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Abstract. A 2022 result of Karpenko establishes a conjecture of Hoffmann-Totaro on
the possible values of the first higher isotropy index of an arbitrary anisotropic quadratic
form of given dimension over an arbitrary field. For nondegenerate forms, this essentially
goes back to a 2003 article of the same author on quadratic forms over fields of char-
acteristic not 2. To handle the more involved case of degenerate forms in characteristic
2, Karpenko showed that certain aspects of the algebraic-geometric approach to nonde-
generate quadratic forms developed by Karpenko, Merkurjev, Rost, Vishik and others
can be adapted to a study of rational cycles modulo 2 on powers of a given generically
smooth quadric. In this paper, we extend this to a broader study of rational cycles mod-
ulo 2 on arbitrary products of generically smooth quadrics in characteristic 2. A basic
objective is to have tools available to study correspondences between general quadrics,
in particular, between smooth and non-smooth quadrics. Applications of the theory to
the study of degenerate quadratic forms in characteristic 2 are provided, and a number
of open problems on forms of this type are also formulated and discussed.

1. Introduction

Let F be a field with algebraic closure F , ϕ an anisotropic quadratic form of dimension
d + 2 over F , and X the d-dimensional projective F -quadric with equation ϕ = 0. The
latter is smooth precisely when ϕ is nondegenerate in the sense of [3, §7.A]. In this case, the
motive of X in the category of Chow motives over F with F2-coefficients decomposes in an
essentially unique way as a finite direct sum of indecomposable objects. When F = F , this
of course depends only on d. More specifically, M(X) decomposes here as a direct sum of
prescribed Tate motives indexed by integers in the interval [0, d]. In general, the complete
decomposition of M(X) yields a partition of the same set of Tate motives via scalar
extension to F . We call this the motivic decomposition type of ϕ, and denote it MDT(ϕ).1

This invariant has played a key role in some of the major advances on nondegenerate
quadratic forms achieved since the late 90s, notably in work of Karpenko, Merkurjev and
Vishik. As expounded in [3], its study forms part of a well-developed algebraic-geometric
approach to nondegenerate quadratic forms based on the investigation of algebraic cycles
on products of smooth quadrics and quadratic Grassmannians.

An important early achievement of this algebraic-geometric approach was Karpenko’s
theorem on the possible values of the first higher isotropy index

i1(ϕ) := min{i0(ϕL) | L an extension of F}
for nondegenerate ϕ ([9]). Like many articles on the topic appearing at that time, [9]
limited its considerations to the case where the characteristic of the base field is not 2,
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owing to an essential use of the cohomological-type Steenrod operations for mod-2 Chow
groups of smooth varieties constructed by Brosnan in [1]. With the recent construction
of the analogous operations over fields of characteristic 2 by Primozic ([11]), many of the
characteristic restrictions in the existing literature on the algebraic-geometric approach to
nondegenerate quadratic forms can now be relaxed.

As far as the general scope of these ideas is concerned, however, interesting questions
remain regarding fields of characteristic 2. Indeed, while anisotropic quadratic forms over
fields of characteristic not 2 are necessarily nondegenerate, the study of nondegenerate
forms in characteristic 2 is only part of a broader theory of quadratic forms within which
standard algebraic-geometric tools are less directly applicable. For instance, one encoun-
ters here the extreme class of quasilinear quadratic forms, whose associated quadrics have
no smooth points at all. The first real attempts to explore this broader picture came in
the 00s with a series of works by Hoffmann, Laghribi, Totaro and others, where some
well-known results of inherently algebraic-geometric nature on nondegenerate forms were
shown to admit extensions to the degenerate case. This suggested that certain aspects of
the algebraic-geometric perspective may be adaptable to the study of degenerate forms,
despite the lack of a well-developed intersection theory for non-smooth varieties.

