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Abstract. We provide a derivation in the context of a traffic flow model, and both analytical
and numerical studies of the functional-differential equation

(2(s) + @)®2/(s) = B(z(s + 2(5)) — 2(5)).
Here, a and [ are positive parameters, and we are in particular investigating the existence and
properties of non-constant “traveling-wave” type solutions.
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1. Introduction. The subject of interest of this article is the functional-differential
equation

(L.1) (2(5) + @) (s) = B(2(s + 2(s)) — 2(s))

This equation arises in a search for traveling wave solutions of a macroscopic traffic
flow model (first introduced in [14]) which takes the inherent non-locality of traffic
seriously. We will refer to (1.1) as “jam” equation because it emerges from a search for
braking waves. The model is related to the macroscopic traffic model first suggested
by Aw and Rascle [1], and independently by Zhang [31]. Our paper is, in particular,
a continuation of [15], where we presented mathematical and numerical analysis of
the model. The emphasis in [15] was on a careful model refinement and on studies of
its predictions under certain traffic scenarios, such as local speed limits, density per-
turbations or speed reductions. In particular, we investigated (numerically) whether
traveling wave approximations would properly apply in suitable road intervals. The
results in [15] gave an affirmative answer to this query, and they also showed that
simplifications of the model in which the non-locality is removed by Taylor approxi-
mation to second order, while simpler and qualitatively satisfying, give significantly
different results from a quantitative point of view.

In [15] no effort was made to analytically or numerically solve (1.1); rather, so-
lutions of the full model of conservation type equations were checked to satisfy the
traveling wave version (essentially (1.1)) in appropriate subdomains of the road. A
study of (1.1) was deferred to the future, i.e., to this present work.

Functional-differential equations have been studied for centuries, but their the-
ory suffers, to some extent, from a very limited toolbox. Existence and uniqueness
questions can be much more subtle than for ordinary or partial differential equa-
tions. Analytic expansions of Cauchy-Kowalewskaya type are routinely applied, but
they provide typically only locally defined solutions. The monograph [3] provides the
framework and many examples for this approach. However, we state from the outset
that our efforts to apply this methodology to (1.1) were not satisfactory.

Our work begins, in Section 2, with a brief review of the derivations given in
the earlier references [14, 15]. This is also the place where crucial traffic parameters
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such as H (minimal safety distance), T' (look-ahead time) and 7 (individual reaction
time) are introduced. We then focus on the functional-differential equations arising
from a traveling wave ansatz in braking scenarios (similar considerations apply to
acceleration cases, but will here not be discussed; the derivation and analysis of these
scenarios requires model refinements and will be done elsewhere [25]). A preliminary
discussion is provided in Section 8.

The crucial difficulty in our traveling wave equations is the non-locality arising
from realistic driver behaviour. This non-locality can be removed via a Taylor expan-
sion and crude truncation, as already discussed in [14, 15]. The truncated ( “localized”)
equations admit beautiful traveling waves; however, as seen from the numerical ex-
periments in [15], the truncation will in general cause a significant error, because the
displacement H + Tu(z,t), “removed” via Taylor expansion, is in general not small,
and hence the truncation of the expansion will lead to errors. For that reason the
inclusion of the full non-locality is not just a matter of theoretical interest; rather, it
appears that it is essential for a detailed resolution of the velocity profiles in braking
waves.

We review the derivation of the macroscopic model in Section 2, and the traveling
wave ansatz and its localized version in Section 3.

In Section 4 we simplify the full (non-localized) traveling wave equation via affine
transformations. The end result is equation (1.1) for z = z(s) (where s is the variable
s=x+ Vt and z is a rescaled speed variable)

(2(s) + @)*2'(s) = B(2(s + 2(s)) — 2(5))-

There remain only two parameters «, 3, combinations of the original model parame-
ters. The main question of interest is for what values of & > 0,8 > 0 (1.1) will admit
non-trivial (i.e., non-constant) solutions. This is a question not just of some practical
interest for traffic flow studies. We hope to convince the reader that (1.1) is an object
of pure mathematical interest in itself, and we follow a variety of avenues to answer
the main question. While we have no complete solution, we will show evidence that
non-trivial and stable traveling waves solving (1.1) will exist or fail to exist, depending
on the values of the parameters. A remarkable practical aspect of our study is that
it provides quite realistic upper and lower bounds for the traveling wave speeds.

In Section 5 we present two examples related to (1.1): First, a simpler linear
functional-differential equation with a constant non-locality; for this example it is
easy to construct explicit solutions, and they allow an interpretation in terms of
elementary geometric operations. Secondly, we try a “Mott-Smith”- approximation
[4] in the sense that we insert an ansatz z(s) = A+ Btanh(—os) into the equation. It
turns out that the equation is not satisfied (no surprise there), but if we force equality
between the two sides by allowing 5 = S(s) to be dependent on s, then the resulting
functions f are asymptotically constant for large |s|; moreover, an exploration which
we defer until Appendix 1 shows that there are many parameter choices (A, B, o, «)
for which S(—o00) = B(400). The point of these examples is to provide evidence that
there actually are equations closely related to (1.1) with non-trivial solutions of the
desired class.

Section 6 returns to the real equation (1.1). In this section we describe a numer-
ical approximation procedure to compute (approximate) solutions. The method is
based on a dynamical systems idea and suggests rapid convergence for a select set of
parameters. It is not to be expected that the traveling wave solutions we are looking
for will exist for all (or even most) choices of parameters. In Appendix 2 we present
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a situation where the dynamical systems approach fails to converge. There may be
no solution of (1.1) for the parameters and boundary values used there.

In Section 7 we describe an operator approach to the solvability question. This,
the most abstract of our sections, is heavily motivated by geometric interpretation,
and we introduce and discuss two operators 77,75 acting on wave profiles such that
a solution z of (1.1) of the desired type will satisfy Thz = Tz, a fixed point equation.
We collect a number of intriguing properties of these operators, suggesting that a fixed
point argument is a viable approach to the existence question, but we need some a
priori assumptions to complete this argument. Whether these assumptions can be
verified remains an avenue for future work.

While our problem arose in traffic flows models, it is treated here as an abstract
mathematical challenge. Its practical relevance for traffic applications will depend
on the degree to which the underlying model is accepted as realistic, and, if this is
the case, whether high resolution of speed profiles can be exploited to improve traffic
control. We discuss these matters in Section 8.

