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ABSTRACT

We discuss the existence and properties of nontrivial kinetic equilibria
solutions for Enskog-type models of multilane traffic flow. Under certain
conditions on driver behaviour it is proved that only trivial (synchronized
flow) equilibria exist. For a simple explicit form of driver behaviour
and a modification of the interaction terms by artificial diffusion terms,
these trivial equilibria become smooth and can be computed by ODE
methods. Finally, a more realistic model for driver behaviour is suggested,
leading to diffusion terms which are consistent with the existence of trivial
(synchronized flow) equilibria. Numerical tests reveal that the stable
equilibria associated with this behaviour include bimodal equilibria for
certain parameter choices, consistent with real traffic observations.



1. Introduction. In close analogy to statistical physics, there are three pos-
sible levels of description of traffic dynamics: 1) the microscopic level, where
one keeps track of the velocity and position of each vehicle; 2) the macroscopic
level, where the description is at the level of partial differential equations of
conservation type for macroscopic variables such as density and flux; and 3)
the (intermediate) kinetic level, where the position and momentum of each
vehicle is ignored in favour of a distribution density f = f(¢,2,v). In the
present study we are concerned with models of this third type and will con-
sider examples of kinetic multilane models as suggested by Klar and Wegener
in [1-2]. We mention here in passing that earlier attempts of using kinetic
modeling in traffic dynamics were made by Nelson [3], Prigogine and Andrew
[4], Prigogine and Herman [5], and others (see the references in [1-2]). Recent
work on “fundamental diagrams” relating density and flux in macroscopic

models can be found in Nelson and Sopasakis [6].

Kinetic modelling has the potential of providing the crucial ingredients
towards valid simulations of real traffic. Microscopic models suffer from two
drawbacks: 1) It is expensive and slow to keep track of individual cars, and
2) the statistical data obtained from such a procedure may be difficult to in-
terpret in the absence of a higher level model, i.e., it may be hard or nearly
impossible to use data from microscopic observations to predict what happens
in a different but similar situation. On the opposite end of the modelling spec-
trum, it happens that macroscopic models which are derived without reference
to microscopic or kinetic background models make unrealistic predictions in
some scenarios (examples for this are given in [7]), or they may ignore some

relevant dependent variables altogether.

Practical considerations make it highly desirable to derive macroscopic
models which are as accurate as possible, because such models would be us-
able for real-time numerical simulations and provide realistic, interpretable
results. Finding such macroscopic models is therefore a main goal in the
modeling process. The significance of kinetic modeling is that 1) it provides
a natural approach for the derivation of realistic macroscopic models, and 2)

it can be used for numerical simulations directly. The approach mentioned
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under 1) follows in essence the transition path from rarefied gas dynamics to
compressible gas dynamics, i.e., the transition from the Boltzmann equation
to the compressible Euler equations in the neighborhood of (local) thermody-

namic equilibrium.

The process is well known and can be summarized in a few lines as
follows: A good kinetic model will give rise to an infinite set of moment
equations for the infinitely many velocity moments of the density function;
“good” macroscopic equations will emerge from a “good” closure relation,
which may be a constitutive relation linking some higher order moments,
a projection principle or an entropy maximization principle (if the system
satisfies an entropic principle). Such closure methods in rarefied gas dynamics

have received much attention in recent years [9].

For the traffic flow problem, the standard approach uses closure of the
moment equations in the neighborhood of a kinetic equilibrium. We refer to
[2] and [7] for details and simply observe that other closure procedures are
hard to think of for traffic flow since there is no information about entropy
functionals. In any case, this is a good reason to investigate kinetic equilibria
for traffic flow: they give natural closure relations for the moment equations
and therefore good macroscopic models. Of course, the kinetic equilibria can
be used for other purposes in their own right, e.g., for studies of possible

fundamental diagrams (linking density and flux) in equilibrium settings.