The first steps in this direction were recently taken in [10], where Karpenko extended
his result on the i1 invariant to the case of degenerate but nonquasilinear quadratic forms
in characteristic 2.2 The basic point is the following: Suppose that char(F ) = 2, and let
U be the smooth locus of X. If ϕ is not quasilinear, then U is nonempty, and the scalar
extension homomorphism CH(Xr)/2→ CH(Xr

F
)/2 factors canonically through CH(U r)/2

for any positive integer r. By passing through the smooth variety U r, one can then apply
some of the standard tools of intersection theory to the study of the image of the scalar
extension map. As is well known in the nondegenerate case, getting a handle on this image
is already sufficient for interesting applications to discrete invariants of quadratic forms.

While [10] did not go beyond its intended application to the study of i1, it was clear that
the arguments found there could be extended to develop a theory of “rational cycles modulo
2” for arbitrary products of generically smooth anisotropic quadrics in characteristic 2
along the lines of that developed for smooth quadrics in [3] and [16]. The purpose of the
present article is to make some of this explicit in order to have tools available for handling
certain algebraic-geometric problems for degenerate quadratic forms in characteristic 2.
Of particular interest here are conjectures of the first author on the possible splitting
behaviour of forms under scalar extension to function fields of quadrics ([13, Conj. 1.1]
and its refinement discussed in [14, §1]). These are expected to be valid for all forms,
nondegenerate or otherwise, and the tools discussed here are directly applicable to the
study of the nonquasilinear case.3 This will be considered in a separate text.

Overview. After a preliminary section on quadratic forms and their associated quadrics,
sections 3, 4, 5 and 6 of the present text extend the discussion of [10] to a wider study of
arbitrary products of generically smooth anisotropic quadrics in characteristic 2. In short,
if Y is such a product, then minor modifications of the arguments in [10] show that

Ch(Y ) := Im(CH(Y )/2→ CH(YF )/2)

inherits from the smooth locus of Y the structure of an F2-algebra and an action of
cohomological-type Steenrod operations. Given three such products Y1, Y2, Y3, one may

2The statement is also known to be valid for quasilinear forms ([12]), but this requires different methods.
3The quasilinear case has been fully resolved in [14] using different methods.
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then define a composition law Ch(Y1 × Y2)⊗F2 Ch(Y2 × Y3)→ Ch(Y1 × Y3) that serves as
a substitute for the standard composition of Chow correspondences for smooth varieties.

After presenting the basic tools, we introduce in §7 the obvious extension of the motivic
decomposition type invariant to degenerate but nonquasilinear anisotropic forms in char-
acteristic 2. In the interest of consistency, we continue to use the notation MDT, though
we do not introduce any formal categorical framework for the study of this invariant.
With the intersection-theoretic tools in place, some of the basic results on the MDT for
nondegenerate forms can be immediately extended to the degenerate case.

In §8, we establish one of the main objectives of the work, namely a variant of a theorem
of Vishik concerning stable birational equivalences of quadratic Grassmannians. Vishik’s
result, which in the literature is limited to the characteristic-not-2 setting, establishes
motivic decompositions of smooth quadrics arising from such equivalences. Our Theorem
8.3 is a discrete variant of this valid for all nonquasilinear anisotropic forms in characteristic
2 (for nondegenerate forms, it yields the stronger motivic statement of Vishik’s result
by the discussion of [3, Ch. XVII]). A key aspect of this result is that it permits, in
certain situations, to relate the MDT invariants of nondegenerate and degenerate forms.
For example, we can derive degenerate variants of the well-known results of Rost on the
motivic structure of nondegenerate Pfister neighbours and excellent forms (see §8.B). More
significantly, the results of §8 can be used to recast certain problems on degenerate forms
as problems lying within the nondegenerate framework. For instance, in §9, we reduce
the essential part of a conjecture of Hoffmann-Laghribi on the classification of degenerate
Pfister neighbours to a well-known conjecture of Vishik on binary direct summands in
the motives of smooth quadrics (see Proposition 9.9). As part of this discussion, we also
provide some more direct evidence for the Hoffmann-Laghribi conjecture (Theorem 9.4),
and in fact reduce it to another important open problem in the degenerate setting, namely
the classification of forms of nondefective height 1 (Corollary 9.7). In §10, we also consider
the problem of determining the extent to which Karpenko’s theorem on the possible values
of the i1 invariant remains valid if the dimension of the quasilinear part of the form is taken
into account. We raise here a general question (Question 10.8) for which we conjecture a
positive answer when the dimension of the quasilinear part is sufficiently small (Conjecture
10.10). Using the results of §8 and known results on nondegenerate quadratic forms, we
provide some evidence for this conjecture (see Theorem 10.11 in particular).

