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ABSTRACT. A 2022 result of Karpenko establishes a conjecture of Hoffmann-Totaro on
the possible values of the first higher isotropy index of an arbitrary anisotropic quadratic
form of given dimension over an arbitrary field. For nondegenerate forms, this essentially
goes back to a 2003 article of the same author on quadratic forms over fields of char-
acteristic not 2. To handle the more involved case of degenerate forms in characteristic
2, Karpenko showed that certain aspects of the algebraic-geometric approach to nonde-
generate quadratic forms developed by Karpenko, Merkurjev, Rost, Vishik and others
can be adapted to a study of rational cycles modulo 2 on powers of a given generically
smooth quadric. In this paper, we extend this to a broader study of rational cycles mod-
ulo 2 on arbitrary products of generically smooth quadrics in characteristic 2. A basic
objective is to have tools available to study correspondences between general quadrics,
in particular, between smooth and non-smooth quadrics. Applications of the theory to
the study of degenerate quadratic forms in characteristic 2 are provided, and a number
of open problems on forms of this type are also formulated and discussed.

1. INTRODUCTION

Let F be a field with algebraic closure F, ¢ an anisotropic quadratic form of dimension
d+ 2 over F, and X the d-dimensional projective F-quadric with equation ¢ = 0. The
latter is smooth precisely when ¢ is nondegenerate in the sense of [3, §7.A]. In this case, the
motive of X in the category of Chow motives over F' with Fa-coefficients decomposes in an
essentially unique way as a finite direct sum of indecomposable objects. When F' = F, this
of course depends only on d. More specifically, M (X) decomposes here as a direct sum of
prescribed Tate motives indexed by integers in the interval [0, d]. In general, the complete
decomposition of M(X) yields a partition of the same set of Tate motives via scalar
extension to . We call this the motivic decomposition type of p, and denote it MDT(@)D
This invariant has played a key role in some of the major advances on nondegenerate
quadratic forms achieved since the late 90s, notably in work of Karpenko, Merkurjev and
Vishik. As expounded in [3], its study forms part of a well-developed algebraic-geometric
approach to nondegenerate quadratic forms based on the investigation of algebraic cycles
on products of smooth quadrics and quadratic Grassmannians.

An important early achievement of this algebraic-geometric approach was Karpenko’s
theorem on the possible values of the first higher isotropy index

i1(¢) := min{ip(vr) | L an extension of F'}

for nondegenerate ¢ ([9]). Like many articles on the topic appearing at that time, [9]
limited its considerations to the case where the characteristic of the base field is not 2,
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owing to an essential use of the cohomological-type Steenrod operations for mod-2 Chow
groups of smooth varieties constructed by Brosnan in [I]. With the recent construction
of the analogous operations over fields of characteristic 2 by Primozic ([I1]), many of the
characteristic restrictions in the existing literature on the algebraic-geometric approach to
nondegenerate quadratic forms can now be relaxed.

As far as the general scope of these ideas is concerned, however, interesting questions
remain regarding fields of characteristic 2. Indeed, while anisotropic quadratic forms over
fields of characteristic not 2 are necessarily nondegenerate, the study of nondegenerate
forms in characteristic 2 is only part of a broader theory of quadratic forms within which
standard algebraic-geometric tools are less directly applicable. For instance, one encoun-
ters here the extreme class of quasilinear quadratic forms, whose associated quadrics have
no smooth points at all. The first real attempts to explore this broader picture came in
the 00s with a series of works by Hoffmann, Laghribi, Totaro and others, where some
well-known results of inherently algebraic-geometric nature on nondegenerate forms were
shown to admit extensions to the degenerate case. This suggested that certain aspects of
the algebraic-geometric perspective may be adaptable to the study of degenerate forms,
despite the lack of a well-developed intersection theory for non-smooth varieties.

The first steps in this direction were recently taken in [I0], where Karpenko extended
his result on the i; invariant to the case of degenerate but nonquasilinear quadratic forms
in characteristic 2E| The basic point is the following: Suppose that char(F) = 2, and let
U be the smooth locus of X. If ¢ is not quasilinear, then U is nonempty, and the scalar
extension homomorphism CH(X")/2 — CH(X{;)/2 factors canonically through CH(U")/2
for any positive integer r. By passing through the smooth variety U”, one can then apply
some of the standard tools of intersection theory to the study of the image of the scalar
extension map. As is well known in the nondegenerate case, getting a handle on this image
is already sufficient for interesting applications to discrete invariants of quadratic forms.

While [I0] did not go beyond its intended application to the study of iy, it was clear that
the arguments found there could be extended to develop a theory of “rational cycles modulo
2” for arbitrary products of generically smooth anisotropic quadrics in characteristic 2
along the lines of that developed for smooth quadrics in [3] and [16]. The purpose of the
present article is to make some of this explicit in order to have tools available for handling
certain algebraic-geometric problems for degenerate quadratic forms in characteristic 2.
Of particular interest here are conjectures of the first author on the possible splitting
behaviour of forms under scalar extension to function fields of quadrics ([13, Conj. 1.1]
and its refinement discussed in [I4, §1]). These are expected to be valid for all forms,
nondegenerate or otherwise, and the tools discussed here are directly applicable to the
study of the nonquasilinear caseﬂ This will be considered in a separate text.

Overview. After a preliminary section on quadratic forms and their associated quadrics,
sections and [6] of the present text extend the discussion of [I0] to a wider study of
arbitrary products of generically smooth anisotropic quadrics in characteristic 2. In short,
if Y is such a product, then minor modifications of the arguments in [10] show that

Ch(Y) := Im(CH(Y)/2 — CH(Y#)/2)
inherits from the smooth locus of Y the structure of an Fs-algebra and an action of

cohomological-type Steenrod operations. Given three such products Y7, Ys, Y3, one may

2The statement is also known to be valid for quasilinear forms ([12]), but this requires different methods.
3The quasilinear case has been fully resolved in [I4] using different methods.
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then define a composition law Ch(Y; x Y3) ®p, Ch(Y3 x Y3) — Ch(Y; x Y3) that serves as
a substitute for the standard composition of Chow correspondences for smooth varieties.

After presenting the basic tools, we introduce in §7] the obvious extension of the motivic
decomposition type invariant to degenerate but nonquasilinear anisotropic forms in char-
acteristic 2. In the interest of consistency, we continue to use the notation MDT, though
we do not introduce any formal categorical framework for the study of this invariant.
With the intersection-theoretic tools in place, some of the basic results on the MDT for
nondegenerate forms can be immediately extended to the degenerate case.

In §8] we establish one of the main objectives of the work, namely a variant of a theorem
of Vishik concerning stable birational equivalences of quadratic Grassmannians. Vishik’s
result, which in the literature is limited to the characteristic-not-2 setting, establishes
motivic decompositions of smooth quadrics arising from such equivalences. Our Theorem
[B-3]is a discrete variant of this valid for all nonquasilinear anisotropic forms in characteristic
2 (for nondegenerate forms, it yields the stronger motivic statement of Vishik’s result
by the discussion of [3, Ch. XVII]). A key aspect of this result is that it permits, in
certain situations, to relate the MDT invariants of nondegenerate and degenerate forms.
For example, we can derive degenerate variants of the well-known results of Rost on the
motivic structure of nondegenerate Pfister neighbours and excellent forms (see . More
significantly, the results of §8 can be used to recast certain problems on degenerate forms
as problems lying within the nondegenerate framework. For instance, in we reduce
the essential part of a conjecture of Hoffmann-Laghribi on the classification of degenerate
Pfister neighbours to a well-known conjecture of Vishik on binary direct summands in
the motives of smooth quadrics (see Proposition . As part of this discussion, we also
provide some more direct evidence for the Hoffmann-Laghribi conjecture (Theorem ,
and in fact reduce it to another important open problem in the degenerate setting, namely
the classification of forms of nondefective height 1 (Corollary. In we also consider
the problem of determining the extent to which Karpenko’s theorem on the possible values
of the i; invariant remains valid if the dimension of the quasilinear part of the form is taken
into account. We raise here a general question (Question for which we conjecture a
positive answer when the dimension of the quasilinear part is sufficiently small (Conjecture
. Using the results of §8 and known results on nondegenerate quadratic forms, we
provide some evidence for this conjecture (see Theorem in particular).

Finally, while the proofs of some important results on nondegenerate forms (such as
Karpenko’s theorem on i) can be directly adapted to the degenerate setting, there are
others lying at a deeper level for which things are more involved. The primary issue here
is the fact that the action of the cohomological-type Steenrod operations on the groups
Ch(Y) is not intrinsically defined over F' outside of the nondegenerate setting. There, the
descent of the action has been used to establish a major result on the MDT invariant,
namely Vishik’s theorem on the existence of so-called excellent connections ([17]). In
we conjecture that the obvious variant of this for degenerate but nonquasilinear anisotropic
forms in characteristic 2 is valid (Conjecture , and discuss some implications of
this claim. While proving the statement requires further development of the algebraic-
geometric machinery, we at least verify its validity in dimension < 9 (Lemma .

Terminology and Notation. Throughout this text, a scheme is a separated scheme of
finite type over a field, and a variety is an integral scheme. If X is a scheme, then we shall
write dx for the dimension of X. The letters CH shall be used to denote integral Chow
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groups, and Ch to denote Chow groups modulo 2. We shall essentially only work with the
latter groups. Basic facts in Chow theory (see, e.g., [3, Pt. 2]) shall be used freely.

2. PRELIMINARIES ON QUADRATIC FORMS AND (QUADRICS

For the remainder of the paper, we fix a field F' of characteristic 2. In this section, we
present some preliminary material on quadratic forms and their associated quadrics. For
all additional background information, the reader is referred to [3].

2.A. Symmetric Bilinear Forms. By a symmetric bilinear form over F, we mean a pair
(V,b) consisting of a finite-dimensional F-vector space V and a nondegenerate symmetric
F-bilinear form ¢: VXV — F. In practice, we supress V from our notation and simply talk
about the form b. If a1,...,a, € F*, then we write (a1, ...,a,), for form F" x F* — F
that sends ((x1,...,2n), (y1,-..,Un)) to Y i a;z;y;. We also write (a1, ..., an), for the
n-fold bilinear Pfister form (1,a1), ® - -- ® (1, ay),. Any such form b is round, in the sense
that b ~ b(v,v)b for all vectors v with b(v,v) # 0 ([3 Cor. 6.2]).

2.B. Quadratic Forms. By a quadratic form over F, we mean a pair (V, ) consisting
of a finite-dimensional F-vector space V and a quadratic form ¢: V — F. In practice, we
supress V from our notation and simply talk about the form ¢. In particular, we shall
write dim ¢ for the dimension of V' and refer to it as the dimension of ¢. If the need arises
to consider the underlying space, we shall denote it V,,. Given a,b € F', we write [a, b] for
the form F? — F that sends (x,%) to ax® + xy + by?. Given ay,...,a, € F, we write
(ai,...,an) for the form F™ — F that sends (z1,...,2,) to Yo a;z?. Quadratic forms
of this type are said to be quasilinear. If ¢ is a quadratic form over F', then there is, up
to isometry, a unique quadratic form ql(y) over F' with the following properties:

(i) al(e) is quasilinear;

(i) ¢ >~ (L], [as, bi]) L dl(y) for some nonnegative integer r and elements a;, b; € F.
In (ii), the form L7 _, [a;, b;] is not uniquely determined by ¢ in general, but the integer
ris. If dimql(¢) = s, then dimp = 2r + s, and we say that ¢ has type (r,s). If W
is a finite-dimensional F-vector space, then we write H(W) for the form W & WV — F
that sends (w, f) to f(w). Quadratic forms isometric to one of this type are said to be
hyperbolic. If dimW = d, then H(W') ~ d - H, where H := H(F') ~ [0, 0] is the hyperbolic
plane. Witt decomposition says that if ¢ is a quadratic form over F', then there exists
an anisotropic quadratic form ., over F' and nonnegative integers iy (¢), iq(¢) such
that ¢ ~ wan L iw(p) - H L ig(p) - (0). The form ¢,, is unique up to isometry and
is called the anisotropic part of ¢. The integers iy () and iq(p) are also unique, and
called the Witt index of p and defect index of ¢, respectively. The isotropy index of
¢, denoted ip(p), is defined as the sum of iy (¢) and ig(p). Alternatively, ip(p) is the
maximal dimension of a totally isotropic subspace of V,,. Note that i4(y) coincides with
the isotropy index of ql(y). If this integer is non-zero (i.e., if ql(¢) is isotropic), then we
say that ¢ is defective. If ig(p) = 0 and ql(¢) has dimension at most 1, then we shall say
that ¢ is nondegenerate. Thus, a nondegenerate quadratic form over F' is one isometric to
A7 [as, b or (L7_; [as,b;]) L (c) for some nonnegative integer r and elements a;, b; € F,
¢ € F*. In the even-dimensional case, the term nonsingular is also sometimes used to
indicate nondegeneracy. If ¥ is another quadratic form over F', then we say that ¢ and v
are Witt equivalent, and write @ ~ 1, if pan >~ Van. Witt equivalence has the properties
of an equivalence relation, and nondegenerate quadratic forms of even dimension are Witt
equivalent if and only if they represent the same element of the quadratic Witt group
W, (F'). For nondefective forms whose quasilinear parts have equal dimension, we have:
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Lemma 2.1. Let ¢ and v be nondefective quadratic forms over F of types (r,s) and (', s)
respectively. Then the following are equivalent:

(1) ¢~

(2) ¢ LY~ dl(p);

(3) io(p L) =1 +1"+5;

(4) iw(p L) =7r+71" and dl(p) ~ ql(¥).

Proof. Note that if ¢ is any quadratic form over F', then the following hold:

() o L dl(o) ~ o
(ii) o L o ~ ql(o).

Indeed, for the first point, it suffices to show that ql(p) L ql(¢) ~ ql(¢). But if V' denotes
the underlying vector space of ql(y), then the automorphism of V' @& V mapping each pair
(v,w) to (v+ w,w) gives an isometry from ql(yp) L ql(p) onto ql(y) L dim(V)(0). As for
the second point, the first point reduces us to the case where ¢ is nondegenerate of even
dimension. But in this case, o L ¢ is a nondegenerate form that evidently admits a totally
isotropic subspace of dimension equal to half the dimension of its underlying subspace,
and is hence hyperbolic. We now prove the desired equivalences:

(1) = (2): We may assume that ¢ and 1 are anisotropic, and hence that ¢ ~ 1. The
claim then follows from statement (ii) above.

(2) = (3): Since ql(yp) is anisotropic, this is clear.

(3) = (4): Note that ¢ L v has type (r + 17,2s) and quasilinear part ql(yp) L ql().
If ig(¢ L 1) were greater than s, then ql(p) would be isotropic (being a codimension-s
subform of ql(¢) L ql(¢)). Since this is not the case, (3) then implies that iy (¢ L ) =
r 41" and ig(p L ¢) = s. Let V4 and V4 be the underlying vector spaces of ql(y) and
ql(v)), respectively. Since iq(¢ L 1) = s every subform of ql(¢) L ql(¢) of codimension
< s is isotropic. In particular, if v € Vi, then there exists a vector f(v) € V; such that
e(v) = ¥(f(v)). If f(v) were not unique, then ql(¢)) would be isotropic, contrary to our
hypothesis. Thus, f(v) is unique, and the quasilinearity of ql(¢) and ql(¢)) then implies
that v — f(v) defines an isometry from the former onto the latter. Thus, (4) holds.

(4) = (1): Since ¢ L 9 has type (r +1’,2s) and Witt index r + 1/, we have ¢ L ¢ ~
al(e L ) ~dl(ep) L ql(¢p). Since ql(p) ~ ql(v), statements (i) and (ii) from the beginning
of the proof then gives that

o~oLdl(e) Lal(y) ~e Lo Ly ~dql(p) L ~dal(y) L ~,
as desired. O

If b and ¢ are symmetric bilinear and quadratic forms over F', respectively, then we
may consider the tensor product quadratic form b ® ¢ as defined on [3, P. 51]. If ¢
is nondegenerate, then the same is true of b ® , and the construction then equips the
quadratic Witt group W, (F) with the structure of a W (F')-module, where W (F) is the
Witt ring of symmetric bilinear forms over F. Finally, if K is a field extension of F,
then we shall write g for the quadratic form over K induced by ¢. Note that we have
ql(pk) ~ ql(¢)x. We shall repeatedly use the following basic facts:

e Anisotropic quadratic forms remain anisotropic under purely transcendental ex-
tensions ([3, Lem. 7.15]) and finite extensions of odd degree (Springer’s theorem,
[3, Cor. 18.5]);

e Anisotropic quasilinear quadratic forms remain anisotropic under separable exten-
sions ([5, Prop. 5.3]).
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2.C. Subforms and Domination. Let 1) be a quadratic form of type (r,s) over F. If ¢
is isometric to an orthogonal summand of a quadratic form ¢ over F', then we shall say that
¥ is a subform of ¢, and write ¥ C . More generally, if ¢ is isometric to the restriction
of ¢ onto a subspace of V,,, then we shall say that 1 is dominated by ¢, and write ¢ < .
If  is nondegenerate of even dimension, then it is shown in [6, §3] that 1) < ¢ if and only
if there exist quadratic forms v,., 7,0 over F', and elements ¢y, d,...,cs,ds € F such that

e . and 7 are nondegenerate and of even dimension;

o >, L (c1,...,cs) (in particular, ql(y) ~ (c1, ..., ¢cs));

e o~ L7 1er,dy] L. L [cs,dg]
While the individual forms appearing here are not uniquely determined, one readily ob-
serves that the form ¢ =7 L (c1,...,¢c5) = 7 L ql(¥) satisfies ¢g, ~ 1) L ¢, and hence
only depends on the pair (1, ). We call it the complementary form of 1 in . Note that
dime — dim¢ = dim¢g > s, and that (wfo)c ~ 1). The first inequality implies in partic-
ular that dime > 2(r 4+ s). If equality holds here, then we say that ¢ is a nonsingular
completion of 1. In this case, we have ¥¢ ~ ql(1)).

2.D. Projective Quadrics. If ¢ is a quadratic form over F', then we shall write X, for
the quadric hypersurface in P(V,,) defined by the vanishing of ¢ (when dim¢g < 1, this
means that X, = (). By (the proof of) [3, Prop. 22.1], the singular (i.e., nonsmooth)
locus of X, is the closed subscheme defined by the vanishing of the quasilinear part gl(y).
In particular, X, is smooth precisely when ¢ is nondegenerate, and generically smooth
(i.e., has nonempty smooth locus) precisely when ¢ is nonquasilinear. We shall say that
X, is isotropic (resp. anisotropic, nondefective, quasilinear) if ¢ is.

2.E. Function Fields of Quadrics, the Knebusch Splitting Tower and the Izh-
boldin Dimension. Let ¢ be a quadratic form over F. If the quadric X, is nonempty
and integral, then we write F(y) for its function field. Otherwise, we set F'(¢) := F. It
is easy to see that X, is nonempty and integral if and only if igp(¢) < dimp — 2, so the
second case is exceptional. As X, has an F'(p)-point, the form ¢p,) is isotropic.

Lemma 2.2. Let ¢ be a nonzero quadratic form of dimension > 2 over F' such that
io(p) < dimp — 2 (so that X, is nonempty and integral). Then:

(1) F(p)/F is separable if and only if ¢ is nonquasilinear;
(2) F(p)/F is purely transcendental if and only if iy (¢) > 0.

Proof. (1) The function field of an F-variety X is a separable extension of F' precisely
when X is generically smooth, and the quadric X, is generically smooth precisely when
¢ is not quasilinear (§2.D)).

(2) Suppose first that F'(p)/F is purely transcendental. Since ¢ () is isotropic, ¢ must
then be isotropic. If iyy(¢) = 0, we then have that ¢ ~ @,y L i-(0) for some ¢ > 1, and
so X, is a cone over X, . In particular, F(@an) is F-isomorphic to a subfield of F'(¢).
Since F(p)/F is purely transcendental, ¢,, must then remain anisotropic over F'(@ap).
But implies that dime,, < 1, contradicting the integrality of X,. We must therefore
have that iy (¢) > 0 in this case. Conversely, if iy (¢) > 0, then X, is isomorphic to a
projective hypersurface of equation zy = p(z1,...,2,) for some homogeneous quadratic
polynomial p(z1,...,2,) € F[z1,..., 2. Thelocus where z # 0 then constitutes a rational
open subvariety of X, and so F(¢)/F is purely transcendental. O

Following a classical construction of Knebusch, we associate to ¢ a finite sequence
of pairs (Fj, ;) consisting of an extension F; of F' and an anisotropic quadratic form
@i over F; as follows: Given a pair (F;_1,p;—1) with dimp;_1 > 2, we define F; to be
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the field Fi_1(pi—1) and ¢; to be the form (¢F,)an. The process is initiated by setting
(Fo,¢0) := (F, pan), and terminates at the first integer h for which dim ¢y < 1. The tower
F=FyCF, C-.-C Fpis called the Knebusch splitting tower of ¢, the form ¢; is called
the ith anisotropic kernel form of ¢, and the integer h is called the Knebusch height of .
For all 0 <t < h, we set ji(¢) :=1io(pr,). When t > 1, we also set i;(p) = i(©) — jr—1(¢).
The set {j:(p) | 0 <t < h} is called the Knebusch splitting pattern of ¢. In the sequel, we
will be interested in the case where ¢ is nondefective, and here will shall only deal with a
certain piece of the Knebusch splitting tower:

Lemma 2.3. Suppose, in the above situation, that ¢ is nondefective. If ¢ has type (r,s),
then there exists a unique integer 0 < hng < h for which j, (@) = r. Moreover, we have

{e(e) |0 <t <hy} = {iw(ex)|K/F a separable extension}
= {io(pkr) | K/F an extension with ig(¢x) = 0}.

Proof. Let hnq be the smallest integer for which ¢y, , is quasilinear. The Witt index of ¢
over Fp, . is then r, and so jj ,(¢) > r. To prove that equality holds, we have to show
that ¢ remains nondefective over Fj_,. But the extension Fj, , is separable by repeated
application of Lemma (1), and so the claim follows from the fact that anisotropic
quasilinear quadratic forms remain anisotropic under separable extensions. This proves
the first statement. Moreover, the preceding discussion also gives the inclusions

{r(p) |0<r<hna} < {iw(pk)| K/F a separable extension}
C {io(¢k) | K/F an extension with ig(¢x) = 0},

so to prove the second statement, we just have to show that if K/F is a field extension
with i4(¢) = 0, then ig(px) = ji(p) for some 0 < ¢t < hyg. Since ig(p) = 0, we have
io(pr) < 7, and so there exists a smallest integer 0 < ¢ < hy,q such that ig(¢xr) > ji(p).
We claim that equality holds here. Since anisotropic quadratic forms remain anisotropic
under purely transcendental extensions, it suffices to show that the compositum K - F} is a
purely transcendental extension of K. But since iy (px) = io(vr) = ji(p), K C K- F; C
-+ C K - F; is a tower of function fields of integral quadrics defined by quadratic forms
with positive Witt index, and the claim then holds by Lemma (2). O

In the situation of the lemma, the integer h,q will be called the nondefective height of
¢. In turn, the truncated tower F' = Fy C Iy C --- C F}, | will be called the nondefective
splitting tower of ¢, and the set {j:(¢) | 0 <t < hyq} the nondefective splitting pattern of
¢. If we need to emphasize the dependence on ¢, we will write hpq(¢) instead of hyg.