There is extensive mathematical literature on traffic flow models (see [15] and the
references therein). Traffic models may roughly be classified as “microscopic” (keeping
track of each car in a deterministic way, see for example [6, 7, 12, 13, 22, 24]), of
stochastic type (there is much variation here; see [2, 28, 29]), or variations including
both features, such as cellular automata [12, 26, 27]. The model which leads to
Equation (1.1) is of macroscopic type, and earlier versions of macroscopic models and
their analysis may be found in [1, 8, 9, 10, 11, 17, 18, 23, 30]. Kinetic models are a
possible bridge between microscopic/ stochastic and macroscopic models, as discussed
in [20, 5, 21].

An inherent problem in all traffic modelling is the complexity of drivers’ reactions,
which poses a serious obstacle to accuracy at all levels, and is a persistent source
of criticism of all models. While validation of models from both a theoretical and
practical point of view remains elusive for this “human” factor, traffic models often
lead to intriguing mathematical challenges, like the functional-differential equation
which is the object of our study.

2. The macroscopic model. Reference [15] introduced the following kinetic
model for traffic on a single-lane (or homogenized over several lanes) highway:

(2.1) Ouf + 00 f + 0y(B(p,v —u™)f) =0

where f = f(x,v,t) is a kinetic car density such that fdxzdv will be the statistically
expected car number in the space and speed domain [z, x + dz] X [v,v + dv] , and p
and u are the macroscopic density and speed, related to f via

p:/ fdv, pu:/ vfdv.
0 0

The shorthand «*X in (2.1) stands for uX = w(x + H + Tv,t — 7). Here, H > 0
is a constant safety distance (think of two car lengths) which drivers keep at low
speeds, measured from car front to car front. T is a characteristic “look-ahead” time
used to keep an appropriate distance to the lead car, and 7 is the individual reaction
time. The term B(...) in (2.1) denotes the braking or acceleration force applied by a
reference driver at position z and moving with speed v at time ¢.

Equation (2.1) must be interpreted in a statistical sense (a comment which applies
to all kinetic models, but is often ignored for models involving microscopic particles
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such as atoms or electrons), and although we have incorporated a non-locality, the
model is likely to be overly simplistic from a practical point of view: we assume
that the forces depend only on the local density (p) and on the relative speed of
the reference driver with respect to the delay-observed average speed u* at position
x+ H +Tv. While this makes sense, reality certainly requires random fluctuations in
these forces, which are not included in (2.1). In addition, one could consider equations
like (2.1) for many different lanes and include lane-changing terms on the right-hand
sides. Some of this was done in [20] and subsequent papers [16]. Here, we aim at
structural problems emerging from the non-locality, and we therefore keep things
simple.
A reasonable ansatz for the braking or acceleration force is

— U—UX i U—’LLX
(2.2) B(,O,v—uX)Z{ ,i;gﬁ%gv,uxg ii vfuxig

and simple “reasonable” choices for g1, g2 are

gl(p) = C1p, 92(P) = CZ(pnzam - ,0)

(the maximal density is pmaz = 1/H, where H is the minimal safety distance between
the fronts of two vehicles; in standing traffic we may have real bumper-to-bumper
traffic, and then p,,q. = 1/L, where L is the average length of a car. One may guess
that H ~ 2L). It must be stated here that (2.2) is overly simplistic, but as this is not
a paper on the details of traffic modelling, we will not pursue the delicacies of driver
behaviour. Some of these matters are discussed in [15], and in [22].

How does one go from a kinetic model to a macroscopic model? One method,
used in [19], is to set up and study moment equations. Typically a closure procedure
is needed to obtain a finite (closed) set of equations, and this closure will involve
assumptions on the system at hand. There is a more direct (if rough) approach:
in moderate to high traffic densities (which in reality are the relevant densities) one
expects (based on observations) only small statistical fluctuations. Traffic is often
described as “synchronized”, meaning that all vehicles at time ¢ and near position x
will move at approximately the same speed. This motivates the ansatz f(x,v,t) =
plx,t)d(v — u(z,t)) in (2.1), and we have the following general result.

THEOREM 2.1. Assume that p = p(x,t) and u = u(x,t) are of class C1. Then
the distribution p(x,t)d(v — u(x,t)) is a weak solution of (2.1) if and only if p and u
satisfy the system of equations

(2:3) pt+ (pu)e =0
(2.4) uy + uu, — B(p,u —u™) = 0.

REMARK 1. The first equation is just the continuity equation, while the second
equation is the equation for the speed. In equation (2.4) the meaning of the superscript
()X has changed: Now, u™ (x,t) = u(x+H+Tu(x,t),t—7). Notice how the dependent
variable u here appears inside its own argument.

Proof. The proof we present is a more transparent version of the proof given in
[15]. The key idea is to exploit the different status of the variables z,¢ and v. For
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simplicity, assume that the (kinetic) density f vanishes rapidly as * — +oo, and as
v — 0 or v — oo (this assumption certainly holds for the ansatz p(x,t)d(v — u(z,t))
while u > 0.) Then f is a weak solution of the kinetic model if for every test function
¢(x,v,t), compactly supported in z,¢ and arbitrary but bounded in v, we have

(2.5) ///¢tf+¢$vf+¢vB(p,v—uX)fdmdvdtzO.

We substitute in (2.5) a test function of the form ¢(z,v,t) = @(z,t)h(v). Set (x,t) :=
¢z, u(x,t),t) = (x, t)h(u(z,1)), then

Ve = ¢r + dur= prh+ h'uy
’(/}:1: = (b:v + ¢vuw: <ch + @h/uz-

Rewrite ¢y = 1y — O,Puy and ¢, = 1, — Oyou, and substitute in (2.5), to find

///[wtf + v f — oh! (W) upf — oh! (V) ugvf + @h'(V)B(...)f] dv dx dt =0,

and for f = pd(v — u) this becomes

/ / (1o + Yupu] — / / wl;;((z))

provided we assume that h is bounded away from zero. We may then consider ¢ as
an arbitrary test function and observe that the last integral contains the extra degree
of freedom %/ It follows that both integrals must vanish identically, and our result
follows from this. O

plus + uu, — B(p,u —u™)] =0,

REMARK 2. It is a simple and natural idea to remove the nonlinearity in (2.4) by
using a (formal) Taylor expansion. In a braking scenario, if we take B(p,u — u™)
—g1(p)(u — u™) and expand to first order u — u* ~ —(H + Tu)u,, we obtain the
simpler equation

(2.6) us + uty, — g1(p)(H + Tu)u, = 0.

