǫ) =















1 if x ≤ d

1
2 + 1

2 tanh

(

1
x−d

+ 1
x−(d+ǫ)

)

if d < x < d+ ǫ

0 if x ≥ d+ ǫ

for i = 0, 3, and S2(κ; δ1, δ2) = 1− S0(κ; δ2, δ1 − δ2).

The seven remaining figures depict initial conditions followed by end conditions
for three simulation scenarios. In each picture we depict a three-dimensional pro-
jection of the birds’ positions on the left and a projection of the positions from
above on the right, where the arrows are the two-dimensional projections of the
birds’ velocities. The first scenario depicts a flock of birds (with randomly oriented
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velocities) that disperse into fragments. In fact, at a later time, the fragments rejoin
one another (not shown).

The second scenario depicts two flocks: a flock of birds with identical velocities
approaches a flock with randomly oriented velocities. Similar to the first scenario,
the randomly oriented flock splits into two components. One component joins the
flock that started out with identical velocities.

Both the first and second scenarios used a total of 100 birds and the same pa-
rameters, shown in the table below. In the second scenario, the birds were divided
evenly between the two initial flocks.

The third scenario (Figures 7-9) used the same parameters (but a larger number
of birds - 200). Here we modified the turning behaviour of the birds such that every
other bird would choose to turn in the opposite direction (left rather than right; in
fact, we have observed that swarms of seagulls seem to conform with this in the sense
that there are “left turners” and “right turners”. Of course, birds may change from
one camp to the other at some time, but this does not happen indiscriminately.
For our simulations we simply assumed that there were two well defined groups
for the duration of the simulation). Thus the birds are evenly divided into two
groups with left and right turning preferences, respectively. The initialization was
otherwise identical to the first scenario (Fig. 7). It was observed that double-
milling behaviour emerged (Fig. 8) for an intermittent period. At some later
time a transition occurred in which the birds’ planar velocities reached a relatively
equilibrated state, and the flock then experienced upwards rigid motion behaviour.
One can speculate what further modifications to our model will produce yet more
realistic effects, for example undulations such as observed in large flocks of starlings;
we intend to carry on further simulations towards this end.

In our third simulations the two-dimensional nature of the turning force results
in the upward preference shown in this rigid motion; a more general force term
would enable more general rigid-body motion to occur (translations and rotations).

5.1. Parameter Values. The parameters used to produce the simulations are :

Simulation Parameters

General

N 100 Number of Birds
β1 = σ 0.5 Exponent for force terms
d0 1 Parameter of S0 cutoff
ǫ0 1 Parameter of S0 cutoff

Repulsion Force ρ1 10 Repulsive coefficient

Attraction Force

γ 10 Attractive coefficient (in ω̃)
d1 0.5 Parameter for vision cutoff S1(|v|)
ǫ1 0.5 Parameter for vision cutoff S1(|v|)
cos−1 δ1 1.047 Parameter for angular cutoff S2(κ)
cos−1 δ2 1.57 Parameter for angular cutoff S2(κ)

Turning Force
C 0.003 Turning coefficient
d3 0.0015 Parameter for density cutoff S3

ǫ3 0.0003 Parameter for density cutoff S3

Friction Force
α 1 Friction α
β 1 Friction β
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Figure 3. Randomly distributed flock splitting (initial time)

Figure 4. Randomly distributed flock splitting (later time)
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Figure 5. Directional flock merging with portion of random flock
(initial time)

Figure 6. Directional flock merging with portion of random flock
(later time)
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Figure 7. Randomly distributed flock with left-right turning (ini-
tial time)

Figure 8. Randomly distributed flock with left-right turning (in-
termediate time) - double milling behaviour.



REFINED FLOCKING AND SWARMING MODEL 15

Figure 9. Randomly distributed flock with left-right turning
(later time). Small planar velocity indicates vertical rigid motion.
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