Remarks 2.4. In the above situation, the full splitting pattern of ¢ is defined as the set
consisting of the isotropy indices attained by ¢ over all possible extensions of F'. When ¢ is
nondegenerate, Lemma shows that this coincides with the Knebusch splitting pattern
of ¢ (which is the same thing as nondefective splitting pattern of ¢ in this case). In general,
however, the Knebusch splitting pattern will only constitute a subset of the full splitting
pattern. For example, one readily checks that if X, Y and Z are indeterminates, then
the quasilinear quadratic form (1, X,Y, XY, Z) over F(X,Y,Z) has Knebusch splitting
pattern {0,1,3,4}, but full splitting pattern {0,1,2,3,4}. The point is that if we only
consider extensions that do not alter the defect index of ¢ (e.g., separable extensions),
then Knebusch’s construction gives a “universal” partial splitting tower for . If we wish
to allow ql(¢) to split, however, then this universality is lost.

Although the Knebusch splitting tower does not in general recover all possible isotropy
indices attained by ¢ over extensions of F, one can nevertheless show that ji(p) is
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the second smallest integer in the full splitting pattern of ¢ when defined. In other
words, if ¢ is anisotropic of dimension > 2, then i;(y) is the smallest element of the set
{io(¢x) | K/F an extension} (see [10, §0]). The following theorem gives a nontrivial re-
striction on the possible values of i; () in this case. The analogous statement over fields of
characteristic not 2 was first proved by Karpenko in [9]. In our setting, the case where ¢
is quasilinear was treated in [I2], and the nonquasilinear cases were more recently treated
by Primozic in [11] (nondegenerate case) and Karpenko in [I0] (general case).

Theorem 2.5. Let ¢ be an anisotropic quadratic form of dimension > 2 over F', and let
u be the largest integer for which dimp,y, ¢ is divisible by 2%. Then i1(p) < 2“.

When ¢ is nondegenerate or quasilinear, all values of the integer i;(¢) permitted by
Theorem can be realized. In the case where ¢ is neither nondegenerate nor quasilinear,
however, we will see in below that the type of ¢ imposes some further restrictions.
When ¢ is anisotropic of dimension > 2, we shall define the Izhboldin dimension of ¢ to
be the integer dimy,p ¢ := dimp — i;(¢). Theorem then says that dimp,, ¢ is divisible
by the smallest 2-power bounding i;(¢) from above. In particular, we have the following
result, which is due to Hoffmann and Laghribi ([7, Lem. 4.1]):

Corollary 2.6. Let ¢ be an anisotropic quadratic form of dimension 2™ + m for some
non-negative integer n and integer 1 < m < 2. Then dimp,, ¢ > 27,

If equality holds in the conclusion of the corollary (equivalently, if i;(p) = m), then we
shall say that ¢ has maximal splitting. Now, another key result on the Izhboldin dimension
is the following theorem which is due to Karpenko and Merkurjev in the nondegenerate
case ([3, Thm. 76.5]) and Totaro in the degenerate case ([I5, Thm. 5.2]):

Theorem 2.7. Let ¢ and v be anisotropic quadratic forms of dimension > 2 over F. If
Pr(y) s 1sotropic, then dimyp Y < dime.

When combined with Corollary [2.6] this gives the following “separation theorem”, again
due to Hoffmann and Laghribi ([7, Thm. 1.1]):

Corollary 2.8. Let ¢ and v be anisotropic quadratic forms of dimension > 2 over F. If
dimp < 2" < dim for some non-negative integer n, then ppy) is anisotropic.

2.F. Stable Birational Equivalence. Let ¢ and 1 be anisotropic quadratic forms of
dimension > 2 over F. The following are then known to be equivalent:

(1) X, and X, are stably birational as varieties over F'

(2) For every field extension K/F', ¢k is isotropic if and only if ¢k is isotropic;

(3) wr(y) and Yp(,) are isotropic.
Indeed, since anisotropic quadratic forms remain anisotropic under purely transcendental
extensions, the implications (1) = (2) = (3) are clear. For (3) = (1), the case where
neither ¢ nor ¢ are quasilinear is a straightforward consequence of Lemma (2), and
the case where at least one of ¢ and v is quasilinear is a result due to Totaro ([15]). In
fact, if ¢ is quasilinear and (3) holds, then ¢ must also be quasilinear by Lemma
(2) and the fact that anisotropic quasilinear quadratic forms remain anisotropic under
separable extensions. Under the assumption that both ¢ and ¢ are quasilinear, however,
the implication (3) = (1) follows from [I5, Thms. 5.2 and 6.5], and so the equivalence
holds in all cases. If (1), (2) and (3) hold, we shall say that ¢ and 1) are stably birationally

equivalent, and write ¢ P 1. The following important result, which extends Theorem
is again due to Karpenko and Merkurjev in the nondegenerate case ([3, Thm. 76.5]) and
Totaro in the degenerate case ([I5, Thm. 5.2]):
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Theorem 2.9. Let ¢ and i be anisotropic quadratic forms of dimension > 2 over F.

Then ¢ 10 Y if and only if pp(y is isotropic and dimp,, ¢ = dimpgp 9.
We then have the following basic fact:

Lemma 2.10. Let ¢ and i be anisotropic quadratic forms of dimension > 2 over F with

Y < . If dimy > dimpy @, then ¢ st Y. In particular, dimy,y, ¢ = dimg,y Y.

Proof. We can assume that 1 is the restriction of ¢ to a subspace U of V,,. It is clear that
©r(y) is clearly isotropic. Now, by definition, the F'(¢)-vector space V,, @ F(yp) admits
a totally isotropic subspace of dimension i;(y). Since dimvy > dimp,, ¢, this subspace
must intersect U @ F'(¢) nontrivially, and so ¢, is also isotropic. This proves the first
statement, and the second then follows by Theorem [2.9 g

2.G. Pfister Neighbours and (Strongly) Excellent Forms. Let ay,...,a, € F*. If
any1 € F', then we write (a1, ..., an41]] for the (n 4 1)-fold Pfister form ((a1,...,a,), ®
[1,an+1]. Any such form 7 is round, in the sense that am ~ 7 for all a € F* represented
by 7 ([3, Cor. 9.9]). By a general (n+1)-fold Pfister form, we shall mean any form similar
to (i.e., isometric to a scalar multiple of) an (n + 1)-fold Pfister form. Any such form is
nondegenerate of dimension 2"*!. An isotropic general Pfister form is hyperbolic, i.e., has
Witt index equal to half its dimension. In particular, if 7 is an anisotropic general (n+1)-
fold Pfister form, then i;(7) = 2", i.e., 7 has maximal splitting. Now, let ¢ be a nonzero
quadratic form over F, and let n be the unique integer for which 2" < dim¢p < 27+, If
¢ is is dominated by a general (n + 1)-fold Pfister form =, then we shall say that ¢ is
a Pfister neighbour. In this case, the form 7 is uniquely determined up to isometry, and
we refer to it as the ambient general Pfister form of . The complementary form ¢ (see
, which has dimension 2"*! — dim ¢, will simply be denoted ¢¢. We thus have that
@ L m~ ©° In the case where ¢ is anisotropic, it follows from the Cassels-Pfister subform
theorem (3, Thm. 22.5]) and Lemma that ¢ is a Pfister neighbour if and only if it
is stably birationally equivalent to some anisotropic Pfister form (which is then similar to
the ambient general Pfister form of ¢). We note the following:

Lemma 2.11. Let ¢ be an anisotropic quadratic form of type (r,s) over F, and n the
unique integer for which 2" < dimp < 2", If © is a Pfister neighbour, then:

(1) r+s<2m;

(2) 1 2= (¥°)F(p)-
(3) ¢ has mazximal splitting, i.e., dimp,y ¢ = 2";

Proof. Let m be the ambient general Pfister form of ¢.
(1) Per the discussion in any nondegenerate form of even dimension that dominates
¢ has dimension at least 2(r + s). Since dimm = 2"*!, (1) then follows.

(2) Since ¢ Y T, TF(yp) is isotropic, and hence hyperbolic. Since ¢ L m ~ ¢, it follows
that o1 ~ (¢) (). But dimg® = 2" —dimp < 27, and so (¢°)p(,) is anisotropic
by the separation theorem (Corollary . As 7 is also anisotropic, we then have that

p1 = (@C>F(¢)-
(3) Implicit in (2). O

A quadratic form ¢ over F' is said to be excellent if for every field extension K/F with
io(¢r) > io(p), there exists a quadratic form 7 over F' such that (¢px)an ~ 7. By [B
Lem. 5.1], all quasilinear quadratic forms are excellent. For nonquasilinear forms, the
situation is more complicated. A source of examples is provided by the following;:



10 STEPHEN SCULLY AND GUANGZHAO ZHU

Lemma 2.12. Let ¢ be a nonquasilinear quadratic form over F with Knebusch splitting

tower FF = Fy C F} C ---. Suppose that there exist a positive integer h and Pfister
neighbours Vg, 1, ..., Yn_1 over F such that:
(1) Yo = $an;

(2) i = f | foralll <i < h;
(3) ¥h_1 =~ (al())an-

Then ¢ is excellent of nondefective height h, and @; ~ (;)F, for all 0 < i < h.

Proof. By part (2) of Lemma we only have to prove the excellence of . To this end,
let K be an extension of F' with ip(¢x) > ip(¢). There then exists a largest integer i < h
with (1;)k is isotropic. For each 0 < j < h, let 7; be the ambient general Pfister form of
;. Then (7;) is hyperbolic for all j <4, and so

oK ~ (Vo) ~ (Y5)k = (1)K ~ -~ (Vi_1)k = (Vi) ~ (Y] k = (Yit1)K

by (1) and (2). If ¢ # h — 1, we then have that (¢x)an ~ (Vit1)kx. If i = h — 1, then (3)
gives that (¢r)an ~ (ql(¢)K)an- By the remarks preceding the statement, however, we
then have that (¢x)an ~ Tk for some quasilinear form 7 over K, and so we’re done. [

If ¢ is as in Lemma [2.12] then we shall say that ¢ is strongly excellent. By a result
essentially due to Knebusch, all nondegenerate excellent forms are strongly excellent (see
[3, Thm. 28.3]). In general, however, excellence is weaker. For instance, anisotropic forms
of type (1, s) are readily seen to be excellent, but such a form cannot be strongly excellent
unless s = 2" — 1 for some integer n by Lemma (1). Nevertheless, it is expected
that an excellent quadratic form of type (r, s) is strongly excellent when s is “sufficiently
small”. This can be made precise via a conjecture of Hoffmann and Laghribi on Pfister
neighbours that will be discussed in §9 below. Here, we note that anisotropic strongly
excellent forms can be described more explicitly as follows:

Proposition 2.13. Let ¢ be an anisotropic nonquasilinear quadratic form over F, and
let h be a positive integer. Then the following are equivalent:

(1) ¢ is strongly excellent of nondefective height h;
(2) There exist anisotropic Pfister forms mg, 71, ..., mp—1 over ', an anisotropic quasi-
linear quadratic form T over F', and a scalar a € F'* such that
(i) e~almpLm L Lapy L7);
(ii) For all 1 <i < h, m; is a proper subform of mi_1;
(iii) 7 < mp—1 and dimT < %’,
(iv)

iv) If 1 =0, then dimmy_o > 2dimmy,_q.

Proof. (1) = (2): Suppose that ¢ is strongly excellent of nondefective height h, and let
Yo, . -.,WYnh_1 be as in the statement of Lemma [2.12] For each 0 < ¢ < h — 1, let p; be
the ambient general Pfister form of v;, and write p; = a;m; for some Pfister form m; over
F and scalar a; € F*. Since ¢5_, = ql(y), the anisotropic quasilinear quadratic form
T := ap—191(p) satisfies condition (iii) in (2). Moreover, since ;—1 L pj—1 ~ 9§ | =~ 1; for
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all 1 <14 < h, we have that

o L(agmo L -+ Lap1mn1) =~ (Yo Lpo) L (p1 L L pp1)
~ (1 Lp1) L(paL--Lpp)

~ Yp_1 L opp

~ Yh
~ ql(p)
>~ Ap-—-1T.
Since agmg L -+ L ap_17mp_1 is nondegenerate, we then have that ¢ ~ aomg L --- L

ap—17p—1 L ap—17 (Lemma [2.1). To show that conditions (i) and (ii) in (2) are satisfied,
it now remains to show that for each 1 < i < h, we have m; C m;_1 and a;_1m;_1 =~ a;7;

(then (i) will hold with a = aj—1). For any such ¢, however, we have ; P Vi =5, <
pi—1 = a;—1m;—1, and so m;—1 becomes isotropic over F'(m;). Since m;_1 is Pfister, it follows
that (m,l)F(m) is hyperbolic, and so m; C m;_1 by the Cassels-Pfister subform theorem
(B, Thm. 22.5]). Since a;—1m;—1 and a;m; = p; both dominate 1);, it then follows that
m_1 represents elements x,y € F* such that a;_12 = a;y. By the roundness of Pfister
forms, we then have that a;m;_1 ~ a;zy ' m_1 ~ a;mi_1, as desired. Finally, if 7 =0, then
Yp—1 = ap—1mhp—1. Since dimyy,_1 = dim)j,_, = dimmy,_y — dimyy,_o < mL;M, we have
that dim7p_o > 2dim7,_1 in this case, i.e. (iv) is satisfied.

(2) = (1): Let mg,...,mh—1,7 and a be as in (2). For each 0 < i < h, set ¢; := a(m; L
41 L o+ L wp—1 L T)an. By hypothesis, 99 ~a(mg L 71 L -+ L w1 L 7)an =~ ¢. Since
the form a(mg L m L --- L m,_1) is nondegenerate, and since 7 is anisotropic, we then
also have that ql(¢) ~ ar. To prove the claim, it therefore suffices to show the following:

e For each 1 < i < h, 9;_1 is a Pfister neighbour with ambient general Pfister form
am;—1 and complementary form ;;
e 1,1 is a Pfister neighbour with ¢j_; ~ at.

We start with the second claim. By hypothesis, 7 is dominated by m,_1. If we let 7¢ be

the complementary form, then ¥,_1 = a(mp—1 L 7)an ~ a7¢ Since 7,_1 is anisotropic,
dimmy,_1

the same is true of 7¢, and so ¢p,_1 ~ a7®. But since dim7 < —5"=, we have dimat® >
%, and so ¥y_1 is a Pfister neighbour with complementary form ar. For the first

claim, let 1 < ¢ < h. By definition, we have ¥;_1 ~ (ami—1 L ;)an. Arguing by
induction on i (and using the preceding discussion for ¢ = h — 1), we can assume that
¥; is dominated by am;, and hence by am;;1. Since m; is anisotropic, it follows that
Pi—1 ~ Y. To prove the claim, it now only remains to check that dim;_; > dim1;.
Suppose, for the sake of contradiction, that this is not the case. Since v; = 9§ _;, we
have dim);_1 = dimm;_1 — dim;. Since v; < am;, and since dimm; < %,
possibility here is that ¢; ~ am; and dimm; = dlmi;”*l. But the first point implies that
i =h—1and 7 = 0, and the second then contradicts assumption (iv). Thus, the first

claim also holds, and so the proposition is proved. ]

the only

Remarks 2.14. (1) Again, in the nondegenerate case, this is essentially due to Knebusch.

(2) In the statement of the proposition, the forms mg,...,7p_1,7 in (2) are uniquely
determined up to isometry. Indeed, as the proof shows 7 ~ ql(¢), am is the ambient
general Pfister form of ¢, am; is the ambient general Pfister form of ¢, and so on.
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3. PRELIMINARIES ON CYCLES

Recall that we use the letters Ch to denote Chow groups modulo 2. We record here
some preliminary facts on the latter.

3.A. Degree Homomorphisms and Numerical Triviality. Let Y be a scheme over
F. If'Y is projective, then we have the degree homomorphism deg: Ch(Y) — Fy defined
as pushforward along the structure morphism Y — Spec(F'). If Y is smooth, then we shall
say that an element o € Ch(Y') is numerically trivial if deg(af) = 0 for all 5 € Ch(Y).
The subset of Ch(Y') consisting of all numerically trivial elements is an ideal in Ch(Y’)
which we shall denote Ny(Y). In the sequel, we shall have occasion to consider a slightly
more general situation where these remarks still apply. More precisely, suppose now that
Y is an open subscheme of a projective F-scheme Y’ for which the (reduced scheme of
the) complement Y’ \ Y has no closed point of odd degree. In this case, the localization
sequence for the closed embedding Y\ Y — Y’ shows that the the degree homomorphism
for Y’ factors through Ch(Y) by restriction to Y. Abusing notation, we shall also denote
the induced homomorphism Ch(Y) — Fo by deg. By definition, deg sends the class of
any closed point y € Y to the degree of the residue field extension F'(y)/F, and sends the
classes of all other closed subvarieties of Y to 0. In particular, it is independent of Y7,
and hence intrinsic to Y. Let us describe this situation by saying that Y admits a degree
homomorphism. If Y is also smooth, we can then define the ideal Ny(Y') of numerically
trivial elements in Ch(Y") exactly as before. We will need the following observations:

Lemma 3.1. Let f: X — Y be a proper morphism of schemes over F'. Assume thatY is
smooth and admits a degree homomorphism (in the sense above).

(1) If X has no closed point of odd degree, then the image of the pushforward f,: Ch(X) —
Ch(Y) lies in No(Y'). In particular, if No(Y) =0, then f. is the zero map.

(2) Suppose that X is also smooth and admits a degree homomorphism (in the sense
above). If f is a closed embedding, then f*(No(Y)) C No(X).

Proof. (1) Since Ch(X) is generated by classes of closed subvarieties of X, it suffices to
show that a := f,([X]) lies in No(Y"). But if g € Ch(Y), then af = f.(f*(8)) by [3, Prop.
56.11], and so deg(a/3) = 0 on account of X having no closed point of odd degree.

(2) Let @ € No(Y) and let § € Ch(X). We have to show that deg(f*(«a)5) = 0.
Since f is a closed embedding, we have deg(vy) = deg(f.(v)) for all v € Ch(X). By
the projection formula ([3, Prop. 56.9]), however, we have f.(f*(«a)f) = af«(8), and so
deg(f*(a)p) = deg(afi(8)) = 0 by the numerical triviality of «. O

Remark 3.2. If Y is a product of projective spaces, then Nyo(Y) = 0 by the projective
bundle formula.

3.B. Scalar Extension to an Algebraic Closure and Rationality. Let ' be an
algebraic closure of F. Given a scheme X over F, we set X := Xz, and write Ch(X)
for the image of the scalar extension homomorphism Ch(X) — Ch(X) (equipped with
its induced gradings by dimension and codimension). The elements of Ch(X) that lie in
Ch(X) will be said to be F-rational. If o is an element of Ch(X), then its image in Ch(X)
shall be denoted @. We need the following;:

Lemma 3.3. Let f: X — Y be a proper morphism of schemes over F'. Suppose that'Y is
smooth and projective, and that No(Y') = 0. If X has no closed point (&)dd degree, and
the pushforward homomorphism f.: Ch(X) — Ch(Y) is injective, then Ch(X) = 0.
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Proof. Let o € Ch(X). We have to show that @ = 0. By hypothesis, it suffices to show
that f.(@) =0. But f.(a@) = f«(a), and so the desired assertion holds by Lemma O

3.C. A Vanishing Result for Products of Quasilinear Quadrics. Let ¢ be an
anisotropic quasilinear quadratic form of dimension > 2 over F. Set V := V,,, and let
i: X, = P(V) be the canonical embedding.

Lemma 3.4. Let Z be a variety over F'. In the above situation, there is then a natural Fo-
vector space homomorphism 7: Ch(P(V') x Z) — Ch(X, x Z) satisfying (i x id), om = id.
In particular, (i x id), is injective.

Proof. Let W be the set of isotropic vectors in V ®p F. Since ¢ is quasilinear, W is an
F-linear subspace of V ®p F. Since F is algebraically closed, W has codimension 1 in
V ®p F and P(W) is the reduced scheme of X,,. In particular, if we let j: P(W) — X,
be the canonical embedding, then the pushforward j.: Ch(P(W) x Z) — Ch(X, x Z) is
an isomorphism. By the projective bundle formula, there is a natural Fa-vector space
homomorphism 7: Ch(P(V) x Z) — Ch(P(W) x Z) satisfying (i 0 j x id), o 7’ = id. The
composite map 7 := j o7’ then has the desired property. ([l

This leads to the following, which will be a basic point in the sequel:

Proposition 3.5. Let X be a variety over F which is a product of projective spaces and
positively many anisotropic quasilinear quadrics. Then Ch(X) = 0.

Proof. By the projective bundle formula, we can assume that X is a product of positively
many anisotropic quasilinear quadrics. By Springer’s theorem, none of these quadrics have
a closed point of odd degree, and so the same is true of X. Let ¢1,..., ¢, be anisotropic
quasilinear quadratic forms of dimension > 2 over F' such that X = X, x --- x X, .
For each 1 <t < m, set V; := V[, and let i;: X,, — P(V;) be the canonical embedding.
Set Y := P(Vi) X -+ x P(Vp,) and @ := i1 X +++ X ip,. Then No(Y) = 0 (Remark [3.2)),
and repeated application of Lemma shows that i,: Ch(X) — Ch(Y) is injective. The
claim then follows from Lemma [3.3 ]

4. RATIONAL CYCLES ON PRODUCTS OF GENERICALLY SMOOTH NONDEFECTIVE
QUADRICS

Let I be an algebraic closure of F. In this section, we consider the group Ch(X) (as
defined in above) in the case where X is a product of generically smooth projective
quadrics over F', each of which is nondefective (i.e., has anisotropic singular locus). For
products of several copies of a single quadric of this type, the results stated here were
previously established by Karpenko in [10], and the extension to the more general situation
considered here only requires minor adaptation of the arguments found in the latter.
For the remainder of this section, we fix nonquasilinear quadratic forms ¢, ..., @m of
dimension > 2 over F, each of which is assumed to be nondefective. For each 1 <t < m,
we let (4, s:) be the type of ¢, and we set V; := V,,, and X; := X,,. Finally, we set
X = X1 x -+ x X;,. Since the ¢; are nonquasilinear, the integers r; are positive and X
is generically smooth. We start by formulating the results we wish to establish.

4.A. Statements. Let 1 < ¢ < m. Since F is algebraically closed, we have iy ((p¢)7) =
7. Let U; be a (2r;)-dimensional subspace of V; @ F such that ¢|y, is hyperbolic, and
let Wy be an ri-dimensional totally isotropic subspace of U;. For each 0 < i < 7y, let us
define h* € Ch(X;) to be the class of a codimension i-subquadric of X;, and I; € Ch(X;) to
be the class of any i-dimensional projective linear subspace of P(W;) (viewed as a closed
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subvariety of X;). Note that we are suppressing the dependency on t in order to avoid
overcomplicating our notation. The element h’ clearly lies in Ch(X;) and depends only on
¢t (being the pullback of the unique nontrivial element of Ch?(P(V;)) along the canonical
embedding of X; into P(V;)). The element I; need not be F-rational. While it a priori
depends on the choice of W;, it again does not depend on the choice of i-dimensional
projective linear subspace of P(W;). Below, we shall see that:

Lemma 4.1. {l;,h'}o<i<r, is an Fa-linearly independent subset of Ch(Xy).

Let R; be the 2ri-dimensional Fa-linear subspace of Ch(X;) generated by {l;, h}o<i<r,-
We can equip R; with the structure of a commutative ring by defining the multiplication

as follows: o
Bind R if it <y Wil li— ife<y
0 otherwise J 0 otherwise; ’

p . Jlo ifdimg =2 (mod 4) and i =j = T2
"7 10 otherwise.