The topic of our work is therefore the existence and nature of non-trivial
spatially homogeneous equilibria solutions for cumulative descriptions of mul-
tilane kinetic models. We leave the proper formulation of the problem for
Section 2. Throughout the paper, an equilibrium will be called trivial if it
corresponds to the situation where all cars are moving at the same fixed speed,
ie., f(z,v) = p(z)dy,(v). In a spatially homogeneous context (only feasible
from a statistical point of view) p will be a positive constant. Trivial equilib-
ria in this sense are desirable from a practical point of view, but they are not
expected to be stable for moderate to high densities, and therefore not usable

for the derivation of good macroscopic models in such regimes.
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2. The Problem. As in [2,7] we consider a kinetic model describing highway
traffic in a cumulative picture averaging over all lanes. f = f(¢,z,v) is the
value of the car density at time ¢, location z € R and speed v € [0,1] (for
convenience, we assume that units have been chosen such that the speed
limit is 1). The total density is p(z) = fol f(z,v)dv, and we set f(z,v) =
p(x)F(z,v). F is the probability density in v of cars at z.

The models introduced in [2,7] are Enskog-type kinetic models in the
sense that a driver’s reaction depends on developments ahead of the car. To
this end, let Hp and H4 be the thresholds for braking and acceleration,
defined by

Hx(U)=H0+UTx, X:A,B

where T, T4 are reaction times (it is reasonable to expect T < T4) and
Hj is the minimal possible distance between vehicles (the average length of a
car).

A driver will accelerate only if his distance to the leading car exceeds H 4,
and brake only if this distance becomes smaller than Hpg. It will be assumed
that velocity adjustments are instantaneous, but various models will differ in
assumptions on how the new velocity is chosen; as we will see, this is all-
important. Following [7], we denote by ¢g(p),ga(p) the correlation functions
(the density-dependent probabilities of encountering a leading vehicle) for
braking or accelerating. If a slower leading vehicle is present, the driver makes
a choice of braking or passing (overtaking); the braking probability will be
denoted by Pg = Pg(p). This is a simplified picture of the traffic dynamics on
a multilane highway where driver interactions lead to lane changes, braking,
or acceleration. We refer to [2] for discussions on the nature of the correlation
functions g4 and the braking probabilities Pgp.

The cumulative kinetic model as introduced in [2,7,8] is

O f +v0.f = CT(f), (2.1)
where the Enskog-type collision operator CT(f) is
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C*(f) = Prqp(Gi — L) (f) + qa(Gh — LH)(f)

and the various gain (G, G}) and loss (L%, L) terms due to braking and

acceleration are
1 1
Gig(f)(x,v) = / / |vy—va|op(v1 = v;v9) f(z,v1)F (z+Hp(v1),vs2) dvidus,
0 vo

Lh(0)(e0) = [ lo=valf(o.0)F (o + Hi(o),vr) don

Here op(v1 — v;vy) denotes the probability density that a driver moving at
speed v; and encountering a leading vehicle at speed vy < vy will brake to

speed v. Similarly,
1 V2
GH(f)(x,v) = / / lv1—vg|oa(v1 = v;v2) f(x, v1)F(x+Ha(v1), v2) dvidua,
o Jo

LiN@0) = [ o= vl f(5,0)F (o + Ha(w), ) v

and o4(v; — v;v2) denotes the probability density that a driver moving at
speed v; and encountering a leading vehicle at speed vy > vy will accelerate
to v.

Equilibria solutions of (2.1) are density functions f = f(v) such that both
sides of (2.1) vanish identically. As f is by definition independent of time and
location, the defining condition for an equilibrium becomes C(f) = 0, where
C denotes the spatially homogeneous interaction (*“collision”) operator.

In [7], Eqn. (2.1) is changed to

Ocf +v0sf = CF(f) +v(p)(Gs — Ls)(f), (2.2)

with G4( fo z,w)dw and Ls(f)(z,v) = f(x,v). This correction
is an artlﬁmally introduced relaxation term which accounts for “random be-

haviour of the drivers.” It is evident that this correction is not consistent with
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the existence of trivial equilibria and will therefore enforce smooth equilibrium

solutions (if equilibria exist at all). Indeed, for the sensible choices

1 1

X[U2,v1](7})a oa(vy = vjvg) =
2) (

op(v1 — vjv2) = (1)71)
1 —

mmm,w](v),
(2.3)
and v(p) = const. these equilibria are computed explicitly in [7].