In combination with the continuity equation, (2.6) is a generalization of the Aw-Rascle
model [1], for which the speed transfer equation is usually written as

0
U + Uy pa—i% =0
Here,
dp g1(p)
v = golpu) = PP 4 T)

This generalizes the Aw-Rascle model inasmuch as p depends on both p and u, while
only a dependence on p was assumed in [1]. A similar equation applies to the ac-
celeration scenario, and in combination these two equations form a traffic model of
Hamilton-Jacobi type. One can easily consider models in which the second order terms
in the Taylor expansion is retained, as already done in [1/, 15]. The resulting models
can be considered as Hamilton-Jacobi type models with diffusive corrections.
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3. On Traveling Waves. The models introduced above readily offer themselves
to numerical analysis, in particular because the non-locality arises in a term with a
time delay (i.e., the velocity profile needed in the calculation will have been computed
in previous steps). Extra care, and modelling refinements, are needed in transition
domains between braking and acceleration; as already mentioned, we plan to address
these issues in future work [25].

Interesting quandaries arise in searching for traveling wave solutions, and this
is the main theme addressed here. A traveling wave solution will be of the form
p = p(s), u=u(s) where s = x+Vt and V is the speed of the traveling wave. We will
implicitly always assume V' > 0, so with s = x + V¢ waves will be moving backwards
in traffic. It is useful to note at this point that observations suggest realistic wave
speeds V' = 20 km/hr, or about 5.5 meters per second. We will pause intermittently
in our progress to compare results with this benchmark.

With the traveling wave ansatz the continuity equation becomes 4 [p(u+V)] = 0,
which gives

C()V
u+V’

p(s) =

with an integration constant ¢y > 0 (in [14] we set ¢y = pmaz, motivated by the
observation that in standing traffic (u = 0) we expect p = pmae. However, other
values of ¢ are perfectly consistent with the continuity equation).

Substituting this p into (2.4) and setting g1(p) = c1p, we find the equation for a
traveling braking wave,

(3.1) (u(s) + V)2 (s) = coc1 Vu(s + (H — 7V) + Tu(s)) — u(s)].

This is a functional-differential equation. Observe how u(s) shows up inside the argu-
ment of u itself. Equation (3.1) contains no fewer than 6 parameters (H, T, 7, cg, c1, V).
We will shortly see that all but two parameters can be eliminated via affine transfor-
mations. Equation (3.1) suggests to restrict our discussion to V' < H/7, so that for
any u(s) > 0 we will have Tu(s) + H — 7V > 0, a “causality” constraint.

3.1. Removing the nonlocality by Taylor expansion. This simple idea was
already followed in [14, 15], but we include it here for completeness. It also provides
further insight on the relationships between parameters. Here, it is implicitly assumed
that v has sufficiently many derivatives.

A Taylor expansion to second order gives

w(s+(H—7V)+Tu(s))—u(s) = (H—TV—l—Tu(s))u’(s)—i—%(H—TV—!—Tu(s))Qu”(s)—l—. o

After neglecting terms of third and higher order and substituting into (3.1) one finds

(u+ V)2 —coert V(H — 7V + Tu) ,
cocr V(H — 7V 4+ Tu)?

(3.2) W =2

This equation is easily studied in phase space u,u’, because it follows from (3.2) that

(3.3) ﬂ_z(u+V)2—coclV(H—TV+Tu)
' du coc1 V(H — 7V 4 Tu)?




Functional-Differential Equation in Traffic Flow 7

Every point (v > 0,4’ = 0) is a (trivial) solution of (3.2). If the condition

V< coc1 H
1 —+ coC1 T

is satisfied, the right-hand side of (3.3) is negative for sufficiently small (but non-
negative) u, and in this case there are lots of traveling wave solutions for (3.2), two
of which are depicted in Figure 1 (in phase space). The parameters taken for the
(MAPLE) computations which produced this picture are

H=10,T =2,7= .25V =5,coc; = 1.6

(if distances are measured in meters and times in seconds, then these quantities are
within realistic ranges; except cpcy, which is basically a guess).

0.2

0.1
«—du/du=0
1 u() u(-0)

-0.11

-0.2

-0.34

-0.4

-0.5-

F1G. 3.1. Localized braking waves

Here, uoo is the (small) speed of traffic in front of the traveling braking wave, and
U_ o 1s the speed in the far back, not yet reached by the wave. If, at u, ‘% < 0, then
we have a braking wave connecting u, t0 u_so, and u_o, is given via the condition

that
U—oo o))
—) du = 0.
/uoo (du) u

Notice that the constraint on V'

H
(3.4) Vv < St
1+ coeqm

is consistent with and in fact sharpens the earlier restriction that V < g
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A similar analysis applies to acceleration waves with the corresponding equation
for acceleration scenarios. They fill the upper half of the phase portrait depicted in
Figure 1. Examples for this (with 7 = 0) are given in [14].

4. The “Jam” equation. We return to the equation displaying the full non-
locality,

(4.1) (u(s) + V)2 (s) = cocr Vu(s + (H — 7V) + Tu(s)) — u(s)].

A simple and natural idea is to try and reduce the number of parameters by affine
transformations in both independent and dependent variables. It is straightforward
to do that; elementary calculations show that if we set

1
0= T(H —7V), z(s):=T(u(s)+9)

then z = z(s) satisfies the simpler equation

(4.2) (2(s) + )/ (s) = B(2(s + 2(5)) — 2(s))-
with
(4.3) a=T(V —3¢)and B = coc VT?.

This is the “jam” equation already given in (1.1). It contains only the two parameters
a, B and the (simpler) non-locality z(s + z(s)).

Our implicit assumption u > 0 translates into z > Té = H — 7V. If we add the
(somewhat arbitrary) assumption that o > 0 then it follows that § < V, which means
H < V(T +7). While this final condition on V is less motivated than the earlier ones,
it is instructive to write the sequence of constraints imposed so far:

CoClH H

<V<—20 <2
T+T 1+ coerm T

where the last estimate is obvious; note that the final upper bound depends only and
H and 7. In reality, one has (approximately) 7 &~ 1 sec, H ~ 8 m,T =~ 3 sec. Inserting
in the inequalities above one gets

H H
T+Tz2m/sec<V<8m/secz?

b

which translates into V's between 8 and 30 km/h — very much the observed range
(5.5 m/sec).