Note that the identity element is hO. For each integer j > 0, we can also define an Fy-vector
space homomorphism S7: R; — R; by setting

§9 (1) C)p+d it j<r—i 4 S (@it i<
= an ;) =
0 otherwise 0 otherwise.

One readily checks that S7(a3) = > irbiamy St (a)S72(B) for all o, B € Ry. Now the proof
of Lemma (to be given below) also yields:

Lemma 4.2. The external product homomorphism Ri®p,- - -®p, Ry — Ch(X) is injective.

Let Rx be the image of Ry ®p, -+ ®p, Ry in Ch(X), equipped with the Fa-algebra
structure it inherits from the Fo-algebra structures on Ry, ..., R, described above, and the
gradings by dimension and codimension it inherits from Ch(X). For each integer j > 0, we
then have a unique Fa-vector space homomorphism S7: Ry — Ry with the property that
ST (XX aum) = Zj1+~~~+jm:j Sjl(ql)x- '. xS () forallag € Ry, ...,y € Ry We
then have that S/ (af) =3, . ;S (a)S72(B) for all o, B € Rx. Now, if U is the smooth
locus of X, then the group Ch(U) has a canonical ring structure (with multiplication given
by the intersection product), as well as the action of the cohomological-type Steenrod

operations S{; of Brosnan ([I]). The result we need is the following:

Proposition 4.3. Let U be the smooth locus of X, and ¢: : U — X the canonical open
embedding.
(1) The Fo-algebra Rx depends only on ¢1,...,pn (and not on Wi, ..., Wy);
(2) The set Ch(X) is a subring of Rx and there is a unique surjective ring homomor-
phism 6: Ch(U) — Ch(X) with the property that 0(:*(a)) = @ for all « € Ch(X).
(3) For each integer j > 0, the set Ch(X) is stable under the map S’, and we have
Si(@) = 0(S,(e*())) for all a € Ch(X).

In light of (3), we refer to S7: Rx — Ry as the jth cohomological-type Steenrod opera-
tion on Rx.

Remark 4.4 (Orientations and standard bases). In the preceding discussion, we have de-
scribed an explicit basis of Rx (as an Fa-vector space) consisting of the external products
a1 X -+ Xy with oy € {li, h' }o<i<r, for each 1 <t < m. It is clear from the first part of
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the proposition that, one exception aside, the elements of the set {l;, hi}0§i<7~t C Ch(Xy)
are independent of the choice of the linear subspace W;. The exception concerns the ele-
ment /., 1 in the case where ql(¢y) is trivial (i.e., ¢; is nondegenerate of even dimension).
Here, it is well known that there are two non-equivalent classes of (r; — 1)-dimensional
projective linear subspaces of X; in Ch(X;). The two classes are exchanged by any reflec-
tion automorphism of X; and their sum is the element A"~ (see [3, P. 308]). Following
[3], we refer to the choice of one of these classes as an orientation of X;. An orientation
of X is then the choice of an orientation for each of the factors X1,..., X, for which one
is required. By fixing an orientation of X (when required), we obtain as above a basis for
Rx that we shall refer to as the standard basis. We shall then say that an element of Rx
inwolves a given element of the standard basis if that element appears in its decomposition
as a sum of the standard basis element.

We now prove the above statements, following the arguments of [10]. We first note:

Lemma 4.5. To prove the statements above, we can assume that each of the forms
O1y - - -5 ©m has mazimal Witt indez, i.e., that iy (py) =1 for all 1 <t < m.

Proof. Let Fyep be the separable closure of F' in F'. Since anisotropic quasilinear quadratic
forms remain anisotropic under separable extensions, each of the forms ¢; remains nonde-
fective over Fyep. On the other hand, we also have that iy ((¢¢)F,,) =7 forall 1 <t <m
by Lemma [2.3] What we are then claiming is that in order to prove the statements of
interest, we can replace F' with Fiep. But this is clear in the case of Lemma Lemma,
and Proposition [4.3] (1), while for parts (2) and (3) Proposition [4.3] (2) and (3) we only
need to appeal to the commutativity of the diagram

Ch(X) —> Ch(Xp,,) —> Ch(X)

/| /| /|

Ch(U) —= Ch(Up,.,) — Ch(T)

(in which the horizontal maps are given by scalar extension) and the fact that the bot-
tom horizontal maps are ring homomorphisms that commute with the action of the
cohomological-type Steenrod operations. O

For the remainder of this section, we therefore assume that iy (¢¢) = ry forall 1 <t < m.
With this assumption, we can make use of standard partial cell decompositions of the
quadrics X1, ..., X,,, which we now discuss.

4.B. Partial Cell Decomposition of a Generically Smooth Quadric with Max-
imal Witt Index. Let ¢ be a nonquasilinear quadratic form of dimension > 2 over F
with underlying vector space V. Let (r,s) be the type of ¢, and assume that iy (¢) = .
As in above, we can then find a r-dimensional totally isotropic subspace W of V
which is a maximal totally isotropic subspace for a hyperbolic subform of V. For each
0 <1 <, let us again write I; for the class of an i-dimensional projective linear subspace
of P(W) in Ch;(X,), and h? for the class of a codimension i subquadric of X, in Ch*(X,,)
(again, h* does not depend on the choice of subquadric). Set U := W + Val(p)s and let Y
be the reduced closed subscheme of X, given by the intersection of X, and P(U). Note
that we can (and do) view the classes [; as elements of Ch(Y'). Let us now fix a variety
Z over F. By the projective bundle theorem, the localization sequence for the canonical
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embedding P(W) x Z — Y x Z is split exact, and yields a split exact sequence

r—1
0= P Chi(Z) = Chu(Y x Z) = Chu (X, \Y) x Z) = 0
=0

where the first map sends (ag,...,a,—1) to Z;:& l; X a;. At the same time, since W N
Vaip) = 0, we have a canonical projection P(U) \ P(W) — P(Vq,)) that induces a rank-

r affine bundle f: Y \ P(W) — Xy ,). By homotopy invariance, the above split exact
sequence then yields an Fa-vector space isomorphism

r—1
<@ Ch*_i(Z)> P Chu—r(Xqp) x Z) = Ch(Y x Z),
=0

where again the map on the component in parentheses is given by the external product
map (ag,...,0p—1) — Z;:ol l; X a;. While we don’t have a similarly concrete description
of the map on the other component, we can at least say that its image lies in the image
of the canonical pushforward Ch(Xy,) x Y x Z) — Ch(Y x Z) by [10, Lem. B.1]. Now,
the canonical projection P(V) \ P(U) — P(V/U) also induces a rank-(r + s) affine bundle
g: X,\Y — P(V/U). Note that the preimage of a codimension i projective linear subspace
of P(V/U) under g is the intersection of a codimension-i subquadric of X, and X, \ Y.
By [3, Thm. 66.2] and the projective bundle formula, we then have an Fa-vector space
isomorphism

r—1
(@ Ch*_dimwi”(Z)) P Ch.(Y x Z) = Chy (X, x 2),
i=0

where the map on the component in parentheses is given by the external product map
(gy .-y pe1) — Z;:_& h* X o, and the map on the other component is pushforward along
the canonical embedding ¥ x Z — X, x Z. Putting everything together, we get:

Proposition 4.6. If Z is a variety over F, then we have an Fo-vector space decomposition
Ch.(X, x Z) = A B, where
o A is isomorphic to @;& (Chy—i(Z) @ Chu—dimp+i+2(Z)) via the map

r—1

D (Ch*,i(Z) @Ch*_dimwm(Z)) — Chy (X, x Z)
i=0
that sends ((g, B0), - -, (ar—1,Br-1)) to Z;:é(li X a; + bt x B;);
e B is isomorphic to Chi_(Xq(,) X Z), and lies in the image of the pushforward
Chy(Xgi(p) X Xy X Z) = Chy (X, x Z).

Note that the decomposition obtained here is clearly compatible with scalar extension.
We can now justify the statements in §4.A] We first consider the case of a single quadric.
Note that this case is covered by [10], but we include it here for completeness (and to
clarify some technicalities in our presentation of the needed results).

4.C. The Case Of a Single Quadric. Suppose here that m = 1. For ease of notation,
set v := 1, V:=V; and (r,s) := (r1,s1). In order to prove the desired assertions, Witt’s
extension theorem ([3, Thm. 8.3]) allows us to assume that the totally isotropic subspace
W is equal to W @5 F for some F-linear subspace W of V. As in the previous subsection,
we can then introduce elements /;, h* € Ch(X) (0 < i < r) restricting to the corresponding
elements of Ch(X) introduced in (we make no notational distinction here). Following
the statement of Proposition [£.3] let U be the smooth locus of X, and let ¢:: U — X be
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the canonical open embedding. By Proposition we have @(qu(cp)) = 0. By the
localization sequence for the canonical embedding X,y — X, it follows that there exists
a surjective Fa-vector space homomorphism 6: Ch(U) — Ch(X) such that §(:*(a)) = @ for
all @ € Ch(X). Now, by Proposition (applied with Z = Spec(F)), the set {l;, h'} is an
Fo-linearly independent subset of Ch(X). Moreover, if we let A denote its Fo-linear span,
then we have an Fo-vector space decomposition Ch(X) = A@ B, where B is isomorphic

to Ch(Xg(,)) and lies in the image of the pushforward Ch(Xg(,) x X) — Ch(X).

Lemma 4.7. In the above situation:
(1) @ =0 for all &« € B. In particular, .*(B) C Ker(0);
(2) For all 0 < i <y, I; #0. In particular, 0(c*(;)) # 0.

Proof. (1) Since B lies in the image of the pushforward Ch(Xq,) x X) — Ch(X), it

suffices to show that @(qu(@) x X) = 0. By the Z = X, case of Proposition
however, Ch(X, x X) is isomorphic to a direct sum of copies of Ch(Xgq ) x Xqi(p)
and Ch(Xgj(,), and this decomposition is compatible with scalar extension. The desired

assertion therefore follows from Lemma [3.3]
(2) Clear from the injectivity of the canonical pushforward Ch(P(W)) — Ch(P(V)). O

Next, we have:

Lemma 4.8. In the ring Ch(U), the following identities hold modulo Ker(0).

(R ifit <y F(limi) ifi <
0 otherwise 0 otherwise; ’

() () = { (R (l) = {

*(lp) ifdimp; =2 (mod4) andi=j = dim%d

(el {0 otherwise.

Proof. For the sake of legibility, we shall drop ¢* from our notation in what follows. Con-
sider the canonical closed embeddings P(W) & U 2 P(V) \ Xqi(p)- Since X is a quadric,
the composition w, o w* is zero. Now, since w* is a ring homomorphism, h*h’ is the pull-
back of the class of a codimension-(i + j) projective linear subspace of P(V'). In particular,
if i + j < 7y, then h*hJ = h*J. Suppose now that i + j > ;. To prove the first identity in
the statement, we have to show that h'h/ € Ker(6). By Lemma (1), it suffices to show
that h'h?/ € B. If k := dim@+2—(i+j) is greater than or equal to r, this is clear. Suppose
now that k < r;, and that h'h/ ¢ B. Then h'h/ = I}, (mod B). Since w, o w* = 0, it then
follows that w(lx) = 0. But since @(qu(@) = 0, the scalar extension homomorphism
Ch(P(V) \ Xqp)) = Ch(P(V) \ X)) is injective, and hence wx(lx) = 0. As an element
of Ch(X), Ij then lies in the image of the canonical pushforward Ch(Xg,)) — Ch(X).
But Lemma then implies that I, = 0, contradicting part (2) of Lemma Thus,
the first identity in the statement holds. For the second identity, the case where i > j
is clear, so assume that ¢ < j. One can then clearly choose a codimension-j projective
linear subspace of P(W) and an i-dimensional projective linear subspace of P(W) whose
scheme-theoretic intersection is a (j — 7)-dimensional projective linear subspace of P(W).
By [3, Prop. 57.21], the identity h'l; = l;_; then holds. Finally, for the third identity,
dimension reasons give that /;/; = 0 unless s =0 and 1 = j = %. But in this case, X
is smooth and the stated identity is a standard computation (see, e.g., [3, P. 308]). O

Recall now that Ch(U) contains the ideal No(U) of numerically trivial elements (see
§3.Al). With the above, we can now see the following:
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Lemma 4.9. Ker(0) = No(U) = *(B).

Proof. We have already noted in Lemma (1) that *(B) C Ker(6). At the same time,
since ¢*(B) lies in the image of the pushforward Ch(Xg(,y x U) — Ch(U), it is also lies in
No(U) by Lemma (Xq1(4) has no closed point of odd degree by Springer’s theorem and
the anisotropy of ql(¢)). To complete the proof, it now suffices to show that if « is an non-
zero element of A, then ¢*(«) is neither an element of Ker(#) nor No(U). To prove this, we
may assume that a € Chg(X) for some integer k. By the multiplicative identities given
in Lemma there then exists an element § € Ch*(U) such that t*(a)3 = 1*(ly). By
Lemma4.7|(2), this shows that .*(«) ¢ Ker(#). At the same time, we have deg(¢:*(lp)) = 1,
and so the same identity shows that a ¢ No(U). This proves the lemma. O

With the preceding lemmas, we have the following: If « is a non-zero element of A, then
@ # 0. In particular, the set {l;, h'}o<;<, is Fo-linearly independent in Ch(X). Moreover,
Rx = Spang, {l;, h'}o<i<r is precisely the the image of the map §: Ch(U) — Ch(X), and
the map 6: Ch(U) — Ry is a ring homomorphism by Lemma (and the definition of
the multiplication on Rx given in . This proves all statements in (with m = 1)
with the exception of part (3) of Proposition This follows from:

Lemma 4.10. Let j be a positive integer. In Ch(U), the following identities hold modulo
Ker(6):

(e () if j<r—i

d S((1L)) =
0 otherwise o U(L ()

S] * hZ = ( i =] =
U(L (h) { {0 otherwise.

Proof. For the sake of legibility, we shall again drop ¢* from our notation in what follows.
By Lemma the first identity says that Sé(hi) = (;) hihJ. Since the cohomological-type
Steenrod operations for smooth schemes commute with pullbacks, proving this identity
then amounts to showing that if & and [ are the classes of codimension-i and codimension-
J projective linear subspaces in P(V'), respectively then Sé,(v)(a) = (;)aﬁ. This is well
known, however (see [3, Ex. 6.16]; the argument given there is valid in any characteristic).
For the second identity, we can assume that j <. Let a be the class of an ¢-dimensional
projective linear subspace in P(W). If v: P(W) — U is the canonical closed embedding,
then we have that S[j](li) = 0,(¢j(Ny)(a)), where N, is the normal bundle of v (Wu
formula). Now an argument essentially identical to that found in [3 Lem. 78.1, Cor.

78.2] shows that c;(NV,) is multiplication by (dim‘pjfifl) B, where (3 is the unique element

of Ch?(P(W)). Since af3 is the class of an (i — j)-dimensional subspace of P(W), we then

get that S[j](li) = v*((dim@j_i_l)aﬁ) = (dim“}_i_l)li_j, as desired. O

4.D. The General Case. We now consider the general case. For each 1 <t < m, we
can again assume that W; is obtained from a totally isotropic subspace of V; by scalar
extension, and can introduce the elements l;, h; € Ch(X;) (0 < i < ) restricting to the
corresponding elements of Ch(X;) introduced in Let A be the [Fa-linear subspace of
Ch(X) generated by all external products ay X -+ X a, with oy € {l;, h'}o<i<y, for all
t. By repeated application of Proposition we get that these external products are
Fy-linearly independent, and that Ch(X) = A B, where B is:

(1) isomorphic to a direct sum of Fa-vector spaces of the form Ch(X,

al(ay) X X

qu(%l)) for integers 1 < a; < --- < aq; < m;
(2) contained in the image of the pushforward Ch(Xg;(p,) X - - X Xqi(p,,) XX ) — Ch(X).
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Following the statement of Proposition let U be the smooth locus of X, and let
t: U — X be the canonical open embedding. Let Y = X \ U be the singular locus of X.
Explicitly, Y is the union of the closed subschemes X1 x---x X;_1 Xqu(wt) X X1 XXXy
with 1 < ¢ < m. By further repeated application of Proposition Ch(Y) is then also
isomorphic to a direct sum of Fo-vector spaces of the form Ch(qu(%l) X eee X qu(%l))

for integers 1 < a; <--- <a; <m. By Lemma we then have that Ch(Y) = 0, and so
there exists a unique surjective Fo-vector space homomorphism 6: Ch(U) — Ch(X) such
that 0(¢*(a)) = @ for all @ € Ch(X). As in the previous subsection, we have:

Lemma 4.11. Ker(6) = No(U) = *(B).

Proof. Recall that B lies in the image of the pushforward Ch(Xgy(,,) X"+ X Xqi(p,) X X) —
Ch(X). In particular .*(B) lies in the image of the pushforward Ch(Xgj(p,) X" - X Xqi(p,.) X
U) — Ch(U), and hence lies in No(U) by Lemma (again, the Xg,,) have no closed
points of odd degree by Springer’s theorem). Moreover, to show that *(B) C Ker(0),
it suffices to show that @(qu(%) X oo X Xgi(pm) X X) = 0. But repeated application
of Proposition shows that this group is isomorphic to a direct sum of groups of the
form Ch(Z), where Z is a direct product of the quasilinear quadrics Xal(p1)r -+ Xl(om)
(with possibly repeated factors). The desired assertion then holds by Lemma To
complete the proof of the lemma, it now only remains to show that if o is a non-zero
element of A, then ¢*(«) is neither an element of Ker(#) nor Nyo(U). We can assume here
that a € Chy(X) for some integer k. Since the multiplication in Ch(U) is compatible with
the formation of external products, Lemma then shows that there exists a f € Ch*(U)

such that *(a)B = ¢*(lp x - -+ X lp). Since deg(lp x --- X lp) = 1, the claims follow. O

With this, it follows that the map 6 factors through Rx. Since Ker(f) = Ny(U) is an
ideal in Ch(U), and since the multiplication in Ch(U) is compatible with the formation of
external products, it then follows from Lemma (and the definition of the multiplication
on Ry given in that the map 6: Ch(U) — Rx is aring homomorphism. In particular,
Ch(X) is a subring of Ry, and @ is the unique surjective ring homomorphism Ch(U) —
Ch(X) with 6(:*(a)) = @ for all @ € Ch(X). Since the cohomological-type Steenrod
operations on Ch(U) satisfy the Cartan formula, Lemma[4.10| (together with the definition
of the operations S7: Rx — Ry given in also gives that S7(@) = 6(57,(v*(av))) for
all integers j > 0 and o € Ch(X). Since we have already seen that Rx depends only on
©1,- -, Pm, this proves all the statements in §4.A]

5. CoOMPOSITION LAw FOR RATIONAL CORRESPONDENCES

If X is a product of generically smooth nondefective quadrics over F', we have introduced
in §4/ above the Fo-algebra Rx C Ch(X). If Y is another variety over F of the same type,
then the Fs-algebra Rxy is canonically identified with Rx ®p, Ry via the external
product homomorphism Ch(X) ®p, Ch(Y) — Ch(X x Y).

5.A. Definitions. Let X, Y and Z be products of generically smooth nondefective-
quadrics over F. Let mxy: X XY X Z - X XY, nxz: X XY X Z - X X Z and
myz: X XY X Z — Y x Z be the canonical (flat and proper) projections. On mod-2 Chow
groups, the pullbacks 7%y and 7§, are given by the assignments o — o x hO and o —
h? x a, respectively. In particular, Txy (Rxxy) € Rxxyxz and 75 ,(Ryxz) € Rxxyxz-
Similarly, if « € Ch(X), 8 € Ch(Y) and v € Ch(Z), then (7xz)«(axx7v) = deg(B)a x~,
and so (mxz)«(Rxxyxz) C Rxxz. We therefore have an Fa-vector space homomorphism

Rxxy ®F, Ryxz — Rxxz, a® B (mx2)«(mxy ()7 2(8)).
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We write 8 o « for the image of a ® § under this map. By the preceding discussion, we
have the following explicit description of this composition law:

Lemma 5.1. Ifa € Rx, 3,8 € Ry andy € Ry, then (8 xv)o(ax ) = deg(88" )a x .

Note that our definition and the subsequent discussion remains valid if we take X or
Z to be Spec(F'). We therefore also permit this possibility in what follows. For a fixed
a € Rxxy, we write a* (resp. ay) for the Fao-vector space homomorphism Ry .z — Rxxz
(resp. Rzxx — Rzxy) that sends  to S o« (resp. a0 3).

By Proposition our composition law restricts to a composition law

Ch(X xY)®p, Ch(Y x Z) - Ch(X x Z), a® B+ Boa.

In particular, if a € Ch(X x Y), then a* (resp. «.) induces a homomorphism from
Ch(Y x Z) to Ch(X x Z) (resp. Ch(Z x X) to Ch(Z xY)).

5.B. Graphs. Let X and Y be products of generically smooth nondefective quadrics.
Let Ux and Uy be the smooth loci of X and Y, respectively, and let tx: Ux — X and
ty: Uy — Y be the canonical open embeddings. Let f: X — Y be a morphism with the
property that f(Ux) C Uy, and let I'y be its graph in X x Y. Note that f is proper. The
following lemma extends basic facts on morphisms of smooth schemes to our situation:

Proposition 5.2. Let Z be Spec(F') or a product of generically smooth nondefective
quadrics over F. Then:

(1) [T'f],: Rzxx — Rzxy coincides with the pushforward (id x f).;
(2) If f is flat or a regular closed embedding of constant relative dimension, or if Y X Z
is smooth, then m*: Ry w7z — Rxxz coincides with the pullback (f x id)*.

Proof. In view of Lemma (and the remarks at the beginning of this section), it suffices
to consider the case where Z = Spec(F’). As in the proof of Lemma we may also replace
F with its separable closure in F', and hence assume that Ry = Ch(X), Ry = Ch(Y) and
Rxxy = Ch(X xY) (see . Let mx: XxY — X and my: X xY — Y be the canonical
projections. Set U := Ux x Uy and ¢+ = 1x X ty: U — X x Y. Since f(Ux) C Uy, we
then have the Cartesian diagram

Ux — U (5.1)
)
X% xxy

where g = id x f and h is the restriction of g to Ux. In particular, t* o g, = hy o (.
Under our assumption, Proposition (2) tells us that there is a unique surjective ring
homomorphism 0: Ch(U) — Rxxy such that §(:*(«)) = @ for all a € Ch(X x Y).

(1) Let a € Ch(X). Since Rx = Ch(X), proving the claim amounts to showing that
[T4], (@) = fu(a). By definition, [I';] (@) is the image of the product 7% (a) - [['f] € Rxxy
under the pushforward (my)s. Since fi = (my 0 g)« = (7y )« © g«, proving the claim thus
reduces to showing that 7% (a)-[['t] = g«(c). Since the multiplication on Rxyy is induced
by that on Ch(U) via 0, it suffices here to show that o* (7% (a)) - t*([I'y]) = ¢* (9«(v)) in
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Ch(U). But since [I'f] = g«([X]), the projection formula gives that

(x (@) A ([Tp]) = (rx (@) - ha([UX])
= he (h* (& (7x(0))))

hy ((mx oo h)*(a))

= ha(ix(a))

= 1 (g+(e)),

and so the claim holds.