In the spatially homogeneous situation, the spatial nonlocality of the col-
lision operator disappears, and the collision operator becomes an interaction
operator of Boltzmann type. This is the operator which we will study in our
equilibrium search. We will drop the 4+ superscript for any of the terms in
this homogeneous situation, i.e., C(f), Gg(f), etc.

The plan of the present paper is as follows. We first set v(p) = 0 and
prove in Section 3 that for a wide class of possible densities 04 and op, all
equilibria are trivial. In Section 4 we generalize the model (2.2) from [7] by
consideration of more universal relaxation terms and review the identification
of non-trivial equilibria via the solution of ordinary differential equations. Fi-
nally, in Section 5, we present an ansatz for more realistic o 45 and ops which
naturally entails the presence of relaxation terms in the collision operator,
and we present numerical calculations of some of the corresponding equilib-
ria. These calculations demonstrate in particular that for certain parameter
regimes the emerging equilibria are bimodal, i.e., they have two separated

peaks, a feature which is observed in reality.

2.1 Review of previous choices for 04,0p5. Our research was inspired by
the question which key features of 04 and op prevent (or allow) the existence
of nontrivial equilibria. To this end, we first revisit the examples which were
studied elsewhere in the literature. In [2] and [8], with suitable choices of

parameters 0 < 8 <1 and 1 < a < 0o, the probability densities

1
op(v1 — v;v2) = m){[ﬁul,m](v)

1
min(1, avy) —

(2.4)

UA(Ul — U, ’1)2) = v X[v1,min(1,av1)] (’U)
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were used. For the analytical study in [8], the parameters o and 3 were set
to 8 =0 and a = oo, resulting in
1
oB(v,v1) = —X[0,0,](V)
U1

1
oa(v,v1) = 1_71)1)([«;1,1] (v)

(2.5)

Note that these probability densities are independent of the speed of the
leading vehicle; while this is certainly an unrealistic feature of the model, it
was established (by numerical experiments in [2], and in a special case with
extra symmetries by an analytical argument in [8]) that there are in this case

both trivial and non-trivial equilibria.

In [7], 04 and op are chosen as

1
U1 — V2

1

oa(v1 = vyve) = HX[W,W](U)

op(v1 = v;vg) = X[vs,01](V)

(2.6)

This choice appears more reasonable than the previous one; a driver will now
brake to a speed equidistributed between his present speed and the speed of
his lead vehicle. Unfortunately, we will see that this model, as many others,
possesses only trivial equilibria (this is the reason why in [7] the diffusion term
was added).

Even simpler than (2.6) is the choice

op(vy = v;v2) = 0y, (v), 0ca(vy = V;2) =y, (V).

In such a perfect world, each driver would be able to assess the speed of
his/her leading vehicle exactly and change his/her own velocity with complete
precision. For such behaviour, the identity C(f) = 0 reduces (after some

calculation) to

p [(k - 1)/ lvy — v|F(v1)F(v)dvy — (k—1) /OU lvy — v|F(v1)F(v)dvi | =0,
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where k = %. We see that the left hand side vanishes identically if k =1,
so in this case (which is not realistic if there are two or more lanes) every F'

is an equilibrium. If k£ # 1 we have to have

/0 (v1 — v)F(0)F(0)dvy = 0,

or F(v)[[v1F(v1)dvi —v] = 0, ie., F(v) = d,,(v), where vy is the average

velocity associated to F'. Hence all equilibria are trivial.

The previous two choices are special cases of the class of models

0B(U1 — V;V2) = Ju1,v2 (V) X[vg,01]\V
(1 2) () [v2 1]() (27)

JA(Ul — ’Ug) = -61117’02 (U)X[’U1,U2](v)

with families of probability densities fvlm and gy, 4, for the choice of post-
braking and post-acceleration speeds. Models of this type look promising
inasmuch as there is a lot of generality with respect to average driving be-
haviour. However, they do contain the assumption that drivers will never un-
derestimate (overestimate) the speed of a leading vehicle in the case of braking
(accelerating). For braking, one will always have v > vy (never v < vq, which
was possible in the model with o4 and op given as in (2.4),(2.5)). This is an

unrealistic feature of (2.7).