Finally, while the proofs of some important results on nondegenerate forms (such as
Karpenko’s theorem on i1) can be directly adapted to the degenerate setting, there are
others lying at a deeper level for which things are more involved. The primary issue here
is the fact that the action of the cohomological-type Steenrod operations on the groups
Ch(Y ) is not intrinsically defined over F outside of the nondegenerate setting. There, the
descent of the action has been used to establish a major result on the MDT invariant,
namely Vishik’s theorem on the existence of so-called excellent connections ([17]). In §10,
we conjecture that the obvious variant of this for degenerate but nonquasilinear anisotropic
forms in characteristic 2 is valid (Conjecture 10.13), and discuss some implications of
this claim. While proving the statement requires further development of the algebraic-
geometric machinery, we at least verify its validity in dimension ≤ 9 (Lemma 10.16).

Terminology and Notation. Throughout this text, a scheme is a separated scheme of
finite type over a field, and a variety is an integral scheme. If X is a scheme, then we shall
write dX for the dimension of X. The letters CH shall be used to denote integral Chow
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groups, and Ch to denote Chow groups modulo 2. We shall essentially only work with the
latter groups. Basic facts in Chow theory (see, e.g., [3, Pt. 2]) shall be used freely.

2. Preliminaries on Quadratic Forms and Quadrics

For the remainder of the paper, we fix a field F of characteristic 2. In this section, we
present some preliminary material on quadratic forms and their associated quadrics. For
all additional background information, the reader is referred to [3].

2.A. Symmetric Bilinear Forms. By a symmetric bilinear form over F , we mean a pair
(V, b) consisting of a finite-dimensional F -vector space V and a nondegenerate symmetric
F -bilinear form ϕ : V×V → F . In practice, we supress V from our notation and simply talk
about the form b. If a1, . . . , an ∈ F×, then we write 〈a1, . . . , an〉b for form Fn × Fn → F
that sends ((x1, . . . , xn), (y1, . . . , yn)) to

∑n
i=1 aixiyi. We also write 〈〈a1, . . . , an〉〉b for the

n-fold bilinear Pfister form 〈1, a1〉b⊗ · · · ⊗ 〈1, an〉b. Any such form b is round, in the sense
that b ' b(v, v)b for all vectors v with b(v, v) 6= 0 ([3, Cor. 6.2]).

2.B. Quadratic Forms. By a quadratic form over F , we mean a pair (V, ϕ) consisting
of a finite-dimensional F -vector space V and a quadratic form ϕ : V → F . In practice, we
supress V from our notation and simply talk about the form ϕ. In particular, we shall
write dimϕ for the dimension of V and refer to it as the dimension of ϕ. If the need arises
to consider the underlying space, we shall denote it Vϕ. Given a, b ∈ F , we write [a, b] for
the form F 2 → F that sends (x, y) to ax2 + xy + by2. Given a1, . . . , an ∈ F , we write
〈a1, . . . , an〉 for the form Fn → F that sends (x1, . . . , xn) to

∑n
i=1 aix

2
i . Quadratic forms

of this type are said to be quasilinear. If ϕ is a quadratic form over F , then there is, up
to isometry, a unique quadratic form ql(ϕ) over F with the following properties:

(i) ql(ϕ) is quasilinear;
(ii) ϕ ' (⊥ri=1 [ai, bi]) ⊥ ql(ϕ) for some nonnegative integer r and elements ai, bi ∈ F .