(2) Let a € Ch(Y). Since Ry = Ch(Y), proving the claim amounts to showing that
[Ff]*(a) = f*(a). By definition, [Ff]*(a) is the image of the product 7y (a) - [I'y] €
Rx«y under the pushforward (7wx).. We first compute the product, which is the image
of v* (73 (a)) - t*([I'¢]) € Ch(U) under 6. By the projection formula, we have

Cmy () K([Op]) = o (my (@) ha([Ux])
= h (h° (" (my())))

h« ((my oo h)*(«))

D ((fOLX) a))

ha (x (f7 ()

= (g« (["(a))),

and so 73 (a)-[['t] = g« (f*(«)) by the defining property of . Since (7x)«0g+ = (Tx09)« =
(idx )« is the identity, applying (7x ). then gives the desired result. O

*

5.C. The Algebra of Rational Correspondences. As above, let X be a product of
generically smooth nondefective quadrics over F. Taking Y = Z = X in §5.Al we get a
composition operation o: Ry2 X Rx2 — Rx2. If we let Ax be the image of the diagonal

embedding X — X x X, then we have:

Proposition 5.3. The operation o equips Rx2 with the structure of an Fa-algebra with
identity [Ax|. Moreover, with this structure, Rx> admits Ch(X?) as an Fa-subalgebra.

Proof. Tt is clear from Lemmal5.1]that o is associative and Fa-linear. Since Ay is the graph
of the identity morphism X — X, the neutrality of [Ax] for o follows from Proposition
This proves the first statement. At the same time, we have already noted that o preserves
F-rationality of cycles, and since [Ax] is F-rational, the second statement follows. ]

6. IsoTrROPIC REDUCTION

Let ¢1,. .., vm be nonquasilinear nondefective quadratic forms over F. For each 1 <t <
m, we set X; := X,,. We are interested in the product X := Xj x --- x X,,. If necessary,
we fix an orientation of X (see Remark [4.4). We may then consider the standard basis
of the Fo-vector space Rx consisting of certain external products of classes of projective
linear subspaces and plane sections of the quadrics X; (again, see Remark .

6.A. A Computation for a Single Quadric. Let us suppose here that m = 1. For
ease of notation, set ¢ := ¢ and V := V,. Suppose that ¢ has type (r,s). We assume
that r —iw(¢) > 1, i.e., that the anisotropic part of ¢ is not quasilinear. Set Y := X, .
Again, we choose an orientation of Y if necessary, and consider the standard basis of the
Fy-vector space Ry. We then have the following:
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Lemma 6.1. If j =iy (p), then the element
r—j—1
= Y (W7 x 1) + (ligj x h') € Rxxy
=0

1s F'-rational.

Proof. let W be a totally isotropic j-dimensional subspace of V. We can then identify
Y with the variety of totally isotropic (j + 1)-dimensional subspaces of V' containing W.
Under this identification, let Z be the closed subscheme of X x Y consisting of all points
(L,U) with L C U. Note that the canonical projection Z — Y is a projective bundle of
rank j (Z is the projectivization of the restriction of the tautological vector bundle on the
Grassmannian of (j + 1)-dimensional subspaces of V' to Y'). In particular, Z is integral of
dimension dim(Y') + a = dim(X) — a. We state the following:

Claim. For each 0 < i < r — j, we have [Z](h"*7 x I;) = [Z](Liyj x h*) = lo x Iy in Rxxy-
Given the claim, let us show that « is F-rational. Suppose first that s # 0, i.e., that

ql(¢) is non-trivial. Since dimZ = dim X — j, we have scalars a;, b; € Fy such that

r—j—1

= D ailh X L) + bl x B
=0

in Rxxy. For each 0 <1¢ < r — j, the claim then gives that

=)
lOXlO:<Z

=0

1
ai(h7 5 1) 4 byl ¥ hz)) (R % 1) = aily x Iy

and
1

lo X lp = ( ai(hiﬂ X Zz) + bi(li+j X h2)> (li+j X hl) = b;lg X lp,
1=0

M5

and so a; = b; = 1. Thus, in this case, we have a = [Z] € Ch(X x Y). Suppose now that
s =0, i.e., that ¢ is nondegenerate of even dimension. Then

r—j—2
[Z] = ( D @i L) + biliyy hi)> + ("' x a) + (l—1 x B)
i=0

for some a;,b; € Fy and o, 8 € Foh™ ™' 4+ Fyl,_; C Ry. Using the claim as above, we
get that a; = b; = 1 forall 0 < i <7 —j —1, and that ah" 771 = [; = Bl—j—1 in Ry.
The equality ah” 771 gives that o = lr—j—1 + ah™~I71 for some a € Fy. Let b,c € Fy be
such that 8 = bh" 771 4+ clr—j—1. Then @(h“1 X h“jfl) = clg X lp in Rxxy. Since
h"1 x h7==1 is F-rational, it follows that clg x lp € Ch(X xY), so X x Y admits a O-cycle
of degree c. In particular, Y admits a 0-cycle of degree ¢. Since Y has no F-rational points,
Springer’s theorem then tells us that ¢ = 0, and so 8 = bh" /L. Since Blr—j—1 = ly, we
must then have that b = 1, and so

r—j—2
(7] = ( D (W X ) + (i % hi)) + (B X (l—jor + ah™ 7)) 4 (g x BT
1=0
= a+ (ah"_1 X hT_j_l) .

Since h"~! x h"™97! is F-rational, the same is then true of o = [Z] + (ah”~! x h™I71).
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It now only remains to prove the claim. Let 0 < ¢ < r —j — 1. To prove the desired
identities, we are free to pass from F to its separable closure in F. As in the proof
of Lemma this preserves the nondefectivity of ¢ while allowing us to assume that
iw(p) = 7. Let W’ be an (i+ j + 1)-dimensional totally isotropic subspace of V' containing
W. In the case where s = 0 and i = 7 — j — 1, we choose W’ so that its restriction to F
represents the class [,_; in Ry (this can always be achieved by Remark . Choose also
an (i + j)-codimensional subspace V' of V' such that V' N W’ is a 1-dimensional subspace
of V not contained in W. Let S be the closed subscheme of X x Y consisting of all points
(L,U) with L ¢ V' and U C W’. The (scheme-theoretic) intersection Z N S is then the
reduced subscheme of X x Y given by the F-rational point (V'NW' W +(V'NW")). Since
© is nondefective, this point lies in the smooth locus of X x Y. By Proposition (2), it
then follows that [Z]-[S] is the class of an F-rational point in X x Y. Since [S] = h'™/ x I;
by construction, this means that E(hiﬂ x 1;) =lo X lp in Rxxy. This proves the first of
the desired identities, and the other may be obtained by analogous considerations. O

6.B. Isotropic Reduction. We now return to the general situation considered at the
beginning of this section. For each 1 <t < m, let (1, s¢) be the type of p;. We assume
that r; > iy (p), ie., that the anisotropic part of ¢; is nonquasilinear. We set Y :=
Xe1)an X X X(op)an+ We fix an orientation of Y if needed, and consider the standard
basis of the Fo vector space Ry.

an’

Proposition 6.2. There are unique Fo-vector space homomorphisms f: Rx — Ry and
g: Ry — Rx such that:
(1) fog=id;
(2) f(Ch(X)) = Ch(Y) and g(Ch(Y)) C f(Ch(X));
(3) If« = g X -+ X ayy 18 a standard basis element of Rx, then f(a) = 1 X -+ X B,
where for each 1 <t <m, we have

liciw (o) f as = l; for some iw(pr) <i <y
By =L hi= W) if ap = hP for some iy (@) <i <7
0 otherwise.

(4) If B = P1 X -+ X By, s a standard basis element of Ry, then g(8) = ai X -+ X ayy,
where for each 1 <t < m, we have

o — livig (o) o Bt =i for some 0 <i <1y —iw(pr)
! RitHw (e if B =Rt for some 0 < i < ri — iy (1)

Proof. Note that the conditions in (3) and (4) determine f and g uniquely, and imply
that they satisfy (1). It therefore suffices to construct a pair (f, g) satisfying (2), (3) and
(4). By the discussion of it will be enough to exhibit an F-rational correspondence
a € Ch(X xY) such that the pair (f = ax, g = o) satisfies (3) and (4). Since the obvious
external product map @.", Rx,xy, — Rxxy is an isomorphism of Fs-algebras (Lemma
[.2), we may assume that m = 1. For ease of notation, set ¢ := ¢ and j := iy (yp). If
(r,s) is the type of ¢, then  — j > 1 by hypothesis, and Lemma gives that

r—j—1

a= Y (W x L)+ (liy; x h') € Rxxy
=0

is F-rational. Using Lemma [5.1] one readily checks that o has the desired properties.
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6.C. Isotropy Restrictions on the Ring of Rational Cycles. Let us now relax the
assumption on the anisotropic parts of the ¢; from the previous subsection. Recall (Re-
mark that we say an element of Ry involves a given element of the standard basis if
that element appears in its decomposition as a sum of the standard basis elements. With
Proposition we can establish the following restriction on the subring Ch(X) C Ry:

Proposition 6.3. Let a be an element of Ch(X) involving the standard basis element
h't X - X W' X X - X g, for some non-negative integers k < m and iy,. .., in.
Suppose that K s an extension of F' with the following properties:

() iw () k) > i for all 1 <t < k;
(i) (¢¢) Kk is nondefective for all 1 <t < m.

Then iw ((¢t)r) > it for all k <t < m.

Proof. In view of (ii), we can replace F' with K and F with K to reduce to the case
where K = F. Let k <t < m, and set X' := [[1;<p, 0t Xpi- By (i), the element
B =1y X oo X Ly, X A1 x .. pit=1 x Rt x oo x Bim € Ry lies in Ch(X'). If we
view a as a correspondence from X' to X,,, then a.(8) = l;, € Ry, . Since a and f3
are F-rational, it follows that [;, € @(X%). Suppose, for the sake of contradiction, that
iw (pr) <ip. fweset Y i= X0, Propositionthen implies that [; € Ch(Y") for some
i > 0. Since Ch(Y) is a subring of Ry, lp = h'l; then lies in Ch(Y’), and so Y admits a
0-cycle of degree 1. By Springer’s theorem, however, this implies that (¢;)an is isotropic,
which is impossible. The desired assertion therefore holds. O

Additional (and more subtle) restrictions on Ch(X) may be obtained by considering
the action of the Steenrod operations of (see Proposition (3)). We will take these
into account in the next section, where we restrict to the case where X is the product of
two copies of a single generically smooth nondefective quadric.

7. THE MDT INVARIANT

In this section, we fix a nondefective quadratic form ¢ of type (r, s) over F'. We assume
that » > 1, i.e., that ¢ is not quasilinear. We let h,q be the nondefective height and
F =FyCF, C--- C Fy,, the nondefective splitting tower of ¢ (see §2.E|). Recall that
for each 0 < t < hypg, we write ¢ for the anisotropic part of ¢ over Fi, which is still
nondefective and nonquasilinear. For each 0 < ¢t < hyq, we set j; := ji(¢) and iy := i(p).
We also set X := X, and X; := X, for ¢ # hyq. In the case where s = 0, we choose
orientations of X and each X; (Remark . For each positive integer m, we choose the
orientation of X™ (resp. X;") by assigning the given orientation of X (resp. X;) to each
factor. This being fixed, we can then consider in all cases the standard basis of Rxm
(resp. RY%,) consisting of m-fold external products of elements in the set (R, i Yo<icr
(resp. {h%,l;}o<i<r—j,) (Lemma . We will also have occasion to pass from F' to some
larger field K. When doing so, we shall give X the orientation compatible with the given
one on X (i.e., if m: Xx — X is the canonical projection, then we choose the orientation
of Xk for which 7*(l,—1) = l,—1). This also applies to powers of Xx. In what follows,
we are mainly interested in studying the rationality of cycles on X?2. However, this also
necessitates consideration of higher powers of X. We start with some generalities.

7.A. Notation, Terminology and Preliminary Facts. Fix a positive integer m. Fol-
lowing [3, §72], we say that an element of Rxm is essential if it is doesn’t involve any
standard basis elements of the form A" x - - - x him for some 0 < i; < r. If Ess(Rxm) is the
Fs-linear subspace of Rxym consisting of these elements, then there is a unique Fa-vector
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space homomorphism ess: Rym — Ess(Rxm ) that fixes each essential element of the stan-
dard basis and sends the others to 0. Since the elements A" x - - - x h'™ are F-rational, ess
preserves Ch(X™). For all non-negative integers ki, ..., kny, we let D¥+Fm be the Fyo-
linear endomorphism of Ry given by multiplication by the element h*¥' x - - - x h¥m . Since
the latter is F-rational, D¥+Fm preserves Ch(X™). Note that if @ € Rym is homoge-
neous of degree j, then D¥1:+*m (o) is homogeneous of degree j — > k;. If o, 8 € Rxm,
then we write e N B for the sum of all the standard basis elements of Rx= involved in
both v and B. If & and 5 are both essential, then the same is true of aNG. If anN g =0,
then we say that o and § are disjoint. If a N B = 3, then we write f C . An F-rational
element 3 € Ch(X™) is said to be indecomposable (or minimal) if for any B € Ch(X™)
with 8 C «a, we have 8 = a. Such elements are clearly essential.

We shall need two further technical tools beyond those already developed. First, let
mult: Ry2m — Rxm be the Fa-linear map obtained by composing the inverse of the
external product isomorphism Rxm ®p, Rxm — Rx2m (Lemma and the multiplication
map Rxm ®p, Rxm — Rxm. For any nonnegative integer j, we may then get a product
homomorphism mult ® id: Ry2m+; — Rxm+; by identifying Ryi+; with Ry ®p, Rx; for
each i € {2m, m} (Lemma[1.2). We then have the following:

Proposition 7.1. For any nonnegative integer j, the map mult ® id: Rxyem+; — Rxm+j
sends Ch(X?™m*J) to Ch(X™7).

Proof. The given map factors as Rxam+j , Ryo2m+i) JToult, Rxm+j, where 7: x2(m+j)
X?m+7 i the obvious projection. To prove the claim, we may therefore assume that j = 0.
Let U be the smooth locus of X, and let A: U™ — U?™ be the diagonal embedding (here
we are concretely identifying U?™ with U™ x U™). Since the powers of U are smooth, we

have the pullback A*: Ch(U?™) — Ch(U™). We may then consider the diagram

Ch(U?™) 2"~ Ch(U™)

| |

It
Rx2m L‘ RXm

where the vertical maps are the canonical ring homomorphisms described in Proposition
(2). Since the images of these homomorphisms are Ch(X?™) and Ch(X™) respectively,
it suffices to show that this diagram is commutative. For this, we are free to replace F
with its separable closure in F' and hence assume that iy (¢) = r (see the proof Lemma
. In this case, the map 6: Ch(U) — Rx of Proposition is surjective (see §4.BJ), and
so each element of Ch(U™) can be expressed as the sum of an element in the image of the
external product homomorphism Ch(U™) ®p, Ch(U™) — Ch(U?™) and an element in the
kernel of the left-vertical map in the diagram. If a, 8 € Ch(U™), then af = A*(a x ) by
definition. Since the left-vertical map in our diagram is a ring homomorphism, it follows
from the definition of mult that our diagram commutes if we replace Ch(U?™) with the
image of the aforementioned external product homomorphism. To prove commutativity
of the diagram in general, it then suffices to show that A* sends elements in the kernel of
the left-vertical map to elements in the kernel of the right-vertical map. But U?™ and U™
are smooth varieties admitting a degree function (in the sense of , and the kernels
in question are the numerically trivial ideals No(U?™) and No(U™) by Lemma An
application of Lemma (2) with f = A then gives the desired assertion. O

Remark 7.2. When ¢ is nondegenerate (so that X is smooth), the proof of the proposition
shows that mult is given by pullback along the diagonal embedding X™ — X?™. Such
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pullbacks play a basic role in the treatment of nondegenerate forms found in [3, Ch. XIII],
and the above will allow us to extend the relevant arguments to our setting.

Another basic tool in what follows will be extension of scalars to a field in the nonde-
fective splitting tower of . Here, Proposition [6.2] gives the following:

Proposition 7.3. For each 0 < t < hyg, there exist unique Fo-vector space homomor-
phisms fi: Rxm — Rxm and g;: Rxm — RX;% such that:

(1) fe(Ch(X™)) € Ch(X[") and g:(Ch(X]")) C Ch(XJ;);
(2) If o« = g X+ - - X vy, 15 a standard basis element of Rxm, then fi(a) = 1 X+ X B,
where for each 1 < s < m, we have

lics, if as =1; for somejy <
Bs = WPt if ag = h' for somei <r —j;

0 otherwise.

(3) If B = B1 X+ X P is a standard basis element of Rxm, then gi(8) = a1 X+ X am,
where for each 1 < s < m, we have

o — liys, if Bs =1; for some 0 <@ <1 —3j;
VR if By = h for some i < r —j;.

Proof. Properties (2) and (3) characterize f; and g; uniquely, so it suffices to show that

maps satisfying (1), (2) and (3) exist. But if 7: X, — X is the canonical projection, then

we can take f; = fon* and g = g, where f: Rxm — Ry and g: Rxj» — Ry are the
t t

maps from Proposition (see the statement of the latter). O

7.B. Rational Cycles on X?2. Our goal now is to study the Fa-vector space Chg, (X?) C
(Rx2)dy- When ¢ is nondegenerate, this gives critical information about the structure
motive of the quadric X is the category of Chow motives with Fo-coefficients (which
remembers a great deal about ¢ itself — see [3, Ch. XVII]). In [3, Chs. XIII, XV],
various results are obtained in the nondegenerate case using the basic tools of Chow theory
for smooth varieties (in particular, pullbacks, intersection products and composition of
correspondences). Using the results of §§4-6, as well as Proposition we can now adapt
some of the arguments to our more general setting.

As observed by Karpenko in the nondegenerate case (see [3, Ch. XIII]), it is convenient
to extend the discussion to a study of the larger space Chsg, (X?) C (Rx2)sdy. By
Proposition[5.3] the composition law introduced in §5|extends the Fa-vector space structure
on (Rx2)>d, to an Fy-algebra structure. Note also that (Ry2)q, is an Fp-subalgebra of
this algebra, and the same is true of Chsg4, (X?) and Chg, (X?) (again, see Proposition
. Observe now that, one exceptional case aside, the essential standard basis elements
in (Rx2)>d, are those of the form ht x li+j or lir; x l; for some integers j > 0 and
0 <i < r—j. The exceptional case is where s = 0, in which case l,._1 X [,._1 is an essential
standard basis element in (Rx2)q4,. By Proposition however, this can only be involved
in an element of Chy(X?2) when s = 0 and ¢ is hyperbolic, and will therefore be effectively
irrelevant for our considerations. We can also exclude additional elements of higher degree
by taking the non-defective splitting pattern of ¢ into account:

Lemma 7.4. Let @ and j be integers with j > 1 and 0 < ¢ < r —j. If an element of
Chsq, (X?) involves either of the standard basis elements h X l4; or li; X h', then there
exists an integer 0 <t < hyq such that iy <@ <jey1 — J.
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Proof. Since i < r, there is a smallest integer 0 < t < hypq such that j;4+1 > ¢. Since
iw (@F,,) = jt+1, Proposition then tells us that we in fact have j;.41 > 7 + j, and so
the claim holds. OJ

Let Ex2 be the subset of (Ry2)>4, consisting of all elements of the form h® x l;4; or
liyj X h' for integers 7 > 0 and 0 < i < r — j satisfying the restriction of Lemmawhen
j>1. If 0 <t < hpq, then the tth shell of Ex2 is the subset consisting of the elements
ht x ligj or liyj X hi with j;_1 < i < j; — j. Following the treatment of nondegenerate
forms in [3] §73], the elements of E'x2 may be assembled in a “shell pyramid diagram”:

[¢] o
o O o O
o O O [¢] [¢] O O O
O O O O o O o O O O O O
[¢] O O O O O O O O O O O O O O O O o
O o O o0 O o O o O o o o O 0O o o O o o o o o o o
0 1 2 2 1 0

The nodes in the jth row of the diagram (the bottom one being the Oth row) represent of
the elements of Ex2 of the form h* X l;4; and l;+; x h'. Reading from left to right, the
elements are ordered as follows: h° xlj, h! XlLit1,-0 0, hr—1 Xlp—14j, lr—145 xhr=1 ..., l; xhV.
If 0 <t < hypq, then the elements of the tth shell of Ex2 correspond to the elements in
the tth pyramid from the left as well the tth pyramid from the right. For instance, the
diagram above depicts the situation where r = 12 and ¢ has nondefective splitting pattern
{2,8,12} (the numbers beneath index the shell numbers). For the reader familiar with the
nondegenerate case, one may interpret things as follows: Suppose 1/ is a nondegenerate
form of dimension 2r + s over F' with the same nondefective splitting pattern as ¢. Then
the shell pyramid diagram for X is the shell pyramid diagram for X, found in [3 §73],
but with the the shells indexed by integers > hpq deletedﬁ For non-negative integers
4, k1, ko with ki + ko < j, the operator DFi-+2: (Rx2)dx+j =+ (Rx2)dx+j—ki—k, Dreserves
the elements of E'y2, and admits the following simple visualization in terms of its action
on any given node: Shift the given node k; times along the negative diagonal containing
it, and then the resulting node ko times along the positive diagonal containing that node
(cf. [3, Ex. 73.9]). For each 0 <t < hyg, the maps f; and g; of Proposition (with
m = 2) also admit simple visualizations in this setup: The shell pyramid diagram for X
may be viewed as the diagram for X with the shells numbered 0,1,...,t— 1 deleted. The
restriction of f; to Ex2 (resp. Eth) may then be visualized as the obvious projection of
one diagram onto the other (c.f. [3| Ill. 73.25]). Similarly, g; may be visualized as the
obvious inclusion of the diagram for X; into the diagram for Xp,. If ¢ is not hyperbolic,
then every essential element of Chs 4, (X?) may be visualized by shading the nodes in the
diagram corresponding to the standard basis elements it involves. The determination of
@de (X?) then amounts to determine the permissable shadings. In fact, it suffices to
determine those that correspond to the indecomposable elements of ﬁzd (X 2). Following
[3, Ch. XIII], we note some simple restrictions on the possibilities here.

First, if o and § are essential elements of (Rx2)q,+; for some nonnegative integer j,
neither of which involves [, _1 X [,_1 in the case where s = j = 0, then a quick computation
using Lemma reveals that the cycle a N f coincides with ess(D7? o o). This gives:

Lemma 7.5. Suppose that o, B € @dxﬂ' (X?2) for some nonnegative integer j. Then:

4n [3L §73], the authors restrict their considerations to anisotropic forms. When ¢ is anisotropic, the
Oth shell of our diagram is empty, and so the discussions agree in this case.
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(1) an B € Chyy4;(X?);
(2) If a is indecomposable and o N B # 0, then oo C 5.

Proof. (1) If ¢ is hyperbolic, there is nothing to show. If not, then neither « nor 3 involves
ly—1 X l,—1 in the case where s = j = 0, and so the claim holds by the remarks above. (2)
If v is indecomposable, then (1) implies that either aN B =0o0r aN g = a. (|

The computation underlying the proof of the previous lemma also reveals that for any
nonegative integer j, the map D’Y: Chgy;(X?) — Chg, (X?) sends indecomposable
elements to indecomposable elements. Since D¥9 = (D%0)°F for any positive integer k,
the same is then true of D¥0: Chy, 4 ;(X?) — Chyy4j_k(X?) for any 1 < k < j. Taking
into account the factor exchange automorphism of X2, we also get the same assertion for
the maps D%*: Chyy 4;(X?) — Chgy 4j-£(X?). Combining, we then get:

Lemma 7.6.7Let 7, k1, ko be nonnegative integers with k1 + ko < j. Then the Fa-linear
map D**2: Chyy; (X % X) — Chyyj—g,—k, (X?) is injective and sends indecomposable
elements to indecomposable elements.