We are looking for a special class of solutions of (4.2), namely, braking waves. A
braking wave is a solution of (4.2) such that Vs 2'(s) < 0, and such that z(—oc0) =
a>b=z(co0) >3d > 0. Here, a,b are (shifted and rescaled) speeds at +oo. If a = b,
the constant a is a trivial solution of (4.2) and it is immediate that every constant
solves (4.2). We will implicitly assume that (4.2) is complemented with boundary
conditions at infinity such that a > b. Two remarks are in order.
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e Translation invariance: If z = z(s) is a solution of the jam equation, then so
is Ss,2(8) == 2z(s — sp).

e Consistency: While z(s) takes nonnegative values and is decreasing, we have
z(s+z(s)) — z(s) < 0, consistent with 2’(s) < 0. However, it is in general not
true that s — z(s + z(s)) will decrease if z’(s) < 0. See Section 7 for more
details.

The hardest question we face is whether non-trivial braking waves as solutions of
(4.2) actually exist. As the problem appears rather inaccessible to standard analytical
tools, we now provide some related illuminating examples, and numerical evidence.
We revisit the existence question in Section 7.

5. Related examples.

5.1. A linear example. Consider the much simpler linear example
2= B(2(s + 2z0) — 2(5)),

where we have assumed a constant shift zp > 0 and a constant factor (1) multiplying
z'. Clearly, every constant is a solution, but if we insert the ansatz z(s) = Ce®*, the
equation reduces to a = f(e** — 1). @ = 0 produces the already known constant
solutions, but if Bz < 1 there is a unique positive a providing another (exponential)
solution, and if Szy > 1 there is a unique negative a producing yet another solution.
See Figure 2.

“—Blexp(a*zo) - 1)
5 (B*zo>1) e

4+ 7
//
flo) 3] ~

—a
(o) a/ -
2 e Bexp(a*zo) - 1)
e (B*zo<1)

Fic. 5.1. A linear example

Furthermore, inserting the ansatz z(s) = ¢; — ¢os into the equation leads to
—co = fB(c1 — ca(s + 20) — ¢1 + cas) = —Bcazp.

This shows that there is another class of solutions if 8zyp = 1. Geometrically, this
means that for this particular choice of 5 and zy the effects of moving the line ¢; — cos
“down” (via the operation z — z+2'/f3) or “left” (via the operation z(-) — z(- + 20))
produce the same result.
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5.2. The tanh — (or “Mott-Smith”) approximation. One of the fundamen-
tal ideas of the “Mott-Smith” approximation (see, for example, [4] and the references
therein) in fluid dynamics is to fit a hyperbolic tangent profile to a shock wave; the
relevant dependent variables there are density, macroscopic flow speed, pressure and
temperature. It is tempting to do the same here, where the traveling wave ansatz has
already reduced the complexity to one dependent variable, z(s).

Remarkably, if we consider the function z(s) := A + Btanh(—os), (it is a little
sloppy to use the same same symbol z for this function, but we will do it anyway),
and use the identities

d
o tanh(s) = 1 — tanh?(s)

tanh(z) + tanh(y)
h =
tanh(z + ) 1 + tanh(z) tanh(y)

we find that this z satisfies an equation
(5.1) (2(5) + @)%/ (s) = B(5)(2(s + 2(5)) — 2(5)),
where §(s) =

—o(a+ A+ Btanh(—0s))?(1 + tanh(—os) tanh(—o(A + Btanh(—0s))))
tanh(—o(A + Btanh(—os))) ’

(5.2)

Equation (5.1) is a rather trivial statement, because the 8 = 3(s) is not constant, as
it was in (4.2). In fact, one could put any smooth function into the left- and right-
hand sides of (4.2) and force an identity by computing the corresponding S(s). The
point of the above calculation is that the 8 given in (5.2) is asymptotically constant
as s — too. It is possible to choose parameters such that 8(co0) = 8(—o0), and such
that S(s) deviates from this constant only a little bit, and only very locally. In Figure
5.2 we show an example for such a 8 = 3(s). The parameters chosen for this example
are 0 = 1, a = 0.03296, a = 0.16, and b = 0.009. Appendix 1 contains a brief
graphical exploration of the context, and it will be shown there how parameters (as
in the example) producing such functions 8(s) can be found.

6. Numerical experiments. It is not a straightforward task to approximate
solutions of the jam equation numerically. There are three fundamental problems:
First, the domain of interest is the entire real line. Any numerical procedure must
include a truncation at large |s|, a potential source of errors. Second, the full (non-
local) equation (4.2) includes the evaluation of the unknown z at s+z(s); the latter will
typically not fall onto a grid point, and we have to employ an interpolation process,
another source of errors. And finally, how to start a numerical approximation?

The approach we used and present is based on the idea of considering the traveling
wave as limit state of an “artificial” dynamical system (not to be confused with the
traffic model (2.4), which together with the continuity equation is the “real” dynamical
system). To this end, we introduce an artificial variable ¢ (¢ can be thought of as an
“artificial time”) and allow z = z(s,t). We require z to be a solution of

(z + @)

(6.1) 0z(s,t) + 0s2(8,t) + 2(s,t) = z(s + 2(s,1),1)
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0.20

FI1G. 5.2. An example: 5 = [(s)

Obviously, any steady solution of (6.1) will be a solution of (4.2). The former
equation allows solution procedures based on explicit discretizations (in ¢). The dis-
cretizations in s involve interpolation to address the evaluation of the last term in
(6.1). We complement (6.1) with boundary conditions z(—o0,t) = a, z(c0, ) = b.

As for the choice of an initial profile, we used the “Mott-Smith” approximants
from the previous section, i.e., we set

z(s,0) = A + Btanh(—os),

where A+ B = a, A— B = b. However, it is not clear from the outset how to choose the
three parameters A, B and o : Not all choices may be consistent with the existence
of a traveling wave profile. We use some of the profiles obtained from the localized
theory in Section 3.1 to estimate reasonable candidates for A, B and o. Here as there
we use parameter values H = 10, T'=2, V =5, 7 = .25,¢gc; = 1.6 Our definition
of 4 then gives § = =7V = 33 "and we recall that z(s) = T'(u(s) + 6).

From (4.3), the resulting « and § are then 1.25 and 32. We can easily compute
asymptotic values for z from asymptotic values for u and vice versa. For example, for
the lower curve in Figure 3.1 we see that u(—o0) &~ 29, u(co) ~ 0.4, u,,;, ~ —0.4.
From these estimates we compute a = T'(29+35/8) = 66.75,b ~ T'(0.4+35/8) = 9.55.
This gives a good guess for possible boundary values for z, and we easily find A = 38.15
and B = 28.6.