3. Equilibria search for the models (2.7). We are interested in density
functions f(v) (measures p(dv)) such that in the sense of distributions C(f) =
0. In view of the definition of CT(f), this means that

k(G — Lp)f+(Ga—La)f =0, (3.1)
where we have again used the abbreviation k = % (k is a constant for

constant p). Written out in detail, (3.1) is
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ok [ [ 101 = el o (00X (0)F (01) Plo) do
v2 JU1>vU2
—pk/ |v — va|F(v)F(vg) dvs
va<v
w0 [ [ 101 =l (00X (0)F (01) P 02) do
ve Ju1<v2
—p/ |v — va|F(v)F(v2) dvy = 0.
V2 >V

We factor out p, multiply with a test function ¢ € C([0,1]; R) and integrate
over the admissible speed range v € [0, 1]. After some changes in notation (in

some of the integrals v is changed to w, and v1 to v) we obtain

/01 [ F@FE0 - o) ko) + o0 - & / ) (32

R

V2

From (3.2) it is transparent that C(f) = 0 admits only trivial solutions if the
bracket in (3.2) maintains the same sign for any choice of 0 < vo < v <1 and

an admissible class of test functions. Let

v

B(02,0) = k(o) +l0n) —k [ " (@) For () dw [ ooty v

V2 V2

Clearly, ®(vy,v) depends parametrically on fv,w and Gy, , as probability
density models for accelerating and braking, and on k, which depends on the
traffic density (recall that large k& means high braking probability, i.e., high
density, and small k corresponds to a fairly empty highway). We will focus on
the case where there is a certain symmetry between braking and acceleration,
and there is a self-symmetry of the braking (acceleration) density which gives
all the fylms and gy, 4,5 in terms of one “generating” density. In this case
we will show that all equilibria are trivial.

Our assumptions mean that



A.l. fvl,vz (W) = Gug,v, (V1 + V2 — W),

and there is a probability density f = f1,0 such that

1 ~ W — Uy

A.2. fvl v (W) =

V1 — V2 V1 — V2 ’
where it is understood that v; > vy. Figure 1 illustrates the geometric idea
behind A.1 and A.2.

A i
/fjio\*
| > | : —
0 1 0 Vi vy 1

Figure 1. Assumed Scaling and Symmetries

Note that if we abbreviate § = g¢¢,1, then f(u) = §(1 — u), and by A.1 and
A2

V1 — V9 V1 — V2

gva,vl(w): ! f<vl_w>-

With these identities, the bracket inside (3.2) becomes

ko(v) +¢(v2) —

UV — Vg UV — Vg UV — V2

/U:so(w) [f(w_w) + % ~(U_w)] dw.  (3.3)

To simplify things further, we rewrite the last integral in the form

/0 o(ve + u(v — U2))f(u) du + % /0 o(v —u(v — 'vz))f(u) du.
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Dividing by 1 + k the bracket in (3.2) becomes

(kp(v) + ¢(v2)) — ; (v2 + u(v — v2)) f(u) du

1+k 1+k

1 (3.4)
1 .
1Tk ; o(v —u(v —v2)) f(u) du.
This is a difference of two averages of ¢, namely, denoting
1
Ly g = H——k(k(sv + 0y,)
and
k 1 . 1 ! .

<:u121,1127 @) = 1+k . (vatu(v—uv2))f(u )du+1+—k p(v—u(v—vq))f(u) du,

the difference of averages
1 2
<:u’v,112 = My g 90>
The measures “111,1)2 and '“12),112 are generated by rescaling from p! := /‘%,0 and

42, given in terms of f by

s
o [ ewiw du+—/ (1 = w)F () du.

We formulate our first rigorous result on the nature of equilibria in terms of

(12, 0) =

these measures.

Theorem 3.1. Suppose that k # 1 and that p,, . and p2 ,, satisfy A.1 and
A2 If fol wf(u)du < 1, then all kinetic equilibria are trivial.