Proof. Injectivity is clear from the definition, and since D¥1:F2 = DF1.0 o DOk2 the second
statement holds by the remarks above. O

7.C. The MDT Invariant. We now introduce a discrete invariant of ¢ that reconstructs
the space Chg, (X?). For each integer i, we introduce formal symbols 4}, and i"P. For any
integer j, there is a shifting map on the set consisting of these symbols that sends 4, to
iolj] == (i 4+ j)o and P to i"P[j] := (i + j)"P. If A is a subset of this set, then we write
A[j] for the image of A under this shifting map.

Let A(X) be the set consisting of the symbols i), with 0 < ¢ < r and i"P with dx —r <
i < dx. If Ais a subset of A(X), then we write Aj, (resp. A"P) for the subset of A
consisting of the elements of the form iy, (resp. "P). If A, # 0 (resp. A"P # (), then
we set a(A) := min{i | 9, € A} (resp. b(A) := max{i | i"® € A}). For each integer
0 <@ <r, weset ag, = ht x 1; € FEx2. For each integer dx — r < i < dx, we set
oo 1= lg, ;X hix—% ¢ Ey>. Using Lemma one readily observes that these elements
are idempotent (Rx2)q4, . Moreover, one exceptional case aside, they are pairwise mutually
orthogonal. The exceptional case is that where s = 0 and dimp = 2 (mod 4), as there
we have (h"1 x I,_1) o (l,_1 o A" 1) = h"=1 x A"~ If A is a subset of A(X), then we
write ap for the essential cycle >\ ., ax € (Rx2)qy. If ¢ is not hyperbolic, then every
element of Chg, (X?) is of this form. In this case, we write A(a) for the subset of A(X)
corresponding to a given element o € Chy, (X?).

Remark 7.7. If 0 <t < hyg, then dx, = dx — 2j;, and one readily checks that the maps f;
and g; from Proposition (for m = 2) have the following properties:
o If A C A(X), then f(an) = arj—j,)na(xy);
o If A C A(Xy), then gi(an) = -
Now, Lemma [6.1] yields the following:
Lemma 7.8. a,(x) € Chyg,, (X?).

Proof. The claim is that 37— (h? x I; +1; x h?) is F-rational. If iy () = r, this is clear. If
not, then Proposition [6.2] allows us to reduce to the case where ¢ is anisotropic, and here
the claim holds by Lemma [6.1 O

By Lemma it follows that A(X) admits a unique partition into disjoint subsets
A1, ..., A; such that each of the cycles ay, is an indecomposable element of Chy, (X?).



RATIONALITY OF CYCLES ON PRODUCTS OF GENERICALLY SMOOTH QUADRICS 29

The set consisting of the subsets Aq,...,A; shall be denoted MDT(yp), and its elements
shall be called the connected components of A(X). We shall also say that two elements
of A(X) belonging to the same connected component are connected. By a summand of
A(X), we shall mean a union of the connected components. Our notation and terminology
is informed by the case where ¢ is nondegenerate, where we have the following:

Remarks 7.9 (MDT in the nondegenerate case). Suppose that ¢ is nondegenerate (so that
X is smooth).

(1) The invariant MDT(y) has the following interpretation: For a field k, let Chow(k, Fa)
be the category of Chow motives over F' with Fa-coefficients. By a result (essentially)
due to Vishik, the motive of any smooth projective quadric in this category admits an
essentially unique decomposition as a direct sum of indecomposable objects. Over F,
the idempotents ay € Chy, (X?) = EndChOW(F%)(M(Y)) give rise to a decomposition

of M(X) as a direct sum of Tate motives indexed by the elements of A(X). Via scalar
extension, the complete decomposition of M (X) in Chow(F,Fs) yields a partition of
these Tate motives, and the corresponding partition of A(X) is exactly MDT () (see
[3, Ch. XVII] for more details). For this reason, MDT(¢p) is sometimes referred to
in this setting as the motivic decomposition type of ¢. Although we do not have a
definitive motivic framework within which we can discuss the case of degenerate forms,
we nevertheless adopt the MDT notation for the sake of consistency.

(2) In one respect, our notation differs slightly from what can be found elsewhere in the
literature in this case. In particular, in [I7], A(X) is (essentially) taken to be the set
consisting of the symbols 7, and "? with 0 < ¢ < r, with q;u being now the cycle
I; xh'. As indicated above, our notation is rather in line with indexing of Tate motives.
This allows for cleaner use of the shift notation introduced above in later statements.

Isotropic reduction gives the following:

Lemma 7.10. If iy (¢) < r, then MDT(p) consists of the following sets:
o {ipp} with 0 <i <iw(p);
o {i"P} with dx —iw(p) <i <dx;
o Afliw ()] with A an element of MDT (¢an)-

Proof. If 0 < i < iy(¢), then h? x I; and I; x h' are clearly indecomposable elements of
Chy, (X?), and so the sets in the first two points are connected components of A(X). Now,
if A is an element of MDT(gan), then go(aa) = apfiy, (o)), Where go: Rx2 — Ry is the
map from Proposition (Remark (7.7 . But it is clear from the statement of Proposmon
that go sends indecomposable elements of CthO (Xo) to indecomposable elements of

Chy, (X?), and so the listed sets are all the connected components of MDT(¢). U
Using Proposition [7.1} we then get:

Lemma 7.11. The following are equivalent:
(1) ¢ is isotropic;
(2) {010} is an element of MDT(yp);
(3) There is an odd-cardinality element of MDT(p);
(4) There is an odd-cardinality subset A of A(X) with ay € Chy(X?).

Proof. (1) = (2): Apply Lemma
(2) = (3) = (4): Clear.
(4) = (1): Consider the map mult: Ry2 — Rx of Proposition By definition, we

have mult(ay) = lp for all A € A(X). Since mult preserves F- ratlonahty (Proposition[7.1]),
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it follows that lp = |Allp = mult(D_ ., ) is F-rational, and so X admits a 0-cycle of
degree 1. But Springer’s theorem then tells us that ¢ is isotropic, as desired. (|

Before proceeding to the anisotropic case, we make one further basic observation:

Lemma 7.12. If K/F is a purely transcendental extension, then MDT(pg) = MDT(¢p).

Proof. We claim that the scalar extension map Chg, (X?) — Chg, (X%) is surjective. For
this, it suffices to consider the case where K = F(T') for a single variable T'. In this case, the
projection X% — X? factors as the composition X% = Spec(K) x X? — Al x X? — X?,
where the second map is the canonical projection, and the first is given by inclusion of the
generic point of A on the first factor and the identity on the second. The pullback along
the second map is surjective by homotopy invariance, and the pullback along the second
is surjective by [3, Cor. 57.11], so the claim holds. In particular, the scalar extension map
Chgy (X?) — Chgy (X%) is an isomorphism, and so MDT(¢x) = MDT(¢p). O

7.D. Splitting Pattern Connections. In view of Lemma[7.10] we shall now assume for
the remainder of this section that ¢ is anisotropic. The following extends [3, Lem. 73.19]
to our setting:

Proposition 7.13. Let 1 < t < hyg. For any integer 0 < i < iy — 1, the elements
(t—1 + 1910 and (dx — (jr — 1 —14))"P are then connected in A(X).

Proof. With what has been established thus far, the proof of [3, Lem. 73.19] goes through.
Briefly, one readily reduces to the case where t = 1 by using the map f;—1: Rx2 — RXt{1
of Proposition (note that j1(vi—1) = j+ —je—1). For t =1, let u: Xp, = Spec(F1) X
X — X? be the map given by inclusion of the generic point of X on the first factor and
the identity on the second. By [3, Cor. 57.11], u*: Ch(X?) — Ch(Xp) is surjective.
Since iw(¢r,) = ji1, the target contains [, ;. By the definition of u, it follows that
there exists an indecomposable cycle 3 € Chgy 4j,—1(X?) involving kY x I, _1. Consider
a := DY) € Chy, (X?). By Lemma a is indecomposable. Now by Lemma
the only elements in the 1st shell of Ey2 that have degree dx +j; — 1 are h¥ x b, -1
and lj,—1 x hY. As a result, a = (b x I;) + a(lj—1—; x W'~17%) + 3 for some a € Fy and
some 3 € (Ry2)q, that involves no elements in the 1st shell of Eyx2. Now since ¢ is
anisotropic, |A(«)| is even by Lemma At the same time, the same is also true of
A(B)]. Indeed, if 5 = 0, this is clear; if not, then h,q > 1, and an application of Lemma
7.11to g1(B) € ﬁdxl (X2) gives the claim.As a result, we must have that a = 1, and so
both i), and (dx — (j1 —1—1))"P lie in A(«), which is a connected component of A(X). O

Thus, if A is an summand of A(X), then each element of A}, admits a “dual” element
of AP determined by the nondefective splitting pattern of ¢. In particular, if the latter
is known, then A is determined by Aj,. Moreover, the integers a(A) and b(A) are defined,
and if j;—1 < a(A) < j; with 1 <t < hyq, then dx —j; < b(A) < dx — j—1. We can make
this more precise with the following result, the first assertion of which extends [3, Prop.
73.23] to our setting:

Proposition 7.14. Let 1 < t < hyq. If MDT(p) admits an element A’ with j;—1 <
a(N') < jy, then it admits an element A with a(A) = j;—1. Moreover:
(1) The sets A, A[1], ..., Alis—1] are all elements of MDT (), and A’ = Ala(A")—ji—1];
(2) Fiz an integer t <t' < hpq. If iyo € A for some jy_1 <i <jy, then i+ iy <jy. In
particular, iy > ;.
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Proof. Let 0 < j < i; — 1 be such that a(A’) = j;—1 +j. By the definition of a(A’) and the
remarks preceding the statement, a, involves no element of Fx2 in the shells numbered
1,...,t — 1. The key step is proving:

Claim. There is an indecomposable element o € Chgy, +i,—1—j(X?) that involves hlt-177 x
l;,—1, but no element of Ex2 in the shells numbered 1,...,¢ — 1.

Before remarking on this, let us show how it gives the desired conclusion. Let a be as
in the claim. By Lemma m D=1=30(3) is an indecomposable element of Chy, (X?).
By construction, it involves bt~ x l;,—1, but no element of Ey2 in the shells numbered
1,...,t—1. By Proposition it also involves [, | x Rt-1. Letting v be its image under
pushforward along the factor exchange automorphism of X2, we then get that A := A(7) is
an element of MDT(p) with a(A) = j;—1. The claim then holds with j = 0, and so we have
an indecomposable element 3 € Chgy, 4i,—1(X?) that involves hJ*=* x [;,_1, but no element
of Ex2 in the shells numbers 1,...,¢ — 1. For each 0 < k < i, set f;, := D*~1=%(3). By
Lemma By is an indecomposable element of Chg,, (X?) involving no elements of Ex in
the shells numbered 1, . ..,t—1. Since fy involves h/*—1 xIj, 1, we have A(By) = A, and then
A(Br) = Alk] for all 1 < k < i;—1 by construction. Thus, A, A[1],..., Afi;—1] are elements
of MDT(y), and since a(A") = a(A[j]) = a(Ala(A') —ji-1]), we have A’ = Ala(A') — ji—1],
proving (1). At the same time, since 3y = D%*~1(3), it involves h’ x I; if and only if 3
involves h' x l;i,_1. Thus, if i), € A for some integers t < t' < hyq and jp_1 < i < jy,
then B must involve h’ x I;4;, 1, and 0 i +1i; — 1 < jy by Lemma proving (2).

As for the claim, the case where t = 1 is already implicit in the proof of Proposition
When ¢ > 1, an explicit construction of a from a/ in the nondegenerate case is given
in [3, Proof of Prop. 73.23] using scalar extension to the function field of X, composition
of correspondences between powers of X and pullback along a partial diagonal embedding
X2 — X3 (in [3, Tl. 73.24], this is the construction allowing one to move from position 2
in the diagram to position 3). With the results of §5, together with Propositions and
(the latter being our substitute for pullback along partial diagonals), the very same
construction also gives the desired element in our more general setting. O

In view of the remarks preceding the statement of the proposition, we get:

Corollary 7.15. Let A be an element of MDT(p), and let 1 < t < hyq be the unique
integer with j;—1 < a(A) <ji. Then b(A) = dx — (a(A) + (i — 1)).

The element of MDT(¢) that contains 0O}, shall be denoted AY(X). We refer to it as
the upper connected component of A(X )E| This set has the following properties:

Proposition 7.16.
(1) a(AY(X)) =0 and b(AY (X)) = dimp ¢ — 1.
(2) If [AY(X)| # 2, then |AY(X)1| > 2, and min{i > 0| i, € AY(X)} = j; for some
integer 1 <t < hpg.
(3) If i, € AY(X) for some integer j1 < i < ja, then iy divides iy and {j; < i <
jo | 1o € AV(X)} = {i1, 2i1,...,52 — i1}
Proof. (1) Immediate from Corollary and the definition.
(2) If |AY(X)| # 2, then |[AY(X)|;, > 2 by Proposition Let 1 <t < hyq and
0 < j < i1 be such that j; +j = min{i > 0 | i, € AY(X)}. We have to show
that j = 0. Suppose otherwise. By Proposition (2), we have j; +1i1 — 1 < jit1-

5When ¢ is nondegenerate, this is the connected component of A(X) corresponding to what in the
literature is called the upper motive of X — see Remarks
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We claim that there exists an indecomposable element o € Chy,, +i, —1(X?) that involves
ht x lj,+i,—1, but no element of Fy2 in the shells numbered 1,...,£ — 1. Given this,
Lemma gives that 8 := D%171 is an indecomposable element of Chg, (X?) with
a(A(B)) = j:. By Proposition (1), however, A(B)[j] is then an element of MDT(¢p)
with a(A(B)[j]) = j¢+7, contradicting the fact that j;+j € AY(X). We must therefore have
that j = 0. For the claim, an explicit construction of o from ayv(x) in the nondegenerate
case is given in [3 Proof of Prop. 73.27] using scalar extension to the function field of
X, composition of correspondences between powers of X and pullback along a partial
diagonal embedding X? — X3. With the results of §5, together with Propositions and
the very same construction also yields the desired element in our setting.

(3) Let A’ be an element of MDT(p) containing 4, for some j; < i < jo. If we had
a(A’) > ji1, then Proposition (1) would imply that the same is true of every element
of MDT (i) containing i), for some j; < i < jo. Since AY(X) is one of these elements, we
must then have that a(A’) < j;. By another application of Proposition (1), we then
have that A’ = AY(X)[j] for some 0 < j < i;. At the same time, Proposition (2)
implies that the components AY (X), AY(X)[1],...,AY(X)[i; — 1] contain an equal number
of elements 7, with j; < i < jo, and so the claims follow. O

Recall (Theorem that dimy,, ¢ is a stable birational invariant of X (among the
class of quadrics we are considering). We shall see shortly that the same is true of AY(X).

7.E. Example: Forms of Nondefective Height 1. We consider here the simplest
possible case, namely that where h,q = 1 Note that we have the following:

Lemma 7.17. The following are equivalent:
(1) hna =1;
(2) i1(p) =r;
(3) 1 = dl(9) Fyp)-

Proof. (1) < (2): By definition.

(2) < (3): Since ¢ remains nondefective over F(¢), we have ©1 = (¢p(p))an = 7 L
al(¢)p(p) for some nondegenerate form 7 of dimension 2r — 2i1(p) over F(p). Thus,
i1(p) = r if and only if 1 >~ ql(p) p(y)- O

Now, the results of the previous section immediately give the following:

Proposition 7.18. If hyq = 1, then MDT(yp) consists of the sets AU (X)[i] with 0 <i <,
and we have AV (X) = {0, (r + s — 1)"P}.

Proof. Since hpg = 1, we have i1(¢) = r. In particular, dimppe = dime —i1(p) =
(2r +s) —r = r + s. By Proposition (1), it follows that AU(X) contains the elements 0y,
and (r + s — 1)"P. On the other hand, Proposition (1) tells us that each of the sets
AY(X)[i] with 0 <4 < r is an element of MDT(y). Since |A(X)| = 2r, we conclude that
these are the only elements of MDT(y), and that AY(X) = {0y, (r 4+ s — 1)"P}. O

If r = 1, then we clearly have that h,q = 1. For larger values of r, examples may be
produced with the following:

Lemma 7.19. Write dimp = 2" +m for integersn > 0 and 1 < m < 2". If ¢ is a Pfister
neighbour, then r + s < 2", and the following are equivalent:

(1) hpga =1;

(2) r+s=2";

(3) dimgp = 27! — 5.
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Proof. The first statement holds by Lemma (1). By part (3) of the same lemma, we
have i1 (¢) = dimp — 2" = 2r+s—2". In particular, h,q = 1 if and only if 2r4+s—2" = r,
i.e., r+ s = 2" This shows the equivalence of (1) and (2), and the equivalence of (2) and
(3) is clear since dimp = 2r + s = 2(r + s) — s. O

The forms satisfying the conditions of the lemma are said to be close Pfister neigh-
bours. The nondegenerate close Pfister neighbours are the general Pfister forms and their
codimension-1 subforms. It is expected that most anisotropic forms of nondefective height
1 are close Pfister neighbours - see §9) below for more precise statements.

Remark 7.20. If ¢ is a general (n + 1)-fold Pfister form (resp. a codimension-1 subform
of such a form), then the preceding discussion shows that AY(X) = {0}, (2" — 1)"P}, and
that MDT(¢) consists of the shifts AY(X)[i] with 0 <i < 2" (resp. 0 <i < 2" —1). The
deeper point underlying this is that the motive of X in Chow(F,F3) decomposes are a
direct sum of shifts of the (binary) Rost motive attached to ¢ — see [3, Ex. 94.3].

7.F. Further Restrictions Arising From the Steenrod Operations. Finer restric-
tions on MDT(¢) may be obtained using the action of the cohomological-type Steenrod
operations on Ch(X?) (see Proposition (3)). For a positive integer x, we write va(z)
for the 2-adic valuation of z. The following, which refines parts (2) and (3) of Propositon
extends a result of Karpenko ([3, Prop. 83.2, Thm. 83.3, Cor. 83.4]) to our setting:

Theorem 7.21. Let v be the smallest integer for which i < 2°. If |AY(X)| > 2, then:
(1) Each positive integer i with i, € AY(X) is divisible by 2*;
(2) Ifi the smallest positive integer for which i1, € AY(X), then i = j; for some integer
1 <t < hpq with v(ig41) > v2(i1). In particular,

Ug(il) < max{vg(ig), e ,vg(ihnd)}.

Proof. (1) Let 0 < i < r be an integer with 4, € AY(X). We show that i is divisible by 2V
by induction on i. If ¢ = 0, there is nothing to show. Suppose now that ¢ > 0, and that
each integer j < i with ji, € AY(X) is divisible by 2¥. Set w := vy(i). We have to show
that w > v. Suppose, for the sake of contradiction, that w < v. By the definition of v, we
then have that 2% < i;. In particular, we may consider the map

fi= D172 0 627 Chyyi,—1(X?) — Chy(X?).

Now, by the proof of Proposition there is an indecomposable element 7 € Chgyi, —1(X?)
that involves hY x I;, 1. By Lemma D%1=1(7) is then an indecomposable element of
Chy(X?) that involves h° x ly. In particular, for any integer j, we have ji, € AV(X) (vesp.

7" € AY(X)) if and only if 7 involves h? x Iy, _14; (resp. 7 involves Iy, —j4i, X h3x79).
Let j be an integer with j, € AY(X). By the definition of S?" (see §4.Al), we have

; > ] dim —J\, isow
J(W x by —145) = Z <2w3_ k) ( Iz}];(P J) RiT2Y =k o Litow k.
k>0
Observe now that if j < i, then the products (2wj_k,) (dim“,lg v ) appearing in the sum are
0 in Fs. Indeed, in this case, j is divisible by 2Y by hypothesis, and the same is true of
dimp,, ¢ by Theorem Both j and dimp,, ¢ — j are therefore divisible by 2¥, and the
claim then follows from Lucas’ theorem (see [3, Lem. 78.6]). In particular, we see that
if we express f(m) as an Fa-linear combination of the essential standard basis elements in
Chg(X?), then the coefficient of h* x I} is 0 when k < i and (dimg};“’_i) when j = 4. Since

ilo is connected to 0}, in A(X) (being an element of AY (X)), it follows that (dimgw—i) =0



34 STEPHEN SCULLY AND GUANGZHAO ZHU

in Fo. But since dimp,, ¢ is divisible by 2V, another application of Lucas’ theorem then
tells us that 7 is not divisible by 2%, a contradiction. The result follows.

(2) We already know from part (2) of Proposition [7.16] that i = j; for some integer
1 <t < hpq with 141 > i3. Set n := wvy(iy). By Theorem 2.5, dimyp = dimpp¢ + iy
is divisible by 2™. By part (1), the same is then true of dlmgpt = dimy — 2j;. Let m
be the smallest integer for which ;47 < 2. Since 441 > i1, we have m > n. Now
dimy; — ;41 = dimg,y, @ is divisible by 2™ by another application of Theorem Since
m > n,and since dimyy is divisible by 2", it follows that i;41 is also divisible by 2", i.e.,
v2(ig+1) > n. This proves the result. O

When ¢ is nondegenerate, another non-trivial restriction on the integer i from part (2)
due to Karpenko is essentially established in [3, Thm. 81.2, Cor. 81.19] (the characteristic
assumption in [3] was only imposed since the Steenrod operations of [11] where not avail-
able at that time). The same arguments, modulo the kind of adjustments implemented in
the preceding discussion, yield an analogous result in our setting. Since the proof is long
and technical, we omit the details and simply state here the conclusion:

Theorem 7.22. Suppose that |A X )| > 2, and let 1 <t < hyq be such that j; = min{i >
0], € AY(X)} (see Theorem Ifva(ie — 1) = vo(ir) + 2, then vo(ipy1) < wvalin) + 1.
In particular,

Ug(il) > min{vg(ig), e ,’Ug(ihnd)} — 1.

Remark 7.23. When ¢ is nondegenerate, a sufficient condition for the inequality |AY(X)| >
2 is that ¢ does not have maximal splitting: This is the “binary motive theorem” of Vishik,
a special case of Theorem [10.4] below. When ¢ is degenerate, this is no longer valid in
general, but some sufficient conditions are (implicitly) discussed in below.

8. DECOMPOSITIONS ARISING FROM STABLE BIRATIONAL EQUIVALENCES OF
QUADRATIC GRASSMANNIANS

Over fields of characteristic different from 2, a basic but important result of Vishik (see
[I7, Thm. 4.7]) allows to relate the Chow motives of the (smooth) projective quadrics
attached to two anisotropic quadratic forms in situations where certain of their associated
quadratic Grassmannians are stably birationally isomorphic. In particular, one can relate
the motivic decomposition types of the two forms under the appropriate hypotheses (see
Remarks . In this section, we prove the analogous statement for the MDT invariant
in our setting. While Vishik’s arguments make use of quadratic Grassmannians and their
motives, we give here a more direct argument lying within the framework of the previous
sections. For nondegenerate forms, this yields the stronger motivic statement as in [17]E|

8.A. The Result. Let ¢ and 1 be anisotropic quadratic forms over F' of types (r, s) and
(r',s"), respectively. We assume that r,7’ > 1, i.e., that ¢ and ¢ are nonquasilinear. Set
X = X, and Y :=Y,,. If necessary, we choose orientations of X and Y. When considering
separable extensions K of F', we choose orientations of X g and Yx compatible with those
for X and Y (note that ¢ and ¢ i remain nondefective here). When considering products
of copies of these quadrics (over F' or a separable extension of F'), we orient the product
using the given orientations of the individual factors.