The same curve allows an initial estimate for o. If we take
z(s,0) = A+ Btanh(—os)

and wish to match the steepest negative slope of this z to the steepest deceleration
of u, we must set

—oB =Tu/

min’
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A 29.71 a 34.535
B 4.825 b 24.885
u(—o00) | 12.8925 u(00) 8.067
o 0.0051 “time” step | 0.04
TABLE 6.1

Data for a “weak” jam

A 31.3055 a 44.2119
B 12.9064 b 18.3991
u(—o00) | 17.73095 u(00) 4.82455
o 0.013061 || “time” step 0.04
TABLE 6.2

A stronger initial profile

or, for the data under consideration, o = 0.02797. This same procedure can be applied
to all the possible triples (u(c0), u(—o00), ul,;,) arising from the theory in Section 3.1.
Or, equivalently, one can compute localized traveling waves directly for the dependent
variable z(s); this is how the initial data in our first numerical experiment (the weak
jam: see Table 6.1) were constructed.

We show the results of three different numerical experiments: “weak”, intermedi-
ate and strong braking profiles. The relevant data are given in Tables 6.1 to 6.3. In
all runs we used o = 1.25, 8 = 32, At = 0.04, As = 8.5. The o given in each table is
computed as described above; if the limit state is stable, then the value of o can be
varied without problems.

The braking wave corresponding to Table 6.1 is not depicted in Figure 3.1; it is a
“weaker” wave in the sense that the speed difference is modest- the conversion gives
u(—00) &~ 12.9,u(+00) ~ 8.07 (if we consider meters per second this translates into
braking modestly, from 46 to 29 km per hour).

The step size (8.5) seems large but works well because of the small slope in our
units. We computed inside a domain (-15,000, + 2,000) in order to avoid boundary
errors to invade (eventually, this is unavoidable, as our sought after waves are not
constant but only converge to constants for large |s| - in the simulations, one has to
use a cutoff). The time step was 0.04. We used an adaptive upwind scheme with
excellent numerical stability. We are grateful for G. Russo for providing us with the
scheme.

Figure 6.1 shows both the initial profile (the hyperbolic tangent) and the profile
after 50,000 time steps (in red). We conducted a convergence test by inserting the
final data file into both sides of the equation and subtraction. The result (not shown)
was completely satisfactory. The experiment suggests that the solution of the jam
equation exists and is stable for the data under consideration.

We next repeated this experiment for a stronger wave. The relevant data are
given in Table 6.2.

For this stronger wave drivers have to brake from approximately 64 to 17.4 km
per hour- a significant drop. In our simulation it appeared as if the scheme would
converge, but letting the code run for a long time we made two observations: first,
the profile seems to keep its shape but continues to wander (and hence does not
really become stationary). See Figure 6.2, which shows the profile after 50,000 time
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341 w\ I J

33

32 Initial Curve i

Iteration 50,000

31F

29 -

28 -

27 -

26 -

. . . . \ T i
1.4 1.42 1.44 1.46 1.48 15 1.52 154 1.56 1.58 16
s x10*

Fic. 6.1. A numerical solution of the jam equation

steps. And second, after insertion into the jam equation we found that the equation
is not satisfied—the difference between the two sides of the jam equation keeps a
disturbingly stubborn maximal value, which does not diminish with ¢. See Figure 6.3;
the grid point 1,800 corresponds to s = 1,800 x 8.5 = 15, 300, so the error persists at
the right (lower) end of the dotted wave in Figure 6.2. This may be a sign that the
jam equation does not possess a solution of the desired kind for the chosen parameter
values. We revisit the issue in section 7.

T
40 A
Initial Curve
a5 Iteration 50,000
o
N
30+ -
25+ =
20+ =
Il Il 1 1 L L
1.4 1.42 1.44 1.46 1.54 1.56 1.58 1.6
x10*

F1G. 6.2. After 50,000 steps
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A 38.125 a 66.75
B 28.625 b 9.5
u(—00) 29 u(00) 0.4
o 0.013061 || “time” step | 0.04
TABLE 6.3

A wvery strong initial profile

0.8 -

06 -
Iteration 50,000
0.4 B

02r =

02+

0.4 o

(z(s)+aIpha)2*z'(s)-beta*(z(s+z(s))-z(s))
<
L

06| =

Il 1 Il 1] I 1 Il Il
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Grid Point

F1G. 6.3. The residual error

In a final experiment we used data for a very strong initial profile, as given in
Table 6.3. The data are adapted from the strongest localized wave we depict in Section
3.1. These correspond to drivers braking from 104.4 to 0.4 km per hour (practically
coming to a full stop from driving at the speed limit). The localized theory still
produced a viable traveling wave.

For the jam equation, the numerics suggest that there is no convergence to a
steady wave; instead, the profile wanders off towards oco. See Figure 6.4. We also
tested the profile by inserting it into the equation and found that a significant error
persists. This is not surprising.

7. An operator approach.

7.1. The operators T} and T,. We return to the equation (4.2) and present
some steps towards its analytical solution. A function z(s) is a solution of (4.2) exactly
if it satisfies

(7.1) T1z(s) = Taz(s)
where the operators 77 and T, are defined by

2(s) + a)?
Ty : 2(s) — %z'(s) + 2(s)
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F1G. 6.4. No convergence

and
Ty : z(s) = z(s + 2(9)).

Equation (7.1) is a fixed point equation, which we could rewrite as z = T} Ty
(if Ty can be inverted) or as z = Ty "Tyz (if Ty can be inverted). In this section we
present what we can say about the operators 77 and T5. We begin by defining a class

of functions W which is invariant under 75 and T; '

DEFINITION 7.1. Let 0 < b < a. By W' we denote all differentiable functions z
on R such that for alls 0<b< z(s) <a<oo, lims,_o2(s) =a, lims,2(s) =
b, and —1 < 2/(s) < 0. W1 depends on the choice of a,b, but as these are considered
fixed we will suppress the dependence in the notation.

LEMMA 7.2. If z € W' then Toz € W1 .

Proof. The limits and bounds on T»z(s) are obvious. For the derivative compute

L 2(5) = s+ 2(9) - (1 +2(9)

and observe that 1+ 2'(s) € (0,1).0

The 45 degree rule. There is a geometric way of visualizing T5. As depicted in
Figure 7.1, observe that to find h(s) := z(s + z(s)) first identify the point (s, z(s))
on the graph of z. To find the point s + z(s) on the real axis, follow the line through
(s,2(s)) with slope -1 (hence the “45 degree” rule) to its intercept with the s-axis
(alternatively, this is also the intercept of the circle through (s, 0) with radius z(s)).
Then find the value of z at this intercept- this is h(s).