Proof. We set v = fol uf(u) du and choose ¢(v) = a + (v, where o and [ are

constants. We compute

(L4 k) by, = Mg )
=B(kv + vq) — ﬂ(k/o (vg + u(v — v2)) f(u) du + /0 (v — u(v — v2)) f(v) du)
=B(kv + v2) — B(k(va +v(v — v2)) + v —v(v — v2))
=B[(k — v+ (1 —k)vz —v(k = 1)(v — v2)]
=Bk —1)(1 —7) (v — v2).
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Inserting this in (3.2) we find

Blk—1)(1 =) / / " F(0)P(02) (0 = v2)? dvadv = 0,

and the assertion follows.

Remark. It was sufficient to consider linear test functions to prove this
result. We expect the result to also hold for £ = 1 and v < 1, but one has
to use at least quadratic polynomials for a proof. As the importance of this
case is small, we skip these calculations. The case v = 1 is the Delta-function
case.

We conjecture that Theorem 3.1 generalizes to all cases where drivers
never underestimate (overestimate) the speed of a slower (faster) lead vehicle,
with the possibility of some singular exceptions. As these assumptions on
driver behaviour are unrealistic we make no further attempts to generalize

the above result.

Remark. A question of largely academic interest in this context is the sta-

bility of these trivial equilibria.

4. Inclusion of relaxation terms. The problem of nonexistence of smooth
equilibria can be alleviated by augmenting the collision operator with re-
laxation terms. Addition of such terms to the collision operator may seem
somewhat arbitrary and unjustified; however, in the next section we will show
that realistic assumptions on the probability densities 04 and op lead auto-
matically to such relaxation terms.

Relaxation terms will not only enforce the existence of nontrivial equi-
libria f€¢ = f¢(p;v); in simple situations, f¢ can be computed explicitly. This
was done in [7] for the special relaxation term from (2.2). Here, we review

the method and generalize it to relaxation terms

v(p)(Gs — Ls)(f)
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with G4(f) = fol fo(v)f(v2)dva, Ls(f)(v) = f(v). The rationale is that in
the class of probability densities we will have G(f) = Ls(f) if and only if
f(w) = fo(v), so fo can be interpreted as the natural velocity distribution
density according to which drivers will choose their speed if free driving is

possible.
The explicit calculation of f¢(p,v) by an ODE method is possible for

1
oa(vr — vyvg) = Vg — 1 X[v1,02] (V)
1
op(vy = v;v9) = —— X[va,01](0)-
In this case
v
C(f)=qalk(GB—Lp)+(Ga—La)+ q:(Gs — Lg)], (4.1)

where, as before, k = Ppqp/q, and in view of (2.1)

Gp=Ga = p/l /1 F(v1) F (v2)X[y,,0,](v) dv1dvs
= P/ / F(v2) X[uy,0,](v) dvadvy
Lo=p [ FO)F(2)(0 - 12) doo
La=)p / F(0)F(v3)(v3 — ) dvs
G, / Jo(v)F (v2) dvy

L, = F(v) = /0 F(v)F(v3) dvs.

Following [7] we renormalize further by setting x = 1 +k Then C(f) =0 is

equivalent to

14

w(Gp — Lp) + (1= R)(Ga—La) + s

(Gs — Ls) =0.
We can factor out p.
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Let us introduce the new dependent variable p := F(v) = [ F(w) dw.
F :[0,1] — [0, 1] is monotone increasing. If it is 1-1, then v = F~!(p), and

dp _ dF(v(p)) dv
1= =——22 = F(u(p)—
dp dp @) g,
50 Z—Z - m- We abbreviate v = g_z_

The various parts of the collision term now become

Gp=Ga=0p 1— )

) / P(w) dw — / wF (w) du]
= (o) —/0 v(q) dg

(here, we have substituted w = w(p(w)), dp(w) = F(w)dw)

and similarly

)
The identity C(f) = 0 becomes

i1 =) = [ - [ ola)da]
—(1—k) [/plU(Q) dg —v(p)(1 —p)] + ¢ [fo(p) - H =0,

with ¢ = m. Differentiation with respect to p reduces this to the second
order ODE

d .. 3p+ K — 2 — ca folp)

— Ind(p) = -

dp p(1 —p) + cfo(p)

with boundary conditions v(0) = 0, wv(1) = 1. For f(v) = 1, this is explicitly

solved in [7] and leads to a parametric representation of equilibria. In this
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case, the ODE is explicitly integrable by using partial fractions. This method
certainly applies for simple probability densities fo (p).