Lemma 8.1. Suppose we have integers 1 < s < hpa(p) and 1 < t < hpq(y)) such that
for every separable extension K/F, we have iw(pr) > is—1(p) if and only if iw (¢Yx) >

6The characteristic-2 case of Vishik’s result for nondegenerate forms appears to be absent from the
literature.
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jt-1(¢). Let F = Fy C Fy C -+ C Fy (p) be the nondefective splitting tower of ¢, let
0<s <s, and set @' 1= oy = (PF,)an and V' := (YF, )an. Then:

(1) The nondefective splitting pattern of ' is contained in the set {j(¢)—iw (Yr,) | 0 <
k < hna(¥)}, and contains ji(v) —iw (Vr,, ).

(2) There exists an integer 0 < t' < t such that jy (¢) —iw (¢F,,) lies in the nondefective
splitting pattern of ¢, and such that the following are equivalent for every separable
extension K/Fg :

o i (¥) >s-1(9) —is ()
o iw (Vi) > iv(e) —iw(Yr,);
o i (Yi) >jile) —iw(Yr,) — 1.

Proof. (1) Since any separable extension of Fy is a separable extension of F', the first
statement holds by Lemma [2.3] For the second statement, let K be the unique field in
the nondefective splitting tower of ¢ for which iy (¢¥x) = j+(v0). By construction, K/F
is separable, and so iy (px) > js—1(¢) by hypothesis. By repeated application of Lemma
(2), the compositum K - Fy is then a purely transcendental extension of K, and so
iW(I//K,FS/) =iw(¥YK) —iw(Wr,) =jt(¥) —iw (YF, ). Since K/F and Fy /F are separable,
so is K - Fy/F, and another application of Lemma then gives the claim.

(2) Since iw (¢F,) = is(¢) <is—1(¢), and since Fiy /F is separable, we have iy (Vr, ) <
jt—1(10). By (1), there is then a largest integer 0 < ¢ < ¢ such that j» (¢) —iw (¢F,,) lies in
the nondefective splitting pattern of +)". Since j;(¢)) —iw (¢F,,) also lies in this set by (1),
it then follows from our standing assumption (and the fact that any separable extension
of Fy is a separable extension of F') that ¢’ has the desired property. O

Lemma 8.2. Let 1 <t < hpq(¥), and set a := dx —dy +ji—1(¢0) +j: () — 1. Suppose that
for every separable extension K/F, iw(px) > 0 if and only if iw (YK ) > ji—1. Thena >0,
and any element of @dxﬂ't(w)A that involves h® x liy(p)—1 also involves I, X Rit=1(¥)

Proof. As a matter of notation, let us set [; := 0 whenever i < 0. Let F;_1 be the unique
field in the nondefective splitting tower for ¢ with iy (¢F,_,) = ji—1(¢0). By hypothesis,
¢ remains anisotropic over Fy_i. Set ¢/ = ¢y_1 = (¢5,_,)an and Y’ := Xy If necessary,
we choose an orientation of Y’ and use this to orient Xp,_, x Y'. Let p: Rxxy —
RXFt_lxy/ be the composition of the scalar extension map Rxxy — R(XxY)Ft,l and
the map f: R(XXY)Ft—l — RXFF1 <y’ of Proposition By the latter, p sends F-rational
elements of the source to Fy_;-rational elements of the target, sends h°® x Ly (p)—1 tO hO x
Ly (g, and sends I, x ht=1%) to 1, x B, where ' = a —j;—1(¢) = dx — dy’ +1 (Y1) —
1 (note that dyr = dy — 2j;—1(¢0)). If K/F;_; is a separable extension, then we have
iw(pr) > 0 if and only if iy (%) > 0 by Lemma To prove the lemma, we can
therefore assume that ¢ = 1. Under this assumption, ¢ becomes isotropic over F; :=
F(¢). Consider the map pu: Xp = Spec(F1) x X — Y x X given by the inclusion of
the generic point of Y on the first factor and the identity on the second. By [3, Cor.
57.11], the pullback p*: Ch(Y x X) — Ch(Xp,) is surjective. Since @, is isotropic, the
target contains lg. By the definition of u, it follows that there exists an indecomposable
element of Chy, (Y x X) involving h° x lp. Applying Din(¥)=10 ¢4 this element, we get
an indecomposable element 5 € @d},,jl(w)H(Y x X) that involves Ri1(@)=1 5 1. Suppose
now that a is an element of mdx-&-h(d))—l(X xY') that involves hY x by (p)—1- We can then
write a = (h® X Ij, (gy—1) +A(la X h?) + o for some X € Fy and some o € (Rx v )dy 41 ()1
that involves neither h® x by (py—1 or lg X hY. Replacing o with ess(a) if needed, we can
further assume that o/ involves no standard basis elements with h° as the second factor.
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Consider now the composition avo 3 € Chg,, (Y?). Since 3 involves Rt (=1 x [, and since
« involves kY x by ()15 Lemma shows that a o 8 involves (V)1 x li; (p)—1- Applying

Proposition @ to an indecomposable element 7 € @dy (Y'2) involving Rt (=1 % by ()1
and satisfying n C o o 3, we then get that a o 3 also involves lg x kY. Since o' involves
no standard basis elements with h? as the second factor, Lemma then tells us that
Mlg x h%) o B #0, and so @ > 0 and A = 1, proving the lemma. 0

Our version of Vishik’s result is now the following:

Theorem 8.3. Suppose that there are integers 0 < m < r and 0 < n < 1’ such that
for every separable extension K/F, we have iy (pr) > m if and only if iw (Vi) > n. If
MDT(¢) admits an element A with a(A) = m, then Aln — m] is an element of MDT(¢)).

Proof. Let s and t be the unique integers with js_1(p) < m < js(p) and j;—1(¢) < n <
it(¥). By Lemma and Proposition our hypotheses are then equivalent to:
e For every separable extension K/F, iyw(¢r) > js—1(¢) if and only if iy (vYx) >

Ji—1(¥);
e MDT(p) admits an element A’ with a(A") =js_1(y).

We may thus assume that m = js_1(¢) and n = j;—1(0). Let us set

a:=dx —dy —js-1(¢) +i-1() +ie(p) — 1
and
b:=ji(p) =1 —js-1(p) = a+dy —dx —ji1(¥).
We make the following claim:
Claim. In the above situation, a > js_1(¢), and there exists a cycle 8 € Chg, 15(X X Y)
with the following properties:
(i) B involves A1s=1(9) x [, (1 and I, x W=1(¥);
(ii) If B involves h* x [, (resp. I, x hV) for some integers w, v, then u, € A (resp.
(dx —u)"™ € A);
(iii) B involves no terms of the form h* x h¥ or I, x I, for integers u and v.

Before proving it, let us first show how the claim yields the desired result. Let 5 be as
in the claim, and let 3! be its image under pushforward along the canonical isomorphism
X XY =Y xX. Set

Y= (hit(é’a)il X ho)ﬁt S ﬁd}{‘i’b*(it(w)*l)(y X X)
By (i), 3 involves hls—1(#) x li, ()—1 and v involveﬂzit(mf1 X lq. Using (ii) and (iii), together
with Lemma one then checks that yo 8 € Chy, ,jsil(@)Jra(XQ) involves

(W)L % 1) o (Ws=1(#) x lyw)—1) = Rs=1(#) 5 ..

By Lemma it follows that a < js(¢). But since 8 involves I, x ht=1(¥) (i) tells us
that (dx — a)"P. Since a(A) = js—1(p), Corollary then gives that a > js(¢) — 1, and
so a =js(p) — 1. Let us now consider the cycle

n = (his(w)_l X ho)ﬂ € @dXer_(is((p)_l)(X X Y)
By (i) and the preceding remarks 3¢ involves Rit=1(¥) 5 1, = Rit=1(¥) x li ()1 and n involves

Ris(@)=1 % li, (4)—1- Using properties (ii) and (iii) of 3, together with Lemma one then
checks that n o ¢ € Ch(Y?) involves

(RO, gy—1) 0 (W1 gy q) = Bt g
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Let a be the unique indecomposable element of Chg, (Y?) which is essential and involves
by ()1 X Rit(¥)=1 By the preceding remarks, both af and Dit(w)_l’o(n o Bt) € Chg, (Y?)
involve A*(")=1 x [ (v 1, and so af ¢ D*(¥)~10(y 0 ). We now claim that A(a) =
Afjt—1(¥0) —js—1(®)] = A[m —n]. Since « is indecomposable, this will prove what we want.
Let 0 < i < 7. If avinvolves h x1;, then o involves [; x h*, and so noS3! involves LitGe(w)—1) X
ht. By Lemma B' € Chay45(Y x X) must then involve Iy (j, (p)—1) X RiF ) =1)=b and
so B involves hF0+W)=D=b 1, o ) 1. Setting k == ji—1(¥) — ji—1(p) = b — (i(e) — 1),
we see that a involves h* x l; only if 3 involves h'™F x litGe(p)—1)- By property (ii) of
B, this implies that i}, € A(a) only if (i — k)i, € A. In other words, A(a), € Afkljo.
A similar calculation shows that A(a)"? C A[k]"P, and so A(a) C A[k]. Now since «
involves Ij, (y)—1 X Rt =1 we have (dy — (j:(v) — 1)) € A(a). By Proposition
it follows that j:—1(¢),, € A(a). Since a(A(k)) = a(A) + k = js—1(p) + k = j1—1(¥),
we then have that a(A(a)) = j;—1(¢). As A(«) is an elememt of MDT(v)), this puts us
in a position to switch the roles of ¢ and 1 in the preceding arguments. In doing so,
the roles of A and A(«) are switched, and the role played by k is assumed by —k. The
preceding arguments then tells us that A C A(a)[—k]. In other words, A[k] C A(«), and
so A(a) = A[k] = Afjr-1(¢) —js-1(¢)], as desired.

It remains to prove the claim. We first show by induction on s that there exists an
element v € Chg,44(X x Y) involving his=1(#) Li,(p)—1- The case where s = 1 was
already done as part of the proof of Lemma [8:2] Suppose now that s > 2, and let
Fy = F(p). Set ¢’ := @1 = (¢p)an and ¢’ := (¥ Jan. By Lemma 8.1} ji () —iw (vp, ) lies
in the nondefective splitting pattern of ¢. Moreover, for any separable extension K/Fi,
we have iw (@) > js—1(p) —i1(p) if and only if iw (V) > 3:(¥) — iw(¢¥r) — 1. Set
X" := Xy and Y’ := Xy If necessary, we choose orientations of X’ and Y’, and use these
to orient X’ x Y’. By the induction hypothesis, Cther,il(g,),iW(wFl)(X' x Y') has an
element involving his—1(#)~1(®) x ljt(w)—l—iw(wpl)' Using the map g from Proposition
we then get a cycle in Chy, 14((X x Y)p,) involving hls—1(#) x li, ()1 As in the proof of
Lemma [3, Cor. 57.11] allows us to lift this to a cycle & € Chag, 45(X? X Y) involving
hO x his=1(#) x Ly ()—1- In Chay ya, (X% xY), we also have the element &' := ap x h°. Using
that A(a) = js—1(p), one readily checks that the product £¢ € Chy, 15(X? x Y) involves
Rs=1(#) % [ x li,(¢)—1- Pushing forward along the projection from X? x Y to the product
of its two outer factors then gives the desired cycle v. Let us now set 3 := ess(v o ay).
Since ay involves hl=—1(#) x li,_(p)» Lemma gives that [ involves

(hjs*l(@) X Ly (y-1) © (hisfl(#’) Xl () = Bis—1(9) « Ly () —1-

®)

At the same time, [ satisfies condition (ii) in the statement of our claim by construction.
It also satisfies condition (iii): Let 0 < u < r and 0 < v < 7’. Since 3 is essential, 3 does
not involve h* x h¥. If it involved [, X [, then we would have that (A" x h")B = ly X lo,
and so X X Y would have a 0-cycle of degree 1. But then the same would be true of X
and Y, contradicting the anisotropy of ¢ and ¢ via Springer’s theorem. To complete the
proof, it now only remains to show that a > js_1(¢) and that g involves I, x Pt
To see this, let Fs_1 be the unique field in the nondefective splitting tower of ¢ with
iw(er,_,) :=is—1(¢). Overriding the notation used in the construction of 3, let us now
set ¢ = @1 = (pFr,_;)an and ¥ 1= (YF,_ )an. As before, set X' := Xy and Y’ := Xy,
If needed, we choose orientations of X’ and Y’, and use these to orient X’ x Y'. Let

p: Rxxy — Rxsxy' be the composition of the scalar extension map Rxxy — Rixxy) »

and the map f: R(xxy), , — Rx/xy’ of Proposition By the latter, p(f) is then an

1
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element of Chy, 15(X’ x Y') involving h® x Ly (9)—1—iw (r, ,)- By Lemma there is an
integer 0 < ¢’ < ¢ such that for any separable extension K/Fs_1, we have iy (¢}) > 0
if and only if iy (¥}) > ju(p) — iw (¥, ,). Since p(B) involves h? x by (o) —1—iw ($r,_,)>
Lemma then tells us that it also involves [,/ X R () =w Wr 1) g1 some integer a’ > 0.
In particular, 8 involves [ () 1qar X R (¥, Let K be the unique field in the nondefective
splitting tower of 1 such that iy (vx) = jw11(3). Since B involves i (,)4ar X R ()
Proposition then implies that iy (px) > js—1(¢) + @/. Since a’ > 0, our standing
assumption on ¢ and ¢ then tells us that iy (Yg) > j1—1(¥), and so t' = ¢ — 1. Thus,
involves lj,_ | (4)4a’ X Rit=1(¥) | Since f8 has degree dx +b = dy — (j;—1(¢)) +a), we then have
that a = js_1(¢) + a’. Since a’ > 0, this completes the proof. O

In the course of the proof, we showed that the integer a := dx —dy —js—1(¢) +ji—1(¢) +
jt(¢) — 1 coincides with js(¢) — 1 under the standing hypotheses. In other words:

Corollary 8.4. Suppose there are integers 1 < s < hpq(p) and 1 <t < hpq(v) such that
for every separable extension K/F, we have iy (pr) > js—1(p) if and only if iw (¢Yxr) >
jt—1(10). Then

dime —js—1(p) —js(p) = dimp —ji—1(¢) = (¢).

Now, since a(AY(X)) = 0, the m = 0 case of Theorem gives:

Corollary 8.5. Suppose there exists an integer 0 < n < r’ such that for every separable
extension K/F, we have iw (px) > 0 if and only if iy (vYg) > n. Then AY(X)[n] is an
element of MDT(v)).

In particular, we get our earlier claim (extending the stable birational invariance of the
Izhboldin dimension):

Corollary 8.6. If ¢ 0 o, then AV(X) = AU(Y).

Proof. In this case, we have iy (¢x) > 0 if and only if iy (k) > 0 for every separable
extension K/F. By the previous corollary, it follows that AY(X) is an element of MDT (1).
Since a(AY (X)) = 0, we then have that AU(Y) = AY(X). O

Remarks 8.7 (Nondegenerate forms). In the case where ¢ and ¢ are nondegenerate, The-
orem gives the following stronger result: Suppose there are integers 0 < m < r and
0 < n < 7’ such that for every separable extension K/F, we have iy (px) > m if and only
if iy (Y ) > n. If M(X) admits a direct summand N in Chow(F, Fg) such that a(N) = m,
then M (Y') admits a direct summand isomorphic to the Tate twist N(n —m). This follows
from Theorem and the discussion of [3, Ch. XVII]. Similarly, Corollary yields that

when ¢ D 1, the upper motives of X and Y in Chow(F,Fs) are isomorphic.

8.B. Examples: Pfister Neighbours and Strongly Excellent Forms. Let ¢ be
an anisotropic nonquasilinear quadratic form over F of type (r,s). We set X := X,
h := hna(p), and write dimp = 2™ + m for integers n > 0 and 1 < m < 2™.

Lemma 8.8. If ¢ is a Pfister neighbour with ambient general Pfister form m and comple-
mentary form ¢°, then:
(1) For every integer 0 < i < m and every separable extension K/F', we have iy (1) >
0 if and only if iw (oK) > i;
(2) If m < r, then for every integer m < i < r and every separable extension K/F,
we have iw (9% ) > i —m if and only if iw (pK) > i.
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Proof. (1) This holds since 7 and ¢ are stably birationally equivalent forms with maximal
splitting (Lemma [2.11)).

(2) Recall that € is an anisotropic form of dimension 2" — m = dim¢ — 2m satisfying
©¢ ~p L . Like ¢, ¢° is dominated by 7. In particular, if K/F is a separable extension
such that either g or ¢ is isotropic, then 7w is isotropic, and hence hyperbolic. Then
0% ~ ¢k, and so iy (¢%) = iw (@) — m. The desired assertion therefore holds. O

Applying Theorem [B.3] we get:

Theorem 8.9. Suppose that ¢ is a Pfister neighbour with complementary form ¢¢. Then
r > m, and the following hold:
(1) If r = m, then MDT(p) consists of the sets {0y, (2" — 1)"P}[i] with 0 < i < m;
(2) If r > m, then ¢° is a nonquasilinear nondefective form, and MDT(p) consists
of the sets {0y, (2" — 1)"P}[i] with 0 < i < m, together with the sets A[m] with
A € MDT(¢°).

Proof. By Lemma [2.11] we have
r<2"—s=dimp-—-m—s=2r+s)—m—s=2r—m,

and sor > m. Let 7 be the ambient Pfister form of . Then hyq(7) = 1 (Lemmal[7.19)), and
so AY(X,) = {0y, (2" — 1)"} by Proposition In view of Lemma (1), Corollary
then implies that MDT(y) contains the sets {0y, (2" — 1)"P}[i] with 0 < i < m. We
now consider the two cases.

(1) If » = m, then the union of the elements of MDT(y) found above is all of A(X),
and so MDT(yp) is as stated.

(2) If » > m, then Lemma (3) gives that i;(¢) = m < r, and so h > 2. Moreover,
we have o ~ 90%(50) by Lemma (2), so ¢ is nonquasilinear and nondefective of type
(r—m,s). Now if m <1i < r, then Lemma(8.8/(2) tells us that for every separable extension
K/F, we have iy (¢%) > ¢ —m if and only if iy (¢x) > i. By Theorem it follows that
MDT(¢) also contains sets A[m] with A € MDT(¢°). Since |A(Xye) = 2(r—m) = |A|—2m,
the union of these sets and the other elements of MDT(y) found previously is all of A(X),
and so MDT(p) is as stated. O

We can enhance this as follows. Recall that we write o1 for the form (¢ p(,))an. When
¢ is a Pfister neighbour with complementary form ¢, we have @1 =~ (¢°)p(,) by Lemma
2.11] (2). We now have:

Proposition 8.10. In the situation of Theorem[8.9 (2), we have MDT (%) = MDT(¢1).
Thus, MDT(¢) consists of the sets {0, (2" — 1)"P}[i] with 0 < i < m, together with the
sets Alm| with A € MDT(¢1).

Proof. Set Y := X . Let m be the ambient general Pfister form of ¢, and set X := X. If
y € YXY, then Y (F(y)) # (), and so Pi(y) 18 isotropic. Since m dominates ¢, it follows that
Tr(y) is isotropic, and hence hyperbolic. The canonical map Ch(X F(y)) — RXF(y) is then
an isomorphism (see , so we may identify Ch(XF(y)) with RXF(y)- Let 0 < ¢ < dy.
Sincedy =2"-m—-2<2"—-1= dTX, the only non-zero element of Chi(XF(y)) is h?, which
lies in the image of the scalar extension map Ch'(X) — Ch"(Xp(,)). By [3, Lem. 88.5], it
follows that the scalar extension map Chg,, (Y2) — Chg, (Yg(w)
map Chg, (Y?) — @dY(Y}%(ﬂ)) is then an isomorphism, and so MDT(¢¢) = MDT(@%(W)).

) is surjective. The induced

Now since ¢ Y m, the fields F(yp) and F(7w) admit a common extension which is purely
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transcendental over both. By Lemma [7.12] we then have that
MDT(¢°) = MDT(¢%(r)) = MDT(¢,,)) = MDT(¢1),
as desired. m
This yields:

Proposition 8.11. Suppose that ; is a Pfister neighbour for every 0 < i < h. Then
there exist unique integers n +1 =mny > ng > -+ > ny > logy(s) + 1 such that dimy =
oM —2m2 ... (=1)12me 1 (—1)Ps. Moreover:
(1) For each 0 < i < h, we have dim p; = 2™i+1 —2ni+2 ... (—1)h=1=ignn 4 (_1)h—is,
(2) If we set miyq := dimg; — 2ni+1—1 = 2mit1 =1 _oniva 4 onigs ooy (—1)h—1=igna
(=1)"=%s for each 0 < i < h, then MDT(y) consists of the sets

{0107 (2m+1—1 _ 1)up}[m1 + 4 my _|_]]
with 0 <t < h and 0 < j < mjqq.

Proof. Per the statement, let us set ny := n + 1. The integer my in (2) is then equal to
m, which equals i;(¢) by Lemma (3). By hypothesis, ¢ is a neighbour of an n;-fold
general Pfister form, and so dimy; = 2" — dimy;. We now proceed by induction on h.
If h =1, then ¢1 =~ ql(¢)p(,), and so s < 2m~1 and dimy = 2™ — s. It is clear that
ny is the unique integer satisfying these conditions. Moreover, we have r = i1(¢) = m,
and so Theorem [8.9[ (1) gives that MDT(¢) consists of the sets {0y, (271~ —1)*P}[j] with
0 < j < m = mg. This proves the desired assertions in this case. Suppose now that
h > 2. In this case, 7 > i1(¢) = m. By Theorem and Proposition MDT(p)
then consists of the sets {0, (277! — 1)"}[j] with 0 < j < m = m1, together with the
sets A[m] = Almq] with A € MDT(p1). Note, however, that ¢ is an anisotropic form
of type (r — m,s), nondefective height h — 1 and dimension < 2™ satisfying the same
condition as . By the induction hypothesis, it follows that there exist unique integers
ny > mng > -+ > ny > logy(s) + 1 such that:

e For each 1 <4 < h, dim; = 27+l — 2+2 ... 4 (—1)h=1=igmn 4 (—1)h—ig,

o If we set m;y 1 := dim; — 2Mi+1 71 = it =1 _gnive 4 onivs 4.4 ()P 1ign 4

(—1)"=%s for each 1 <4 < h, then MDT(¢;) consists of the sets

{010, (275527 = 1)} s+ i+ ]
with 1 <7< hand 0 <5 <miqg.
In view of the preceding remarks, the desired assertions then follow. O

By Lemmas (2) and the hypothesis in the proposition is satisfied when ¢ is
strongly excellent (see the discussion following Lemma [2.12). Thus:

Corollary 8.12. If ¢ is strongly excellent, then there exist unique integers n + 1 =mnj >
ng > - > ny > logy(s) + 1 such that dimp = 2™ —2m2 ... 4 (=1)h=127n 4 (—1)hs,
Moreover:
(1) For each 0 < i < h, we have dim @; = 2"i+1 —2Mi+2 ... (—1)=1=ignn 4 (_1)h—is,
(2) If we set m;yq = dim; — 2171 = 2nit1—1 _gnitz 4 onivs ... 4 (—1)h—ligne 4
(—1)"=s for each 0 < i < h, then MDT(p) consists of the sets

{010, (27171 = 1)} my + -+ + m; + j]
with 0 < i< hand0<j <miyr.
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We expect that Proposition [8.11] says nothing more than this, i.e., that if ¢; is a Pfister
neighbour for every 0 < i < h, then ¢ is strongly excellent. Proving this amounts to
showing that if A > 2 and both ¢ and ¢ are Pfister neighbours, then ¢ is also a Pfister
neighbour. Specifically, what has to be shown here is that if 7 is the ambient general
Pfister form of o1, then 7 descends from F(y¢) to F. However, we currently do not know
how to prove this, even in the case where ¢ is nondegenerate.