REMARK 3. The 45 degree rule easily shows that if 2’'(s) < —1 on some interval,
then the assertion of the Lemma will no longer hold: In general, Toz will then not be
decreasing. See Figure 7.2 for this situation.
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The 45 Degree Rule

-10 -5 0 5 10

z(s) — — z(s + z(s)) |

Fic. 7.1. Geometric interpretation of T

Loss of Monotonicity Loss of Monotonicity

0.3
0.2

0.1

—r L T !

-4 -3 -2 -1 0 1 2 02 03 04 05 06 07 08 09 1.0

— 2s) — —2(s 2(s)) [—2(s) — —z(s + z(s))|

F1G. 7.2. Loss of monotonicity. Detail at right
Ty also fails to preserve a different kind of monotonicity: Assume that z1, zo are
both decreasing functions in Wj such that for all s
b < z9(s) < z1(s) < a.

It is then in general not true that for all s Thza(s) < T2z;1(s). A graphical exploration
using the 45 degree rule can be used to construct counterexamples. This observation
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shows that it would be difficult to solve (4.2) using monotonicity methods.

As T, moves functions in W; “to the left” and flattens them, 77 moves such
functions “down”. It is certainly plausible that 77 and T will have exactly the same
effect on some functions (which, if true, would assert the existence of solutions to our
problem).

While 77 moves z down it is not true that 77 maps W into itself. It is easy to
construct examples of functions z in Wi for which, say, T}z violates the lower bound
b. It turns out that a better way is to invert 77.

7.2. Inverting T7. The invertibility of 77 on the class W7 is given by the next
theorem. Assume that h is continuous, strictly decreasing, and that h(—o0) = a >
b = h(co) > 0. We also recall that o and 8 are strictly positive constants.

THEOREM 7.3. There is a unique function z = z(s) such that
o (z+ )% + Bz =ph
e z(—0)=a, z(c0)=0b
o Vs Z/(s) <O.

Observe that z = T, ' h. We remark that for the simpler linear case where 2’482 =
Bh a corresponding result holds, and it is easy to find an integral representation for
z:

z(s) = ﬂ/ooo e Ph(s — ) d.

The properties of z can be derived from this formula. The case at hand is more
difficult.

Proof. Uniqueness: from the equation it is clear that every solution with the
required properties will satisfy z > h (this follows from z = h — %(z + a)?2). Write
the equation as

d1 3 _
753 Z(8) + )" = —B(2(s) = h(s)).

Integration gives

1

50+ =@+ ) =5 [~ his) ds

The left-hand-side depends only on a and b. Therefore, if we had two solutions z;.zs,
it would follow that [(z1(s) — z2(s)) ds = 0. By continuity there has to be a so where
z1(80) = 22(s0), and this would imply z; = 25 by the uniqueness theorem for ODEs.

Existence is a little less trivial, as we cannot start integration at +oo. Instead,
we use an approximation procedure. Choose a sequence (S, )n=1,2,.. With s, — —o0,
and consider for each n solutions z;, zj, of the ODE with z;(s,) = h(sy), 2zn(sn) = a.
These solutions are well defined everywhere, but we only consider them for s > s,.
For s < s, we set z,(s) = a, z;(s) = h(s). This means that the approximants do
not satisfy the equation for s < s,. The functions z; and z; defined in this way are
continuous and differentiable for s > s, and they have the following properties.

a) forall s h(s) < z(s) < zn(s) < a, and for all s > s, h(s) < z(s) < zn(s) < a.
b) lims—s00 2p(s) = b = limg_s 00 21(s) = limg_ o0 A(s). Similarly, all these limits
as § — —o0 are q.
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c) for s > s, 2{(s) <0,2;,(s) <O0.

To prove these, note first that by uniqueness z; and z; cannot cross for s > s,.
Further, z; cannot cross h, for if we had z;(t) = h(t) for some ¢ > s,, it would follow
from the equation that z/(¢t) = 0 while A/(¢t) < 0, a contradiction. This shows a).
Part ¢) is immediate from a) and from the equation. As for b), we only need to show
the first equality. Clearly, limg_,~ 25 (s) exists. If this limit is, say, ¢ > b, we integrate
as before to find

(e1(9) + 00 — (a+ @) = =8 [ (aa(r) = i) dr

w|

and observe that the integral will diverge as s — 0o, a contradiction.
To complete the proof we send n — oo, so s, — —oo. We obtain two sequences
of functions, z’(s) and zj(s), such that for s > s,

h(s) < 20'(s) < 27 H(s) < 20T (s) < 20 (s) < a.

It follows that both sequences must converge uniformly to limits z; and zp, both
solutions of the equation with the same boundary conditions. By uniqueness, it
follows that z; = zp,. This completes the proof. O

By the previous results the operator 75 maps W into itself, and 77 !is defined
on Wi. But it may well be that if A € W; then Tflh ¢ W, : the slope may become
too steep. We next show that this will not happen if there are reasonable constraints
on the parameters.

LEMMA 7.4. Assume that B(a —b) < (a+b)%. Then, if h € Wy and z = T *h
we have z € Wy.

Proof. All we have to do is to show that |2’(s)| < 1. But from the equation for z
we have |2/|(z + «)? = B|z — h| (observe that for all s we have z(s) > h(s).) Solving
for |2'| we obtain

Blz=h) _ Bla=b) _,

1= (z4+a)? = (b+w? ~

This result is straightforward and uses only the simplest estimates. Notice that
the condition involves all four parameters. We can do better. Here is an alternative
condition, not involving the parameter a, giving the same result. We are grateful to
our colleague Rod Edwards for showing us this condition.

LEMMA 7.5. Suppose that 8 < 2(b+ «). Then z € W7.

Proof. We will assume that z ¢ W1 and show that then also h ¢ W;. To this end,
assume that there is a s; such that z’(s;) < —1. From the differential equation it is
clear that 2z exists, and by differentiation we find

h =z + %[2(2’)2(2 +a)+ 2" (z+ ).

We may further assume that s; is the location where 2’ assumes its minimum, and
hence z”(s1) = 0. Therefore
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W(s1) = 2(s1) |1+ %z'(sl)(z(sl) +a)

By using the assumption 2’(s;) < —1 twice in the above identity we obtain the
estimate

2 2
R (s1) > E(z(sl) +a)—1> B(b—l—a) —-1>0,
where the final estimate follows from the condition 8 < 2(b + «). Hence A/(s1) > 0,
contradicting h € Wy. 0O

REMARK 4. It is instructive to test whether the parameter values used in the
simulations in Section 6 satisfy these conditions. A quick check shows that the data
from Table 6.1 satisfy the conditions in both lemmas. The data from Table 6.2 violates
the condition in Lemma 7./ but satisifies the condition in Lemma 7.5, and the data
from Table 6.3 violate both conditions.