In (ii), the form ⊥ri=1 [ai, bi] is not uniquely determined by ϕ in general, but the integer
r is. If dimql(ϕ) = s, then dimϕ = 2r + s, and we say that ϕ has type (r, s). If W
is a finite-dimensional F -vector space, then we write H(W ) for the form W ⊕W∨ → F
that sends (w, f) to f(w). Quadratic forms isometric to one of this type are said to be
hyperbolic. If dimW = d, then H(W ) ' d · H, where H := H(F ) ' [0, 0] is the hyperbolic
plane. Witt decomposition says that if ϕ is a quadratic form over F , then there exists
an anisotropic quadratic form ϕan over F and nonnegative integers iW (ϕ), id(ϕ) such
that ϕ ' ϕan ⊥ iW (ϕ) · H ⊥ id(ϕ) · 〈0〉. The form ϕan is unique up to isometry and
is called the anisotropic part of ϕ. The integers iW (ϕ) and id(ϕ) are also unique, and
called the Witt index of ϕ and defect index of ϕ, respectively. The isotropy index of
ϕ, denoted i0(ϕ), is defined as the sum of iW (ϕ) and id(ϕ). Alternatively, i0(ϕ) is the
maximal dimension of a totally isotropic subspace of Vϕ. Note that id(ϕ) coincides with
the isotropy index of ql(ϕ). If this integer is non-zero (i.e., if ql(ϕ) is isotropic), then we
say that ϕ is defective. If id(ϕ) = 0 and ql(ϕ) has dimension at most 1, then we shall say
that ϕ is nondegenerate. Thus, a nondegenerate quadratic form over F is one isometric to
⊥ri=1 [ai, bi] or (⊥ri=1 [ai, bi]) ⊥ 〈c〉 for some nonnegative integer r and elements ai, bi ∈ F ,
c ∈ F×. In the even-dimensional case, the term nonsingular is also sometimes used to
indicate nondegeneracy. If ψ is another quadratic form over F , then we say that ϕ and ψ
are Witt equivalent, and write ϕ ∼ ψ, if ϕan ' ψan. Witt equivalence has the properties
of an equivalence relation, and nondegenerate quadratic forms of even dimension are Witt
equivalent if and only if they represent the same element of the quadratic Witt group
Wq(F ). For nondefective forms whose quasilinear parts have equal dimension, we have:
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Lemma 2.1. Let ϕ and ψ be nondefective quadratic forms over F of types (r, s) and (r′, s)
respectively. Then the following are equivalent:

(1) ϕ ∼ ψ;
(2) ϕ ⊥ ψ ∼ ql(ϕ);
(3) i0(ϕ ⊥ ψ) = r + r′ + s;
(4) iW (ϕ ⊥ ψ) = r + r′ and ql(ϕ) ' ql(ψ).

Proof. Note that if σ is any quadratic form over F , then the following hold:

(i) σ ⊥ ql(σ) ∼ σ;
(ii) σ ⊥ σ ∼ ql(σ).

Indeed, for the first point, it suffices to show that ql(ϕ) ⊥ ql(ϕ) ∼ ql(ϕ). But if V denotes
the underlying vector space of ql(ϕ), then the automorphism of V ⊕ V mapping each pair
(v, w) to (v + w,w) gives an isometry from ql(ϕ) ⊥ ql(ϕ) onto ql(ϕ) ⊥ dim(V )〈0〉. As for
the second point, the first point reduces us to the case where σ is nondegenerate of even
dimension. But in this case, σ ⊥ σ is a nondegenerate form that evidently admits a totally
isotropic subspace of dimension equal to half the dimension of its underlying subspace,
and is hence hyperbolic. We now prove the desired equivalences:

(1) ⇒ (2): We may assume that ϕ and ψ are anisotropic, and hence that ϕ ' ψ. The
claim then follows from statement (ii) above.