8.C. Addendum: Virtual Pfister Neighbours. As in the previous subsection, let
¢ be a nonquasilinear anisotropic quadratic form over F of type (r,s). Set X := X,
h = hpa(¢), and write dimp = 2" + m for integers n > 0 and 1 < m < 2™,

If there exists an extension K/F such that ¢g is an anisotropic Pfister neighbour,
then we say that ¢ is a virtual Pfister neighbour. Using the main result of the previous
subsection, we get the following restriction on the MDT invariant for these forms:

Lemma 8.13. If ¢ is a virtual Pfister neighbour, then:

(1) m is in the nondefective splitting pattern of ;
(2) For each integer 0 < i < m, i), and (2" +1i — 1)"P are connected in A(X);
(3) If 1 <t < h is such that ji(p) = m, then ji—1(¢),, € AY(X).

Proof. (1) If ¢ is a Pfister neighbour, then m = i;(y) (Lemma (3)). If ¢ is a virtual
Pfister neighbour, m then lies in the nondefective splitting pattern of ¢ by Lemma [2.3
(2) If K/F is a field extension with i4(¢) = 0, then it is clear that any connections
existing in A(Xg) also exist in A(X). To prove the assertion, we can therefore assume
that ¢ is a Pfister neighbour. But in this case, the claim holds by Theorem
(3) As 0, € AY(X), we have (2" —1)"? € AV(X) by (2). Since j;(p) = m = dimp—2" =
dx — 2" — 2, we then also have that j;—1(),, € AY(X) by Proposition O

It is an intriguing problem to determine sufficient conditions for an anisotropic quadratic
form to be a virtual Pfister neighbour. While the nondefective spiltting pattern is unable
to detect this property in general, we do have the following special cases:

Proposition 8.14. ¢ is a virtual Pfister neighbour in the following cases:
(1) ¢ has mazimal splitting, i.e, i1(¢) = m;
(2) m=1;
(3) m =2 and 2 lies in the nondefective splitting pattern of ¢;

Note that case (2) has been treated in [7, Prop. 3.1]. A small modification of the
argument gives the more general case (1). Over fields of characteristic not 2, the analogues
of cases (1) and (3) are due to Hoffmann ([4, Cor. 3]) and Izhboldin ([8, Thm. 5.8]),
respectively. The basis of the arguments (which goes back to [4]) is the following: Let
T1,...,Tyh+1 be indeterminates, and set K := F(T1,...,T,41). Consider the (n + 1)-
fold Pfister form 7 := (T1,...,Th41)), over K. It is straightforward to check that  is
anisotropic, and showing that ¢ is a Pfister neighbour amounts to showing that there exists
an extension L/K such that 7y, is anisotropic and dominates a nonzero scalar multiple of
wr. We have the following lemma:

Lemma 8.15. In the above situation, set ¢ := ¢ L 7, and let K = Ko C K1 C --- C
K}, . (p) be the nondefective splitting tower of .

(1) Let i be a nonnegative integer in the nondefective spitting pattern of p. Then:
(i) There exists an integer 1 <t < hyq(v0) such that iy (pk,) = i and dimy, =
2" +m — 2i;
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(ii) If i > m, then there exists a separable extension L/K such that iy (pr) =i
and dim (1) an = 2" — m + 2i.
(2) Let 1 < t < hypq(¥) be such that vk, is anisotropic. Suppose that one of the
following holds:
(i) 7k, is isotropic;
(11) dim((wt)Kt(sﬂ))an <24+ m =20y (30)7
(iif) dim (@, )an < 2" — dimepeyg.
Then vk, < TK,, and so ¢k, is a Pfister neighbour.

Proof. (1) Since 7 () is hyperbolic, we have g (x) ~ px(r). But it is straightforward to
see that K(7) is a purely transcendental extension of F', and so (i) holds by Lemma
Suppose now that i > m. By Lemma there exists a separable extension F'/F such
that iy (pp) =i. Set ¢’ := (ppr)an. Then dimy’ = dimep — 2i = 2" +m — 2i < 2". By
[7, Prop. 3.1], it follows that exists a separable extension L of F'(T},...,Th+1) = K - F”
such that 7, is anisotropic and ¢} < 7r. Then iy (¢r) = ¢, and we have

Y~ (o Lm)p~ @ Lan ~ (1), -

Since dim (¢})5, = 2" —dim¢’ = 2" 4+ m — 2i, it follows that dim (¢ )an = 2" — m + 2i,
proving the claim (note that L/F' is separable, being a tower of separable extensions).
(2) By definition, we have 1y ~ ¢k, L 7g,. Let us now consider the three cases of
interest.
Suppose first that we are in case (i), and let j <t be the largest integer for which 7
is anisotropic. By Lemma [2.1] we have

Y Lk, ~ vk, Lk, LTk, ~ ¢k,

Since dimpy, = 2" +m < dim(y; L 7g;), and since 7, is anisotropic, mx, and 7y,
represent a common nonzero value of K. Since 7g;,, is isotropic, and hence hyperbolic,
the Cassels-Pfister subform theorem ([3, Thm. 22.5]), then gives that ¢; < mk,. By
Lemma [2.1, we then have that

oK, ~ i, L, Lk, ~ 4y Ly, ~ (wj)in,

and so pk; =~ (wj)erj < 7g; (both forms being anisotropic). In particular, ¢r, < 7k, .

Suppose now that we are in case (ii) or (iii). Let L be Ky(y) or K;+1, depending on
whether we are in the former or latter cases, and set ¢’ := (¢ )an and ¥’ := (Y )an =
((¥t)r)an- Then ¢ ~ ¢ L 7y, and the dimension hypothesis in each case tells us that
dim¢’ + dimv’ < 2"*! = dim7. Since L/K is separable, Lemma then gives that
dim ¢’ + dim7 — dimv’

2
Ifrr;, were anisotropic, it would then follow from [6, Prop. 3.11] that ¢’ < 7. But we would
then have that ¢ ~ ' L 7y ~ ¢, giving that dimy’ = 27+ _ dim ¢/, a contradiction.
Thus, 7, is isotropic, and hence hyperbolic. If L = K;1, we are then back in case (i).
Suppose therefore that L = K;(¢). Again, if 7g, , is isotropic, then we are in case (i),
so we may assume otherwise. In particular, we may assume that 7, is anisotropic. Now
since t > 1, g, L Tk, = Yk, is isotropic. Since both ¢k, and 7k, are anisotropic, they
then represent a common element of K;*. Since 7y, is hyperbolic, another application of
the Cassels-Pfister subform theorem then gives that ¢, < 7k,, as desired. O

> dim .

io((p/ 1 7TL) = iw((p/ 1 7TL) =

We can now prove Proposition [8.14}
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Proof of Proposition[8.14 As in Lemma set ) :=¢ L m and let K = Ky C Ky C

- C Ky, (y) be the nondefective splitting tower of ¢. By part (1)(i) of the lemma
(with i = 0) there exists an integer 1 < j < hyq(¥) such that ok, is anisotropic and
dim; = dimy = 2" +m. Now in all cases we are considering, m lies in the nondefective
splitting pattern of ¢. By part (1)(ii) of the lemma, it follows that there exists an extension
L/K such that iw(¢r) = m and dim(¢r)an = 2" + m. By repeated application of
Lemma (2), the compositum L - K is then a purely transcendental extension of L. In
particular, dim (¥r,.k; )an = dim (Y1 )an = 2" +m = dim;, and so 9; remains anisotropic
over L- K. Since .k, 1s isotropic, it follows that ¢y, and 1, are not stably birationally
equivalent. At the same time, part (1)(i) of Lemma also tells us that dimp,1; >
dimp,, ¢ > dimp,, ¢ K;- Since ¢ K; and ; are not stably birationally equivalent, Theorems
and then imply that ¢, is anisotropic. Since 941 ~ ¢k,,, L 7k,,,, and since
dim¢;41 < dimy; = dime, it follows that g, , is not hyperbolic, and is hence also
anisotropic. There are now two cases to consider.

Case 1. ¢ has maximal splitting. In this case, we have
dim (Y, (p))an < dimepjpr < dimyp; = 2" +m = 2" —m + 2i1(p).

Since ¢k, , is anisotropic, Lemma (2) (case (ii)) then tells us that it is a Pfister
neighbour, and so ¢ is a virtual Pfister neighbour.

Case 2. m = 2 and i;(p) = 1. In this case, part (1)(i) of Lemma shows that
J < hna(¥) — 2, and that dimvj1; = 2" and dimej40 = 2" — 2 < 2" +m — 2i1(p). If
¢K,., s anisotropic then Lemma (2) (case (ii) with ¢ = j + 2) tells us that it is a
Pfister neighbour. On the other hand, if ¢k, , is isotropic, then

dim (i, 5 )an < dimep = 2" +2 = 2" — (2" = 2) = 2" — dimy)y4o,

and so the same lemma (now case (iii) with ¢ = j + 1) then tells us that ¢k, , is a Pfister
neighbour. Thus, in this case, either pk; , or pk; , is an anisotropic Pfister neighbour.
Either way, ¢ is a virtual Pfister neighbour, and so the result holds. O

9. THE DEGENERATE PFISTER NEIGHBOUR PROBLEM

In this section we fix an anisotropic quadratic form ¢ of type (r, s) over F. We assume
that > 1 (i.e., that ¢ is not quasilinear) and set X := X,. We also write dim¢ = 2" +m
for integers n > 0 and 1 < m < 2™. Our goal is to investigate the conditions under which
@ is a Pfister neighbour. By Lemma m (1), a necessary condition is that r + s < 2",
and so we assume that this is satisfied in everything that follows.

Now, if ¢ is a Pfister neighbour, then ¢ is defined over F. More precisely, we have
©1 = (¢°)p(p), where ¢ is the complementary form of ¢ in its ambient general Pfister
form (Lemma (2)). For nondegenerate forms, a well-known result (essentially due to
Knebusch) asserts that the converse holds: If ¢ is nondegenerate and ¢; is defined over F',
then ¢ is a Pfister neighbour ([3, Thm. 28.1]). If we relax the nondegeneracy assumption,
however, then this is no longer true in general. For instance, if ¢ has nondefective height
1, then ¢1 =~ dql(¥)p(,) (Lemma , but ¢ need not be a Pfister neighbour. Simple
examples may be constructed as follows:

Example 9.1. Suppose that » = 1. Since r + s < 2" and 2r + s = dimy > 2", we
then have that s = 2" — 1. Now, since r = 1, we automatically have that h,q = 1
(Lemma . However, ¢ need not be a Pfister neighbour in this case. For example,
let X1,...,Xon be indeterminates, and let o be the form [1, X1] L (Xo,..., Xon) of type
(1,2™ — 1) over the rational function field Fo(Xq,..., Xon). It is straightforward to see
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that o is anisotropic. If n > 2, however, then ¢ is not a Pfister neighbour. Indeed, suppose
that o were a neighbour of an anisotropic (n+ 1)-fold Pfister form 7 over Fo(X71, ..., Xon).
The complementary form o€ is then (Xo,..., Xon). Over K :=Fo(X7,..., Xon)(vV/X2X3),
o€ is isotropic, so m is isotropic and hence hyperbolic. Then ox ~ (0 L 7)g ~ o%.
Since o§, is isotropic, it follows that ip(¢x) > 2. But it is again straightforward to check
that [1, X1] L (X3,..., X9n) remains anisotropic over K. Since this is a codimension-1

subform of o, we cannot have that ip(cx) > 2, and so ¢ is not a Pfister neighbour.

Nevertheless, it has been conjectured by Hoffmann and Laghribi that the such examples
cannot arise when s is sufficiently small relative to r:

Conjecture 9.2 ([6, Conj. 6.5]). Suppose that r + s < 2", and that s < 2r. If ¢1 is
defined over F, then ¢ is a Pfister neighbour.

At present, this has only been established in the case where s < 4 ([6, Thm. 6.6]). Note
that since r + s < 2", the inequality s < 27 implies that s < % We expect that the
latter condition is in fact sufficient:

2n+1

Conjecture 9.3. Suppose that r + s < 2", and thalt s < =5—. If 1 is defined over F,
then ¢ is a Pfister neighbour.

We provide in this section some evidence for this conjecture. The basic result is the
following, which shows that when ¢y is defined over F', ¢ exhibits key behaviour expected
of a Pfister neighbour (see Lemma and Theorem in particular):

Theorem 9.4. Suppose that r + s < 2", and that 1 is defined over F. Then:
(1) ¢ has mazximal splitting;

(2) ¢ is a virtual Pfister neighbour;

(3) AY(X) = {01, (2" — 1)},

(4)

4 stb

There exists an anisotropic form 1 of type (2" — s,s) over F such that ¢ ~ 1.
Moreover, if hng = 1, then ¢ may be taken to be ¢ itself, i.e., r = 2™ — s.

Proof. Let T be a form over F' with @1 >~ 7p(,). Since ¢p(,) is nondefective, we have

Ad(7)pep) = dl(Tr(p)) = dl(e1) = dl(vr@)) = (@) Fe)-
By Lemma we then have that ip((ql(¢) L ql(¢)))p(,)) = s. Since F(p)/F is separa-
ble, however, this implies that ip(ql(¢) L ql(¥)) = s, and so ql(¢) ~ gl(¢)) by another
application of Lemma Let ¢ (resp. 7') be a nondegenerate form of dimension 2r
(resp. 2r — 2i1(p))) over F such that ¢ ~ ¢’ L ql(p) (resp. 7 ~ 7 L ql(p)). Set
Y= ¢ L 7 L dql(p). By definition, ¢ has type (2r —i1(¢),s). Moreover, if ¢ has
nondefective height 1, then 7/ = 0, and so 1) = ¢. We state the following claim:

Claim. For any separable extension K/F, we have iy (px) > 0 if and only if iy (g ) >
2r — 11(()0) —1.

Before proving the claim, let us first use it to complete the proof of the proposition. Set
i :=1iw(¢). If i were equal to 2r —i1(p), then we would have that 1) ~ ql(¢). By Lemma
however, this would give that

o~ LT L~ L ~ql(p) L7~

contradicting the anisotropy of ¢ (note that dim7 = dim¢—2i;(¢) < dim¢). We therefore
have that i < 2r —i1(¢), and so ¥’ := 1,y is a nondefective and nonquasilinear form of
type (2r —i1(yp) —i,s). If K/F is a separable extension, then the claim tells us that
iw (pr) > 0 if and only if iy (¢} ) > 2r —i1(p) —i — 1. By Corollary it follows that
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A = AY(X)[2r —i1(p) —i—1] is an element of MDT(%)'). Let h be the nondefective height
of ¢’. Since ¥’ has type (2r —i1(p) — 1, s), and since a(A) = 2r —i;(¢) — i — 1, Proposition
and Corollary imply that A = {(2r —i1(¢) — i — 1), (dime)’ — 2 —jp_1 (¢"))"P}.
Since b(AY (X)) = dimy,, ¢ — 1 (Proposition , it then follows that

(dimpn e — 1) + (2r —i1(p) —i — 1) = dimy)’ — 2 —jp_1 ().
Since dimpp ¢ = 2r + s —i1(p) and dime)’ = 2(2r —i1(¢) — i — 1) + s, this amounts to
the equality i« = —jp_1(¢)'), and so i = jp_1(¢)') = 0. In other words, 1 is anisotropic
of nondefective height 1. By the claim, we then have that ¢ b v¥. In particular,
dimpp Y = dimppe > 2" (Theorem Corollary . On the other hand, since
¥ has nondefective height 1, we have dimtyy = dimql(¢)) = s < 2" (Lemma [7.17).
By Theorem (Karpenko’s theorem on the values of i;), we must then have that
dimp,, ¢ = 2. By the preceding remarks, we then also have that dimpye = 2", and
so (1) holds. In view of Proposition this also gives (2). For (3), we have already
seen above that [AY(X)| = |A] = 2. By Proposition however, we then have that
AY(X) = {0y, (dimpy ¢ — 1)"P} = {0y, (2" — 1)"P}, and so the desired assertion holds. It

now only remains to prove (4). Since we have already shown that ¢ b 1), we just have to
show that v has type (2" — s, ), i.e., that 2r — i;(¢) = 2" — s. But since dimyp = 2r + s,
this is simply a reformulation of the fact that dimg,y p = 2™.

We now complete the proof by proving the claim. Let K/F be a separable extension.
Suppose first that iy (¢Yr) > 2r —i1(¢) — 1. Since 9 has type (2r —i1(p), s), we then have
that Yvx ~ ql(v¥)k = ql(¢) k. By Lemma we then have that

or ~ (p Lal(@)k ~ (¢ L)k ~ (7 Ldl(p))k = 7k,
and so @k is isotropic (again, we have dim7 < dim¢). Since K/F is separable, we then
have that iy (px) > 0 (Lemma [2.3). Conversely, if iy (¢x) > 0, then the extension
K(p)/K is purely transcendental by Lemma (2). In particular, we have iy (V) =
iw (Vi () = iw(Pr)). But since ¢ = ¢’ L 7, we have

Vr(o) = Prie) L TR(e) = Py L 01~ (¢ L @) ) ~ (¢ L @' L dl(®))rp) ~ al(®)r(y)

by Lemmal[2.1] and so iw (¢¥r(¢)) > 2r —i1(p) — 1. In particular, iy (vx) > 2r —i1(p) — 1,
and so the claim holds. g

Note, in particular, that we have the following dimension restriction on the forms of
nondefective height 1 (under our assumption that r + s < 2™):

Corollary 9.5. Suppose that r + s < 2. If ¢ has nondefective height 1, then dimp =
ontl g,

Proof. In this case, part (4) of Theorem tells us that » = 2" — s, and so dimyp =
2r +5=2(2" —s5) +s=2"" — s O

As remarked above, ; is trivially defined over F' in the case where hyq(¢) = 1. In
particular, Conjecture [9.3] includes the following as a special case:

Conjecture 9.6. Suppose that r+s < 2", and that s < ? If ¢ has nondefective height

1, then is a Pfister neighbour.

Recall that we use the term close Pfister neighbour for a Pfister neighbour of nonde-
fective height 1. If ¢ is a close Pfister neighbour, then dim¢ = 2"*! — s by Lemma
Thus, Corollary confirms the dimension part of Conjecture [0.6] Moreover, as far as
Conjecture [0.3] goes, Theorem [0.4] gives the following:
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Corollary 9.7. Conjectures and[9.6 are equivalent.
Proof. We have already noted that Conjecture [9.3]implies

Conjecture = Conjecture Suppose that s < % If ¢ has nondefective height
1, then ¢ is defined over F' (see the preceding discussion). Moreover, Corollary tells

us that dimy = 2"+ — s, and so

2n+1 2n+1
2r:dimg0—s:2”+1—28>2"+1—2<) =

3 —3>s.

By Conjecture © is then a Pfister neighbour.

Conjecture 9.6 = Conjecture Suppose that s < % and that ¢y is defined over F.
By Theorem [9.4] ¢ has maximal splitting, and there exists an anisotropic form v of type
(2™ — s, s) over F' such that ¢ w0 1. By Theorem (or Corollary , we then have that
dimy ¢ = dimpp @ = 27, and so i1(¢0) = dimy — 2" = 2(2" — s) + s — 2" = 2" — 5. By
Lemma this means that 1 has nondefective height 1. Since s < %, Conjecture

then implies that 1 is a Pfister neighbour. But since ¢ st ¥, the same is then true of ¢,
and so the claim holds. 0

If we impose a slightly stronger assumption on s, then we can also relate Conjecture (9.3
to a well-known conjecture on nondegenerate forms. In fact, we state here two conjectures,
the first of which is (essentially) due to Vishik, and the second of which is (essentially)
due to Hoffmann (note that the r + s < 2™ condition is vacuously satisfied here):

Conjectures 9.8. Suppose that ¢ is nondegenerate.

(1) If |AY(X)| = 2, then ¢ is a Pfister neighbour.
(2) If ¢ has mazimal splitting and dim e > 2" + 2"~2, then ¢ is a Pfister neighbour.

Note that in (2), the standing hypotheses imply that i;(¢) > it(¢) forall 1 <t < hpa(p).
It then follows from Proposition (2) that |[AY(X)| = 2, and so (2) is in fact implied
by (1). Nevertheless, one may hope that a more direct approach to (2) is achievable, and
so we include it in our discussion. Using Theorem we can now show the following:

Proposition 9.9. Suppose that r + s < 2", and that 1 is defined over F'. Then ¢ is a
Pfister neighbour in the following cases:

(1) s< 2" and Conjecture (1) holds;

(2) s <21 — 2773 gnd Conjecture (2) holds.

Proof. We may assume that s < 2"~!'. By Theorem (4), there exists an anisotropic

form 1 of type (2" — s,s) over F' such that ¢ Y 1. Per the proof of Corollary P
has nondefective height 1, and so ; is defined over F. Moreover, since r + s < 2", we
have dimgp = 2r + s = 2(r + s) — s < 2"*! — 5 = dim4. Since ¢ is a Pfister neighbour
if and only if v is, we can then replace ¢ with ¥ in order to reduce to the case where
dimy = 2"+ —s. By Theorem (1), we then have that i;(p) = dimp—2" =2"—s > s.
Let 7 be a nondegenerate subform of codimension s — 1 in ¢. Since i1(p) > s, Tp(,) is

isotropic and so ¢ 1 To prove that ¢ is a Pfister neighbour in cases (1) and (2), it
then suffices to show that the same is true of .

(1) Since 7 By @, we have AY(X,) = AY(X) by Corollary But since ¢y is de-
fined over F, Theorem (9.4 (3) then tells us that |AY(X;)| = |AY(X)| = 2. Since 7 is
nondegenerate, it is then a Pfister neighbour by our hypothesis.
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(2) Since 7 st ©, we have dimy,, 7 = dimp,, ¢ = 2" by Theorem (or Corollary .
In other words, 7 has maximal splitting. At the same time, we also have that

dim7 > dimp — s = 2" — 25 > 2ntl _ (gn=1 _gn=3) — gn 4 gn—2,

Since 7 is nondegenerate, it is then a Pfister neighbour by our hypothesis. O

10. EXCELLENT CONNECTIONS AND THE FIRST HIGHER ISOTROPY INDEX

In this last section, we fix an anisotropic quadratic form ¢ of type (r,s) over F. We
assume that r > 1 (i.e., that ¢ is not quasilinear), and set h := hpq(p) and X := X,. For
ease of notation, we also set j; := j;(¢) and i; := i;(p) for all 1 <t < h.

10.A. Excellent Pairs. Let j and ng,...,n; be the unique nonnegative integers for which
dimp = 2" —2"2 ... 4 (—1)9'*12"1 and n; >mng > -+ >n;_1 > n;+ 1. For each integer
1 <3<, set

my = 2Tl gnikt L (1) i,
Let j' be j or j — 1 depending on whether dim is even or odd. Accounting for Remark
(2), the following definition is taken from [I7, §3]:

Definition 10.1. Let a, b be integers with 0 < a,dx — b < r. We say that the pair (a,b)
is ezcellent (for ¢) if there exists an integer 1 < k < j’ such that the following hold:

(1) b—a= o=l _ 1.
(2) S5 mi < a,dx —b< X m.

The following lemma, which is a translation of Corollary explains the terminology:

Lemma 10.2. Let a and b be integers with 0 < a,dx — b < r. If ¢ is strongly excellent,
then the pair (a,b) is excellent if and only if ai, and b"P are connected in A(X).