For other choices of fy the boundary value problem has to be numerically
integrated. We investigate fo(v) = 2v, fo(v) =2 — 2v and fy = §sin(vm).

Figure 2 shows plots of the equilibrium solutions for £ = 0.5.

k=.5, various f_0

f_0=pi/2 sin(v pi)
—f0=1
- - f 0=2v
— - f 0=2-2*

F(v)

Figure 2.
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5. A possible origin of diffusion. We saw in Section 3 that under rea-
sonable assumptions on the o(v; — v;v2) probability densities only trivial
equilibria will exist if drivers will never brake below (accelerate above) the
speed of their leading vehicle. If Section 4 we added artificial diffusion to the
collision operator and saw that this not only enforces the existence of non-
trivial equilibria; for the simple os given by (4.1), we were actually able to
compute these equilibria explicitly by ODE methods.

We suggest that realistic os will contain a component which will generate
a diffusion term as part of the collision operator (similar to the one which
was added artificially in Section 4) automatically. As shown by numerical
experiments in [2] and analytical arguments in [8], this statement applies
to the op and o4 as given by (2.5). However, these os are independent of
the speed of the leading vehicle and therefore unrealistic. We now offer an
alternative.

To start, consider the situation where v;1 = 1 and vy = 0, i.e., the lead
vehicle is stalled and the driver under consideration is moving at the speed

limit. We suggest that in this situation op is given by
op(1 = v;0) = ado(v) + (1 — @) f(v), (5.1)

where « is the probability of a full stop, and f is the probability density of
the residual speed if no full stop is made. We will call f the “residual braking
density.” A sketch of this op is given in Figure 3.

Figure 3. op from (5.1)
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In section 3 we considered the case where the probability density op(v; —
v; v2) is obtained from o (1 — v; 0) by rescaling relative to the interval [vg, v1].
We saw that this leads only to trivial equilibria.

A closer look implies that such simple rescaling of op(1 — v;0) is inap-
propriate, because it would entail that fraction « of all drivers with speed v,
would break ezxactly to vs. This is unrealistic—humans don’t have the ability
to estimate the speed of a leading vehicle with such accuracy (except when
v9=0). To accomodate for this weakness, we assume that there is a smooth

probabililty density wp with suppwp C [—1, 1] such that for v3 > 0

o v — Vg 1 ~{ v — vy
751 = vivs) v P ( vy ) * a)m - 'U2f <'U1 - vz) X} (?)
(5.2)

See Figure 4.

0 Vi, Vi 1

=

Figure 4. op from (5.2)

Note that as vo \ 0 *wp (”_”2) — adp(v) in the sense of distributions.

V2

This part of op scales relative to vy, while the residual part Uliw f (%)
scales relative to v1 — vg, as before.

Strictly speaking we have to modify (5.2) somewhat further: for vy > 1/2
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v—v3

the term %wB ( s

) , as it stands, predicts contributions beyond the speed
limit. This is a trivial difficulty which is easily addressed by an additional
trunction.

We suggest a similar mechanism for the acceleration contributions, i.e.,

that for some 0 < 8 <1
o4(0 = ;1) = Bo1(v) + (1 = B)g(v) (5.3)

and for v; < va

I5] V — Vg 1 _(v—mn
— v; = 1- .
oa(v1 = v309) = 7— el g +( /5’)”2 o9\ o X[o1,02] (V)
(5.4)
The residual acceleration density g scales as in Section 3, and as the residual
braking density introduced earlier, while the singular part of o 4 scales relative

to ]._U2.