If we assume that the parameter constraints from either lemma are satisfied, then
clearly T = Tfng maps Wi into itself. Unfortunately, It does not seem to do so
contractively, so we cannot use the Banach fixed point theorem to assert existence
of a fixed point. The Schauder fixed point theorem is also not directly applicable;
the problem is that while W7 is a family of equicontinuous functions, it is not pre-
compact because the domain is the whole real line, so the Arzela-Ascoli theorem is
not applicable in direct form. Regrettably, while we know that an iteratively defined
sequence zg := h € Wi, z,41 = Tz, will stay in W7, we cannot assert that there will
be a convergent subsequence. This difficulty is related to the translation invariance
of (4.2).

It is useful to visualize how the sequence {z,} could fail to converge: There could
be a) progressive “flattening”, where the slopes of the z,, would converge to zero on
compact subsets, and the z, themselves may (or may not) approach a constant in
[b,a] on compact sets, while the boundary conditions are violated in the limit. Or,
b) the wave could wander away to plus or minus infinity, leaving again a constant
limit a or b but violating one of the boundary conditions in the limit. One needs
an additional compactness constraint to prevent this behaviour. A condition of the
following type suffices.

Assumption. Suppose that there is a nonempty subset Wo C W7 with the following
two characteristics.

a) T : Wy — W (invariance under T')
b) There are function hy, h,, both in Wy, such that for all z € W5 and all s € R

hi(s) < z(8) < hy(s).

The existence of such a W5 will certainly depend on the choice of parameters. If
there is such a set W5 then one can easily prove that W5 is compact with respect to
the topology of uniform convergence. Therefore, the Schauder fixed point theorem
applies on W5 to the operator T, and we have

THEOREM 7.6. If a Wo with the properties a) and b) exists, then T has a fized
point in Wa.
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This result is not satisfactory, as we have no good criteria for the existence of such
a Wy. Of course every fixed point itself is a possible element of such a set. Natural
candidates for h; and h, are suitably scaled and shifted hyperbolic tangents (see
Section 5), i.e., hi(s) = A+ Btanh(—o1(s+s1)) and hy(s) = A+ Btanh(—o2(s—s$1)),
but it is not clear under which conditions the set {z € Wy;h; < z < hy,} is invariant
under 1577 ! This is a challenge for the future; the numerical experiments from
Section 6 provide some guidance. For example, it seems reasonable to expect that a
W5 as described will exists for the first example discussed there.

8. Concluding Remarks and an Applied Perspective. We have shown how
the “jam” equation (1.1) arises from a kinetic traffic model in a formal high-density
limit (where traffic is locally synchronized) and via a travelling wave ansatz. Re-
moving the non-locality via Taylor approximation provides easily solvable ordinary
differential equations with convincing travelling wave profiles. Further, we investi-
gated functional-differential equations similar to the jam equation from a geometric
point of view, and we explored a hyperbolic-tangent approximation to the expected
wave profiles. Some numerical experiments were presented in Section 6. These experi-
ments suggest that non-trivial solutions of (4.2) will exist for reasonable choices of the
four parameters (a, 8, a,b) but not for all choices (for example, as seen in Figure 6.4,
our numerical procedure may fail to converge and produce instead a profile wander-
ing off to co. The functional-analytic discussion in Section 7 is consistent with these
observations: we were able to identify non-trivial solutions of (4.2) as fixed points of
suitable operators 77,75 and managed to find function sets invariant under Tfng.
This required constraints on the parameter set which are consistent with the results
in Section 6. For the final Theorem we needed an additional invariance assumption
to overcome the lack of compactness in our function sets. It remains an interesting
(and presumably hard) open problem to prove that this assumption really holds for
suitable parameters.

The applicability of our work is manifold: first, we obtained reasonable bounds
on the dimensions of possible wave speeds for traveling waves. Second, there is the
relevance to identify accurate speed profiles in braking waves, which may prove useful
for traffic guidance systems in congested domains (for example, optimal speed limits
to guarantee safety and maximize flux at the same time). Our models may also give
useful information on boundary conditions (u(infty), u(oc)) for which traveling waves
exist.

A similar theory can be developed for acceleration waves. The localized version
of the corresponding “unjam” equation was already described in [14].

For practical purposes transition regimes between braking and acceleration will
require additional modelling ingredients, because otherwise unrealistic behaviour may
result. This is work in progress. For example, the model introduced in this paper can
naturally be coupled with the more common models where drivers are at liberty to
brake or accelerate according to a fundamental diagram.

9. Appendix. Here it is explained which parameter choices («, a, b) will produce
Mott-Smith approximants for which f(—o0) = f(c0). Recall a = A+ B,b = A — B.
From the formula (5.2) for 8(s) we have

o(a+ a)?(1 + tanh(—ca))

Blmoo) == tanh(—oa)
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and

_o(b+ a)?(1 — tanh(—ob))

Bloo) = tanh(—ob)

so both will be equal if (after multiplying both by o)

51 — tanh (ca)
tanh (ca)

51+ tanh (ob)

(9.1) (ao + ao) tanh (o)

= (bo + ao)
So our question whether we can have a §(s) which approximates the same constant as
s — £o0o will be answered in the affirmative if we find solutions of (9.1) in acceptable
ranges.

PROPOSITION 9.1. Let o > 0. Then (9.1) possesses solutions a >b >0 if a > 0
is sufficiently small (relative to o).

Proof. First note that o scales all the variables («, a,b) in (9.1). We can therefore
just set ¢ = 1. Then (9.1) simplifies to

1 —tanha 1+ tanhbd
2 _ 2
(92) (a+a) tanha (b+a) tanh b
For a = 0 the right-hand side is ?(1 + tanhb)/tanhb, and by L’Hopital’s rule
limp,_,0 b%(1 + tanh b)/ tanh b = 0. Therefore, for all € > 0 there is an «(e) such that
for all o < a(e)

ggg(a +b)?(1 + tanhb)/ tanh b < ¢,

although

lim (o + b)?(1 + tanh b)/ tanh b = co.
b—0

The two sides of equation (9.2) are depicted in Figure 9.1, where x is written for a and
b respectively. For small enough « there is an interval (dependent on «) I := [a1, ag)
such that the left-hand side of (9.2) is increasing as a function of a on I, and

mei?(a + a)*(1 — tanha)/tanha > gnigl(b + a)?(1 + tanh b)/ tanh b.
a >
For each a € I there are then 2 values for b (one for a = ay) such that (9.2) holds.