10.B. Excellent Connections for Nondegenerate Forms. In the situation of Lemma
10.2] one may whether the nessecity part of the statement remains valid if we relax the
assumption that ¢ be strongly excellent. Over fields of characteristic different from 2,
the analogous problem was shown to have a positive answer by Vishik in [I7, Thm. 1.3].
Aside from the fact that anisotropic forms are nondegenerate in that setting, the only other
reason for the characteristic restriction in the latter was the use of Brosnan’s Steenrod
operations for Chow groups modulo 2. Thanks to [I1], exactly the same arguments now
go through for nondegenerate forms in characteristic 2, and so we have:

Theorem 10.3. Suppose that ¢ is nondegenerate, and let a and b be integers with 0 <
a,dx —b < r. If the pair (a,b) is excellent, then aj, and b"P are connected in A(X).

Theorem[10.3]is perhaps the most profound known result concerning the MDT invariant.
As shown by Vishik, it has a number of deep implications, including the following:

Theorem 10.4. Let 1 < t < h. Suppose that ¢ is nondegenerate, and that MDT(p)
admits an element A with a(A) = j;—1. Let j and nq,...,n; be the unique nonnegative
integers for which dimg — 2j;_1 —j; = 2" — 2"2 4 -+ + (=1)7712% and ny > ng > --- >
nj—1 > nj + 1. For each integer 1 < k < j, consider the integer

dimp — 2j;—1 —j i ;
dg := < ¥ 2]t71 ]t) i Z(_l)k+2712ni*1.
i=k

Then (dg)1o € A. Moreover, if t <t' < h is such that jy_1 < di, < jy, then dg + iy < jp.
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Proof. The second statement follows from the first and Proposition (2). It therefore
suffices to prove the first statement. In the notation of [I7], the element A € MDT(yp)
gives an indecomposable direct summand N of M (X) in Chow(F,F3) with a(N) = j;—1
(see Remark (1)). The integer dx — 2j;—1 — j; is then equal to dim(N) + 1, and the
claim is equivalent to the second statement in [I7, Thm. 2.1] (formulated in our setting).
Given Theorem however, the proof of the latter goes through in characteristic 2:
The auxiliary roles played by [I7, Prop. 1.1] and [I7, Obs. 2.3] are assumed here by
Proposition and Lemma and the assertion of [17, Lem. 2.2] remains valid in
light of Corollary With these remarks, the proof then goes through verbatim. O

We expect that Theorem [10.3| remains valid if we relax the requirement that ¢ be
nondegenerate. Before discussing this and its implications, we first give some applications
of Theorem to problems in the degenerate setting.

10.C. Forms of Nondefective Height 1 Revisited. Let n be the unique integer for
which 2" < dim¢ < 27!, In this subsection, we return to the case where h = 1, i.e.,
where ¢ has nondefective height 1. If 7 + s < 2" (equivalently, dimy < 2"*! — 5) and
5 < ?, then Conjecture predicts that ¢ is a (close) Pfister neighbour in this case.
With a slight weakning of the second condition, the first condition may in fact be removed:
Proposition 10.5. Suppose that ¢ has nondefective height 1. If s < dir;‘p, then dimp =
2n+1 — 3.

Proof. Since dimyp = 2r + s, the assumption on s tells us that » > s. Since h = 1, we then
have that iy = r < s (Lemma|7.17)). Let ¥ be a form of type (r,1) dominated by ¢. Since

iy > s, we have that ¢ P ¢ (Lemma [2.10). In particular, we have AY(X) = AY(Xy)
(Corollary . Since h = 1, Proposition [7.18] then gives that |[AY(X,)| = |[AY(X)| = 2.
Since 1) is nondegenerate, Theorem then tells us that dimy,, ) is a power of 2. But
since ¢ st 1), Theorem then gives that

r4+s=dimyp —r =dimy — i; = dimg,y ¢

is a power of 2. By Corollary[2.6] we then have that r+s = 2", and so dim¢ = 2(r+s)—s =
27+l _ 5 as claimed. O

In view of the discussion of the previous section, we therefore make the following con-
jecture on the classification of forms of nondefective height 1:

Conjecture 10.6. If ¢ has nondefective height 1, and s < dig“p, then ¢ is a Pfister
neighbour.

For larger values of s, it is less clear what can be expected.

10.D. The Values of the First Higher Isotropy Index. In this subsection, we con-
sider the possible values of the integer i;. Recall from Theorem that i; is at most the
largest 2-power divisor of dimy — iy = dimg,y . If we fix the value of dimp and take
no further information into account, then this result cannot be bettered: Given integers
d > and ¢ > 1 such that ¢ is at most the largest power of 2 that divides d — i, there
exist an extension K /F and an anisotropic quadratic form 1 over K such that dimvy = d
and i1 (¢) = i. If we take into account the type (7, s), however, then the situation already
changes. First, the standard construction that demonstrates the optimality of the previous
assertion (cf. [3, Thm. 79.9]) yields only the following:

Lemma 10.7. Let v be a nonnegative integer, and let x be the unique integer for which
x2¥ < r < (x+1)2". Suppose that i is a positive integer satisfying the following conditions:
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(i) 2r + s — i is divisible by 2¥;

(il) @ <r — 22"
Then there exist an extension K/F anisotropic quadratic form 1 of type (r, s) over K such
that i1(¢p) = i. Moreover, we have dimy,, ) = 2r+s—i = y2" for some integer y > 2x+1.
Proof. By (i), there exists an integer y such that 2r + s — i = y2¥. By (ii), we have

y2' =2r+s—i>2r+s—(r—a2’)=r+s+x2" > 222",

and soy > 2z +1. Let Xy,..., XoY1,..., Yopqo, Z1,. .., Zy (2041) be indeterminates, and
set K := F(X1,..., 2, (2z41))- Over K, we may consider the form 7 := b ® ¢, where
b= <<X1, N )Xv»b and q = Y1[1, 1/2] 1L 1/295_,_1[1,)/21;4,_2] L <Zl, ey Zy7(2x+1)>' We
claim that i;(7) = 2°. Consider the field L := K[T]/(T?+T+Y2). A routine computation
(using the rationality of L/F(X1,...,Y2,..., Zy_(25+41)), where the hat indicates omission)
shows that iy (71,) = 2°. Since L/K is separable, Lemma[2.3|then gives that i1 (1) < 2'. On
the other hand, if L/ K is any other separable extension, then by, is anisotropic (anisotropic
quasilinear quadratic forms remain anisotropic under separable extensions) and is still a
divisor of (77,)an (a routine consequence of the roundness of bilinear and quadratic Pfister

forms). We therefore have that i;(p) > 2¥, whence the claim. Observe now that 7 has
dimension (y+1)2" and type (r/,s"), where v’ = (x+1)2Y, and s’ = (y— (22 +1))2". Since

s = y2¥+i—2r
< Y24 (r—a2%) —2r
= (y—z)2"—r
= ((z4+1)2=r)+(y— 2z +1))2
= (=r)+4,

7 therefore admits a subform 1) of type (r,s). Then
dimyp =2r+s=9y2"+i=(y+1)2" — (2" —i) =dim7 — (2¥ —7),

and since i < 2V (assumption (ii)), we then have that i;(¢)) = i by Lemma This
proves the first statement, and we then have that dimy,, ¢ = y2", whence the second. [

All examples of anisotropic forms with nontrivial first higher isotropy index of which
we are currently aware of are either of this type or stably of this type (i.e., acquire the
desired shape over an extension that preserves the anisotropy of the form). We therefore
formulate the following question, a positive integer to which would yield a refinement of
Theorem that takes the type invariant into account:

Question 10.8. Let u be the largest integer for which dimp,, ¢ is divisible by 2%, and let
x be the unique integer for which z2" < r < (z + 1)2". Is is then true that i; <7 — x2%?

Theorem [2.5] gives the following:

Lemma 10.9. Let u be the largest integer for which dimyy @ is divisible by 2%, and let
x be the unique integer for which x2% < r < (x 4+ 1)2". Then dimy,, ¢ = y2* for an odd
integer y > 2x + 1. In particular iy < 2(r — x2%) + s — 2%,

Proof. By hypothesis there is an odd integer y with dimg,y, @ = y2%. Set a = r — 22"
Note that a > 0 by definition. Now by Theorem we have i; < 2% and so

y2' =dimppp =2r+s—ip > 2r+s—2% = 2z — 1)2" + 2a.
Since y is odd, the first statement follows. Then
1 =2r+s—y2"<2r+s—(2x+1)2" =2a+s—2%,
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and so the second statement also holds. O

Consider in particular the case where s < 2% +i;. With the notation of the lemma, we
then have that

(y — 22)2" = dimpn p — (22)2% = 2(r — 22%) + s — i1 < 2(r — 22") + 2% < 3 -2,

Since y is odd and at least 2z + 1, it follows that y = 2z + 1, i.e., dimp, ¢ = (22 + 1)2%.
Put another way, we have

i1 =2(r —a2%) — (2" — s).
Thus, when s < 2% + iy, a positive answer to Question [10.8 amounts to a positive answer
to the following:

Conjecture 10.10. Let u be the largest integer for which dimy,y, ¢ is divisible by 2",
and let x be the unique integer for which x2* < r < (x 4+ 1)2%. If s < 2% + 1y, then
r— 2% <2% —s.

In this direction, Theorem [10.4] allows us to say the following:

Theorem 10.11. Let u be the largest integer for which dimp,y, ¢ is divisible by 2%, and
let © be th unique integer for which x2"* < r < (x4 1)2". Ifi1(¢) > s, then s < 2% and
i <r—a2% < 2% — 5. In particular, Conjecture|10.10 holds in this case.

Proof. We proceed as in the proof of Proposition Let ¢ be a form of type (r,1)

dominated by ¢. Since i} > s, we have that ¢ *p 1 (Lemma . In particular, we have
that dimp,, ¢ = dimpy and AY(X) = AU(X¢) (Lemma Corollary . Let 7 and
ni,...,n; be the unique integers for which dimy,,p = 2" =272 ... 4 (—1)7~127 and
ny >mng > -+ >nj_1 > nj + 1. By definition, we have n; = u. Consider the integer

dj = dlrnﬂ _ 2u71 _ <d1m§0 —2jo — ]1) + (_1)2‘7',127”,1'
2 2
Since 1 is nondegenerate, and since dimy,y, 1 = dimp,y @, Theorem tells us that
(dj)o € AY(Xy). Since AY(Xy) = AY(X), Proposition (2) then tells us that dim%“”—
2u=1 4 i, < r. But since dimp,, ¢ = 2r + s — i1, this says that i; < 2% — s. In particular,
s < 2“. By the remarks preceding the statement of Conjecture we then have that
ip =2(r—a2%)— (2% —s). Since iy < 2% —s, we then in fact have that iy < r—a2% <2%—s,
as desired. ]

The preceding result is enough, for instance, to completely describe the situation in
which dime <9:

Examples 10.12. Suppose dimp < 9. We discuss the possible values of i; and when they
may occur. Note that iy < by Lemma [2:3

dimy € {2,3,5,9}. In this case iy = 1 by Corollary

dimy = 4. In this case, i1 is either 1 or 2. If i1 = 2, then r = 2, so ¢ is nondegenerate of
Knebusch height 1. It is well-known that the nondegenerate anisotropic forms of dimension
4 and Knebusch height 1 are precisely the anisotropic general 2-fold Pfister forms ([3, Prop.
25.6]), so i1 = 2 when ¢ is a general 2-fold Pfister form, and i; = 1 otherwise.

dimy = 6. In this case, i; is again either 1 or 2 by Corollary If  is a Pfister neighbour,
then i;(¢) = 2 by Lemma (3). Conversely, if i1 = 2, then ¢ has maximal splitting,
and is hence a Pfister neighbour by [7, Thm. 1.2]. Thus, i; = 2 if ¢ is a Pfister neighbour,
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and i; = 1 otherwise. Note that in order to be in the first case, we require that r > 2, i.e.,
that ¢ is either nondegenerate or of type (2,2).

dimy = 8. In this case, i; is 1, 2 or 4 by Theorem In order for 71 to be 4, we must have
that r = 4, i.e., that ¢ is nondegenerate of Knebusch height 1. Again, it is well-known that
the nondegenerate anisotropic forms of dimension 8 and Knebusch height 1 are precisely
the anisotropic 3-fold general Pfister forms ([3, Prop. 25.6]). Next, if ¢ ~ ((a)), ® ¢ for
some a € F* and 4-dimensional form ¢ over F, then i is even (see the proof of Lemma
. Thus, if ¢ is not a general Pfister form (i.e., not divisible by a 2-fold bilinear Pfister
form), then i; = 2. Conversely, suppose that iy = 2. Then r > 2, and so ¢ has type (4,0),
(3,2) or (2,4). However, Theorem shows that the second case is not possible, so ¢
is either nondegenerate or of type (2,4). Consider first the case where ¢ is nondegenerate.
If p ~b®[1,a] for some 4-dimensional bilinear form b over F' and a € F, then i is even.
Indeed, consider the separable quadratic extesion K := F[T]/(T?+T +a). Since [1,a] is
hyperbolic, so is ¢, and hence (¢1) g (). By [3, Cor. 23.6], it follows that p1 ~ ¢®[1,a]x
for some symmetric bilinear form ¢ over K. But ¢ has trivial discriminant, so the same is
true of 1, and hence ¢ must be of even-dimension, proving the claim. In particular, since
r = 4, we have i;(p) = 2 provided that ¢ is not a general 3-fold Pfister form. Conversely,
suppose that i; = 2. The dimy,, ¢ = 8 — 2, and so 2j, € AU(X) by Theorem m By
Proposition it follows that i, = 2. In view of the preceding discussion, this means
that ¢ is a 2-fold general Pfister form. In particular, the Clifford algebra of ¢; is Brauer
equivalent to a quaternion algebra. By the index reduction theorem, the same is then true
of the Clifford algebra of ¢. In particular, there exists a 2-fold general Pfister form 7 over
F such that the 12-dimensional form ¢ | 7 represents an element of [, g'(F) Scaling 7 if
needed, we can assume that ¢ | 7 is isotropic. The anisotropic part of ¢ L 7 then has
dimension at most 8 ([2, Thm. 4.10]), and so ¢ L 7 ~ 7 for a general 3-fold Pfister form
7 over F ([3, Cor. 25.12]). Since m L 7 ~ ¢ (Lemma [2.1)), 7 L 7 is isotropic. By [3]
Thm. 24.2 and Prop. 24.1], it follows that there exist symmetric bilinear forms ¢ and ?
over F, and an element a € F' such that 7 ~ ¢® [1,a] and 7 ~d ® [1,a]. If we again set
K = F[T]/(T?+T +a), we then get that px ~ 7 L 7k is hyperbolic. By [3, Cor. 23.6],
it then follows that ¢ ~ b ® [1,a] for a 4-dimensional symmetric bilinear form b over F.
Consider now the case where ¢ has type (2,4). If ¢ ~ (a)), ® ¢ for some a € F'* and form
q of type (1,2) over F', then iy is even by the argument in the proof of Lemma m Since
r = 2, we must then have that iy = 2. Conversely, if i; = 2, then ¢ ~ ((a)), ® ¢ for some
a € F* and form ¢ of type (1,2) over F' by [0, Theorem 7.5]. In summary:

e iy =4 if and only if ¢ is a general 3-fold Pfister form;
e iy = 2 if and only if ¢ is not a general 3-fold Pfister form, and one of the following
holds:
— ¢ ~ b®|[1,a] for some 4-dimensional symmetric bilinear form b of non-trivial
determinant over F’;
— ¢ ~ ((a), ® q for some a € F* and some form ¢ of type (1,2) over F';
e i; = 1 in all other cases.

As far as Question [10.8] goes, the first open case appears in dimension 12: If ¢ is a
12-dimensional form of type (3,6), we do not know if it is possible for i; to equal 2. Our
expectation is that this is not possible, and we present in the next subsection a conjectural
approach to this based on the methods of this article. This approach should allow to treat
Conjecture [I0.10] as well as other cases of Question [10.8]in which s is small relative to r.
In general, however, it is unclear to what extent the methods used here are applicable in
situations where s is “large”. For example, we also do not know if i; can equal 2 if ¢ is a
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14-dimensional form of type (3,8) or (5,4). Unlike the situation for forms of type (3,6),
however, we do not have any clear approach to this problem at present.

10.E. Excellent Connections for Degenerate Forms. We conclude this article by
making the conjecture that Theorem [10.3| remains valid in the case where ¢ is degenerate:

Conjecture 10.13. Let a and b be integers with 0 < a,dx —b < r. If the pair (a,b) is
excellent, then ay, and b"P are connected in A(X).

The proof of Theorem m given in [I7] is currently not transferrable to the degenerate
setting, since although we have an action of cohomological-type Steenrod operations on
Ch(X x X), we do not have an action such operations on Ch(X x X) itself. Over fields of
characteristic different from 2, however, there are Steenrod operations of homological type
acting on the mod-2 Chow groups of any variety, smooth or not (see [I] or [3, Ch. XI]). We
expect that analogous operations should exist in characteristic 2, and that these operations
are more or less sufficient to prove Conjecture We give here some implications of
the validity of Conjecture

Proposition 10.14. Suppose that Conjecture [10.13 holds. Then:

(1) Let 1 <t < h, and suppose that MDT(p) admits an element A with a(A) = j;—1.
Let j andnq,...,n; be the unique nonnegative integers for which dimp—2j;_1—j; =
2M —2M2 . (=1)712% and ny > mg > -+ >mnj_1 > nj+ 1. For each integer
1 <k <7, consider the integer

dimep — 2,1 — j i ‘
dy = < ¥ 2]t71 Jt) +Z(_1)k+z—12nrl.
i=k

If dj, < r, we then have that (dg)i, € A. Moreover, if t < t' < h is such that
1 < dp <jp, then then di + i < jy.

(2) Write dimp = 2" + m for integers n > 0 and 1 < m < 2™ Ifr < m, then
i1(p) <m—r.

(3) Congecture holds.

Proof. (1) Again, the second statement follows from the first and Proposition (2).
Given the validity of Conjecture however, the proof of Theorem carries over
verbatim.

Now, in proving the remaining statements, let first us note that since a(AY (X)) = 0 = jo,
we are in a position to apply (1) with ¢ = 1.

(2) Since i; < r, we have i1 < m, and hence dimy,, p = 2ntl _ d for some integer
1 <d< 2" Taking t =1 in (1), we then have that the integer d; is defined and equal
to dimp o — 2" = m —i;. If we had m —i; < r, part (1) would then give that m < r,
contradicting our assumption. We must therefore have that m —i; > r, i.e., iy <m —r.

(3) As in the statement of Conjecture let u be the largest integer for which
dimp,;, ¢ is divisible by 2. Suppose that s < 2% 4 1i;. We again consider the statement of
(1) with ¢ = 1. As in the proof of Theorem the integer d; is equal to dim%h‘p —gu—l,
Since s < 2™ + i1, we have

dimpne qu-1 _ 2r+s—i gul _ oy 5T (2% + ;)

2 2 2
and so dim%h‘p —2v=1 i) <r by (1). Exactly as in the proof of Theorem [10.11} this then
leads to the conclusion that i1 < r — 22% < 2% — s. O

<,
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Remarks 10.15. (1) The statement in part (1) of the preceding proposition may be inter-
preted as follows: Suppose % is an anisotropic nondegenerate form over an extension
of F such that dimvy = dim¢ and j;(¢)) = j; for all 1 < ¢ < h. The set A(X) may be
viewed as a subset of A(Xy). We expect that any connections among elements of this
subset that are forced to exist by the Knebusch splitting pattern of ¢ (in particular,
those given by the ¢t = 1 case of Theorem [10.4]) remain valid in A(X) (now understood
as an invariant of ¢). More generally, recall that the shell pyramid diagram for X is
the shell pyramid diagram for X, but with the shells indexed by integers > h deleted
(see . Suppose that we have a restriction on the diagram for X, that is entirely
determined by the Knebusch splitting pattern of . If we delete the shells indexed by
integers > h, then we expect that what remains of the restriction is a valid restriction
on the diagram for X.

(2) Note the statement in part (2) implies that i; # 2 when ¢ is a 12-dimensional form of
type (3,6) (i.e., settles the first open case of Question . This is not implied by
Conjecture [10.10] and so the scope of Conjecture is broader. At the same time,
the statement in part (1) says nothing about the problem of whether i; can equal 2
when ¢ is a 14-dimensional form of type (3,8) or (5,4).

We conclude with the following lemma, which gives some meagre evidence for Conjecture
0. 13

Lemma 10.16. Conjecture holds in the case where dime < 10.

Proof. In view of Theorem we may assume that ¢ is degenerate, i.e., that s > 2. We
then have that dimy > 4.

dim¢ = 4. In this case, ¢ has type (1,2), and there are no excellent pairs to consider.

dimp = 5. In this case, ¢ has type (1,3), and the only excellent pair to consider is (0, 3).
But in this case we have iy = 1 (Examples [10.12)), and so 0y, and 3"P are connected in

A(X) by Proposition

dimp = 6. In this case, ¢ has type (1,4) or (2,2). In the first case, however, there are
no excellent pairs to consider, and so we can assume that ¢ has type (2,2). Here, there
are two excellent pairs to consider, namely (0,3) and (1,4). But since r = 2, 2 lies in
the nondefective splitting pattern of ¢. By Proposition [8.14] it follows that ¢ is a virtual
Pfister neighbour. But Lemma then gives the desired connections in A(X) between
01, and 3"P as well as 1}, and 4"P.

dimp = 7. In this case, ¢ has type (1,5) or (2,3). In the first case, there are no excellent
pairs to consider. Suppose therefore that ¢ has type (2,3). Here, there is one excellent
pair to consider, namely (1,4). But since ¢ has type (2,3), we have iy = 1 (Examples
. Since r = 2, we must then also have that h = 2 and i, = 1. By Proposition
it then follows that 1j, and 4"P are connected in A(X).

dimp = 8. In this case, ¢ has type (1,6), (2,4) or (3,2). In the first two cases, there are
no excellent pairs to consider. Suppose therefore that ¢ has type (3,2). Then there are
two excellent pairs to consider, namely (1,4) and (2,5). Since ¢ has type (3,2), we have
i1 = 1 (Examples . Then ¢; is a 6-dimensional form of type (1,3). By the preceding
discussion, 0, and 3"P, as well as 1), and 4"P are then connected in A(X,, ). By Lemma
110 and 4"P, as well as 2j, and 5"P are then connected in A(X).

dimp = 9. In this case, ¢ has type (1,7), (2,5) or (3,3). In all cases, we have the excellent
pair (0,7). But iy = 1 in this case (Examples|10.12)), so 0, and 7"P are connected in A(X)
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by Proposition If ¢ has type (1,7) or (2,5), then there are no other excellent pairs
to consider. Suppose now that ¢ has type (3,3). We then have one other excellent pair to
consider, namely (2,5). Again, however, since iy = 1, ¢; is a 7-dimensional form of type
(2,3). By the preceding discussion, 1j, and 4"P are then connected in A(X,,). By Lemma

21, and 5"P are then connected in A(X). O
When dime = 10, there is just one case in which we do not know the validity of

Conjecture namely the case where ¢ has type (3,4) and nondefective splitting
pattern (1,3). Here, 2 is not in the nondefective splitting pattern of ¢, and so ¢ is
not a virtual Pfister neighbour. In particular, the argument used to handle the case of
6-dimensional forms in the proof of the preceding lemma is not applicable here. Note
that it is relatively straightforward to classify the anisotropic forms of type (3,4) and
nondefective splitting pattern (1,3): They are precisely the 10-dimensional forms similar
to (((a,b,c]] L (1,d,e,de))an for some a,b,c,d,e € F*. Thus, if we exclude this specific
class of forms, then the statement of Conjecture is also valid in dimension 10.
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