Example. A simple choice, which will be used for the numerical computa-
tions, is

fv) =1, wp(v) = X1,

and

gw) =1, wa(v) = xp0,1]

Remark. It is debatable whether the scaling of the singular part in (5.4)
should be as defined. (5.3) predicts that a fraction § of all drivers have the
ability to identify the speed of a leading vehicle moving at the speed limit with
accuracy. However, this is far less realistic than the braking scenario where
one encounters a stalled vehicle. For the present paper we will continue to
use (5.4) and write down the emerging diffusion terms. We assert that similar
terms will arise in any modeling effort which contains a realistic ansatz for
OA.-

Counsider now the braking terms of the collision operator. In the notation

of Section 3
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k(Gp — Lp)

1,1
:k'p(/ / lvy — valop(v1 = v;v2) F(va) F(v1) dvrdug
0 V2

_ LU "U — U2|F(’U)F(’U2) d'U2)

L {(1 o) /0 oo 0)f ( v v ) Fon)F(n)dnds

V1 — V2

—(1-a) / "0 = 0ol F(0) F(v3) dvz]

0
1,1 1 _
+ kp [a/ / vy — vo| —w (’u 02) F(vq)F(v1) dvrdug
0 Juy U2 U2

- a/OU v — vy | F (v) F(v3) dw} .

The first two terms in the right-hand side correspond to gain and loss
due to braking, with a braking kernel op of the type discussed in Section 3
(where we saw that such models only admit trivial equilibria). The last two
terms conspire to produce a diffusion term. We rewrite this term (omitting

the factor kp)

1 V1 1 _
oz/ (/ v — vg| —w (U UQ) F(vy) d’Ug) F(vy) dvy
0 0 v V2

2
—a/ |v — va| F(v) F (v2) dvs.
0

This is more complicated than the simple diffusion terms from Section 4.
In particular, it is evident that trivial equilibria still exist (this is reasonable,
as they exist in reality), but they are not stable: for smooth perturbations of
Ouo (V), 1., F' = 04, (v) +€p(v), the effect of ¢ will be amplified by the diffusion
term. The system will be forced towards a smooth nontrivial equilibrium
(whose existence is plausible but very hard to prove analytically).

A similar discussion applies to the acceleration terms. With the ansatz
(5.4),
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—r|a-0) [ 1 | Xt @13 (222 ) P00 P(0n) g

V2 — V1

-9 [ -l R0 ) 56)

1 1 . _
e [IB/(; </U1 1)12— ;;w (;J _ Zi) F(U2) dU2> F(’Ul)dvl

_ /1,1 [0 — va| F(v) F (v2) dvz] :

The last two terms in (5.5) and the last two terms in (5.6) together
comprise a diffusion component of the collision operator which suffices to
steer the flow pattern away from trivial equilibria.

The observations of this section suggest a more systematic search for
the real os. It would be an interesting and potentially rewarding project
to investigate to what extent the shape and stability of emerging equilibria
depends on the ansatz for the os. Such an investigation can probably only
be done numerically, but it would have to be done only once to arrive at

equilibria which could then be used for macroscopic models, as discussed in
[2] and [7].

We conclude with a numerical investigation. The time dependent spa-
tially homogeneous problem was solved numerically to determine the station-
ary distributions. This was done by a finite volume method which ensures
particle conservation.

We consider o and o 4 as given in (5.2) and (5.4). The artificial diffusion
term is set to be 0.

The functions f,g and wp,w4 are chosen as in the example: f (v) =
1, wp(v) = Xx[-1,0 and g(v) = 1, wa(v) = x[o,1]- Different values of x :=
k/(1+ k) and «, (B are investigated:

Figure 5 shows « = 0.5 (i.e., k = 1), « = 8 = 0.05 and « = = 0.2.
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F(v)

Figure 5: Kk = 0.5

Figure 6 shows x = 0.35 (corresponding to a smaller braking probability),
a=p0=0.05and a=p0=0.2
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Figure 6: Kk =0.35

For £ = 0.65 we would obtain a figure which is symmetric to Figure 6

with distribution functions concentrated near 0 instead near 1.

We note that for o = 0.2, i.e. stronger singular braking and acceleration
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behaviour, we obtain bimodal equilibrium distributions.
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