(2)⇒ (3): Since ql(ϕ) is anisotropic, this is clear.
(3) ⇒ (4): Note that ϕ ⊥ ψ has type (r + r′, 2s) and quasilinear part ql(ϕ) ⊥ ql(ψ).

If id(ϕ ⊥ ψ) were greater than s, then ql(ϕ) would be isotropic (being a codimension-s
subform of ql(ϕ) ⊥ ql(ψ)). Since this is not the case, (3) then implies that iW (ϕ ⊥ ψ) =
r + r′ and id(ϕ ⊥ ψ) = s. Let V1 and V2 be the underlying vector spaces of ql(ϕ) and
ql(ψ), respectively. Since id(ϕ ⊥ ψ) = s every subform of ql(ϕ) ⊥ ql(ψ) of codimension
< s is isotropic. In particular, if v ∈ V1, then there exists a vector f(v) ∈ V2 such that
ϕ(v) = ψ(f(v)). If f(v) were not unique, then ql(ψ) would be isotropic, contrary to our
hypothesis. Thus, f(v) is unique, and the quasilinearity of ql(ϕ) and ql(ψ) then implies
that v 7→ f(v) defines an isometry from the former onto the latter. Thus, (4) holds.

(4) ⇒ (1): Since ϕ ⊥ ψ has type (r + r′, 2s) and Witt index r + r′, we have ϕ ⊥ ψ ∼
ql(ϕ ⊥ ψ) ∼ ql(ϕ) ⊥ ql(ψ). Since ql(ϕ) ' ql(ψ), statements (i) and (ii) from the beginning
of the proof then gives that

ϕ ∼ ϕ ⊥ ql(ϕ) ⊥ ql(ψ) ∼ ϕ ⊥ ϕ ⊥ ψ ∼ ql(ϕ) ⊥ ψ ∼ ql(ψ) ⊥ ψ ∼ ψ,

as desired. �

If b and ϕ are symmetric bilinear and quadratic forms over F , respectively, then we
may consider the tensor product quadratic form b ⊗ ϕ as defined on [3, P. 51]. If ϕ
is nondegenerate, then the same is true of b ⊗ ϕ, and the construction then equips the
quadratic Witt group Wq(F ) with the structure of a W (F )-module, where W (F ) is the
Witt ring of symmetric bilinear forms over F . Finally, if K is a field extension of F ,
then we shall write ϕK for the quadratic form over K induced by ϕ. Note that we have
ql(ϕK) ' ql(ϕ)K . We shall repeatedly use the following basic facts:

• Anisotropic quadratic forms remain anisotropic under purely transcendental ex-
tensions ([3, Lem. 7.15]) and finite extensions of odd degree (Springer’s theorem,
[3, Cor. 18.5]);
• Anisotropic quasilinear quadratic forms remain anisotropic under separable exten-

sions ([5, Prop. 5.3]).
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2.C. Subforms and Domination. Let ψ be a quadratic form of type (r, s) over F . If ψ
is isometric to an orthogonal summand of a quadratic form ϕ over F , then we shall say that
ψ is a subform of ϕ, and write ψ ⊂ ϕ. More generally, if ψ is isometric to the restriction
of ϕ onto a subspace of Vϕ, then we shall say that ψ is dominated by ϕ, and write ψ ≺ ϕ.
If ϕ is nondegenerate of even dimension, then it is shown in [6, §3] that ψ ≺ ϕ if and only
if there exist quadratic forms ψr, τ, σ over F , and elements c1, d1, . . . , cs, ds ∈ F such that

• ψr and τ are nondegenerate and of even dimension;
• ψ ' ψr ⊥ 〈c1, . . . , cs〉 (in particular, ql(ψ) ' 〈c1, . . . , cs〉);
• ϕ ' ψr ⊥ τ ⊥ [c1, d1] ⊥ · · · ⊥ [cs, ds].