See Figure 9.1.
0

The corresponding ((s) for a = 0.6, b = 0.01, 0 = 1 and o = 0.05 is plotted in
Figure 9.2
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F1G. 9.2. A possible 8(s) from Equation 9.2

Acknowledgments. This research was supported by a Discovery grant from the
Natural Sciences and Engineering Research Council of Canada. We are grateful to
Ashlin Richardson, who contributed with insight on Functional-Differential Equations
and computational experience, and to Rod Edwards, who contributed the proof of
Lemma 7.5. Giovanni Russo provided us with a good algorithm to solve the problem

numerically.



Functional-Differential Equation in Traffic Flow 23
REFERENCES

A. Aw AND M. RASCLE, Resurrection of “second order” models of traffic flow., SIAM J. Appl.
Math., 60 (2000), pp. 916-938.

E. BEN-NAIM, P. L. KRAPINSKY, S. REDNER, Kinetics of clustering in traffic flows, Physical
Rev. E 50(2), (1994) pp. 822-829.

S. S. Cheng, W. Li, Analytic Solutions of Functional Equations, World Scientific (2008)

C. CERCIGNANI, A. FREZZOTTI, P. GROSFILS, The structure of an infinitely strong shock wave,
Phys. Fluids 11, (1999), 2757-2765.

J. DOLBEAULT AND R. ILLNER, Entropy methods for kinetic models of traffic flow, Commun.
Math. Sci, 1 (2003), pp. 401-423.

I. Gasser, T. SEIDEL, G. SIRITO, AND B. WERNER, Bifurcation Analysis of a Class of Car
Following Traffic Models 1I: Variable Reaction Times and Agressive Drivers, Bulletin of
the Institute of Mathematics, Academica Sinica (New Series), 2 (2007), pp. 587-607.

I. GASSER, G. SIRITO, AND B. WERNER, Bifurcation analysis of a class of ‘car following’ traffic
models., Physica D, 197 (2004), pp. 222-241.

J. GREENBERG, Eztensions and amplifications of a traffic model of Aw and Rascle., STAM J.
Appl. Math., 62 (2001), pp. 729-745.

, Congestion reduz., SIAM J. Appl. Math., 64 (2004), pp. 1175-1185.

———, Traffic congestion — an instability in a hyperbolic system, Bulletin of the Institute of
Mathematics, Academica Sinica (New Series), 2 (2007), pp. 123-138.

J. GREENBERG, A. KLAR, AND M. RASCLE, Congestion on multilane highways., SIAM J. Appl.
Math., 63 (2003), pp. 818-833.

D. HELBING, Traffic dynamics. New physical concepts of modelling. (Verkehrsdynamik. Neue
physikalische Modellierungskonzepte.), Berlin: Springer. xii, 308 p. DM 128.00; 6S 934.40;
sFr 113.00 , 1997.

D. HELBING, A. HENNECKE, V. SHVETSOV, AND M. TREIBER, Micro- and macro-simulation of
freeway traffic., Math. Comput. Modelling, 35 (2002), pp. 517-547.

M. HEeRrTY, R. ILLNER,On stop-and-go waves in dense traffic., Kinetic and Related Models
1(3)(2008), pp. 437-452.

M. Herty, R. Illner, Analytical and numerical investigations of refined macroscopic traffic flow
models, Kinetic and Related Models 2(3) (2010), pp. 311-334.

M. HErTY, R. ILLNER, A. KLAR, AND V. PANFEROV, Qualitative properties of solutions to
systems of Fokker-Planck equations for multilane traffic flow., Transp. Theory Stat. Phys.,
35 (2006), pp. 31-54.

M. HErTY AND A. KLAR, Modelling, simulation and optimization of traffic flow networks,
SIAM J. Sci. Comp., 25 (2003), pp. 1066-1087.

M. HERTY AND M. RASCLE, Coupling conditions for a class of second-order models for traffic
flow. , SIAM J. Math. Anal., 38 (2006), pp. 595-616.

R. ILLNER, C. KIRCHNER, AND R. PINNAU, A derivation of the Aw—Rascle traffic models from
fokker-planck type kinetic models, Quarterly Appl. Math., 67(1) (2009), pp. 39-45

R. ILLNER, A. KLAR, AND T. MATERNE, Vlasov-Fokker-Planck models for multilane traffic
flow., Commun. Math. Sci., 1 (2003), pp. 1-12.

A. KLAR, R .WEGENER, A hierarchy of models for multilane vehicular traffic. I. Modeling.,
SIAM J. Appl. Math., Vol. 3 (1999), pp. 983-1001

B. KERNER, The Physics of traffic, Springer, Berlin, 2004.

J. P. LEBACQUE, Les modéles macroscopiques de trafic, Annales des Ponts 67, 3rd trim, (1993),
pp 28-45.

P. I. RICHARDS, Shock waves on the highway, Oper. Res., 4 (1956), pp. 42-51.

A. RICHARDSON, M.Sc. Thests, University of Victoria (2011), in preparation.

L. SANTEN, A. SCHADSCHNEIDER, M. SCHRECKENBERG, Towards a realistic microscopic de-
scription of highway traffic, J. Phys A, Vol. 33, (2000), pp. 477-485

S. MARINOSSON, R. CHROBOK, A. POTTMEIER, J. WAHLE, M. SCHRECKENBERG, Simulation
framework for the autobahn traffic in North Rhine- Westphalia, Cellular automata 315—
324, Lecture Notes in Comput. Sci., 2493, Springer, Berlin (2002)

T. ALPEROVICH, A. SOPASAKIS, Stochastic description of traffic flow, J. Stat. Phys., Vol. 133
(2008), pp. 1083-1105

A. Sopasakis, M.A. KATSOULAKIS, Stochastic modeling and simulation of traffic flow: asym-
metric single exclusion process with Arrhenius look-ahead dynamics, STAM J. Appl. Math.,
Vol. 66 (2006), pp. 921-944.

M. TREIBER AND D. HELBING, Macroscopic stmulation of widely scattered synchronized traffic
states., J. Phys. A, Math. Gen., (1999).




24 R. Illner and G. McGregor

[31] H. M. ZHANG, A non—equilibrium traffic model devoid of gas-like behavior, Tans. Res. B, Vol.
36 (2002), pp. 275-290

Received xxxx 20xx; revised xxxx 20xx.