While the individual forms appearing here are not uniquely determined, one readily ob-
serves that the form ψcϕ := τ ⊥ 〈c1, . . . , cs〉 ' τ ⊥ ql(ψ) satisfies ψcϕ ∼ ψ ⊥ ϕ, and hence
only depends on the pair (ψ,ϕ). We call it the complementary form of ψ in ϕ. Note that
dimϕ − dimψ = dimψcϕ ≥ s, and that (ψcϕ)c ' ψ. The first inequality implies in partic-
ular that dimϕ ≥ 2(r + s). If equality holds here, then we say that ϕ is a nonsingular
completion of ψ. In this case, we have ψcϕ ' ql(ψ).

2.D. Projective Quadrics. If ϕ is a quadratic form over F , then we shall write Xϕ for
the quadric hypersurface in P(Vϕ) defined by the vanishing of ϕ (when dimϕ ≤ 1, this
means that Xϕ = ∅). By (the proof of) [3, Prop. 22.1], the singular (i.e., nonsmooth)
locus of Xϕ is the closed subscheme defined by the vanishing of the quasilinear part ql(ϕ).
In particular, Xϕ is smooth precisely when ϕ is nondegenerate, and generically smooth
(i.e., has nonempty smooth locus) precisely when ϕ is nonquasilinear. We shall say that
Xϕ is isotropic (resp. anisotropic, nondefective, quasilinear) if ϕ is.

2.E. Function Fields of Quadrics, the Knebusch Splitting Tower and the Izh-
boldin Dimension. Let ϕ be a quadratic form over F . If the quadric Xϕ is nonempty
and integral, then we write F (ϕ) for its function field. Otherwise, we set F (ϕ) := F . It
is easy to see that Xϕ is nonempty and integral if and only if i0(ϕ) ≤ dimϕ − 2, so the
second case is exceptional. As Xϕ has an F (ϕ)-point, the form ϕF (ϕ) is isotropic.

Lemma 2.2. Let ϕ be a nonzero quadratic form of dimension ≥ 2 over F such that
i0(ϕ) ≤ dimϕ− 2 (so that Xϕ is nonempty and integral). Then:

(1) F (ϕ)/F is separable if and only if ϕ is nonquasilinear;
(2) F (ϕ)/F is purely transcendental if and only if iW (ϕ) > 0.

Proof. (1) The function field of an F -variety X is a separable extension of F precisely
when X is generically smooth, and the quadric Xϕ is generically smooth precisely when
ϕ is not quasilinear (§2.D).

(2) Suppose first that F (ϕ)/F is purely transcendental. Since ϕF (ϕ) is isotropic, ϕ must
then be isotropic. If iW (ϕ) = 0, we then have that ϕ ' ϕan ⊥ i · 〈0〉 for some i ≥ 1, and
so Xϕ is a cone over Xϕan . In particular, F (ϕan) is F -isomorphic to a subfield of F (ϕ).
Since F (ϕ)/F is purely transcendental, ϕan must then remain anisotropic over F (ϕan).
But implies that dimϕan ≤ 1, contradicting the integrality of Xϕ. We must therefore
have that iW (ϕ) > 0 in this case. Conversely, if iW (ϕ) > 0, then Xϕ is isomorphic to a
projective hypersurface of equation xy = p(z1, . . . , zn) for some homogeneous quadratic
polynomial p(z1, . . . , zn) ∈ F [z1, . . . , zn]. The locus where x 6= 0 then constitutes a rational
open subvariety of Xϕ, and so F (ϕ)/F is purely transcendental. �

Following a classical construction of Knebusch, we associate to ϕ a finite sequence
of pairs (Fi, ϕi) consisting of an extension Fi of F and an anisotropic quadratic form
ϕi over Fi as follows: Given a pair (Fi−1, ϕi−1) with dimϕi−1 ≥ 2, we define Fi to be
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the field Fi−1(ϕi−1) and ϕi to be the form (ϕFi)an. The process is initiated by setting
(F0, ϕ0) := (F,ϕan), and terminates at the first integer h for which dimϕh ≤ 1. The tower
F = F0 ⊆ F1 ⊆ · · · ⊆ Fh is called the Knebusch splitting tower of ϕ, the form ϕi is called
the ith anisotropic kernel form of ϕ, and the integer h is called the Knebusch height of ϕ.
For all 0 ≤ t ≤ h, we set jt(ϕ) := i0(ϕFt). When t ≥ 1, we also set it(ϕ) = jt(ϕ)− jt−1(ϕ).
The set {jt(ϕ) | 0 ≤ t ≤ h} is called the Knebusch splitting pattern of ϕ. In the sequel, we
will be interested in the case where ϕ is nondefective, and here will shall only deal with a
certain piece of the Knebusch splitting tower:

Lemma 2.3. Suppose, in the above situation, that ϕ is nondefective. If ϕ has type (r, s),
then there exists a unique integer 0 ≤ hnd ≤ h for which jhnd(ϕ) = r. Moreover, we have

{jt(ϕ) | 0 ≤ t ≤ hnd} = {iW (ϕK) | K/F a separable extension}
= {i0(ϕK) | K/F an extension with id(ϕK) = 0}.

Proof. Let hnd be the smallest integer for which ϕhnd is quasilinear. The Witt index of ϕ
over Fhnd is then r, and so jhnd(ϕ) ≥ r. To prove that equality holds, we have to show
that ϕ remains nondefective over Fhnd . But the extension Fhnd is separable by repeated
application of Lemma 2.2 (1), and so the claim follows from the fact that anisotropic
quasilinear quadratic forms remain anisotropic under separable extensions. This proves
the first statement. Moreover, the preceding discussion also gives the inclusions

{jr(ϕ) | 0 ≤ r ≤ hnd} ⊆ {iW (ϕK) | K/F a separable extension}
⊆ {i0(ϕK) | K/F an extension with id(ϕK) = 0},

so to prove the second statement, we just have to show that if K/F is a field extension
with id(ϕ) = 0, then i0(ϕK) = jt(ϕ) for some 0 ≤ t ≤ hnd. Since id(ϕ) = 0, we have
i0(ϕK) ≤ r, and so there exists a smallest integer 0 ≤ t ≤ hnd such that i0(ϕK) ≥ jt(ϕ).
We claim that equality holds here. Since anisotropic quadratic forms remain anisotropic
under purely transcendental extensions, it suffices to show that the compositum K ·Ft is a
purely transcendental extension of K. But since iW (ϕK) = i0(ϕK) ≥ jt(ϕ), K ⊆ K · F1 ⊆
· · · ⊆ K · Ft is a tower of function fields of integral quadrics defined by quadratic forms
with positive Witt index, and the claim then holds by Lemma 2.2 (2). �

In the situation of the lemma, the integer hnd will be called the nondefective height of
ϕ. In turn, the truncated tower F = F0 ⊆ F1 ⊆ · · · ⊆ Fhnd will be called the nondefective
splitting tower of ϕ, and the set {jt(ϕ) | 0 ≤ t ≤ hnd} the nondefective splitting pattern of
ϕ. If we need to emphasize the dependence on ϕ, we will write hnd(ϕ) instead of hnd.

Remarks 2.4. In the above situation, the full splitting pattern of ϕ is defined as the set
consisting of the isotropy indices attained by ϕ over all possible extensions of F . When ϕ is
nondegenerate, Lemma 2.3 shows that this coincides with the Knebusch splitting pattern
of ϕ (which is the same thing as nondefective splitting pattern of ϕ in this case). In general,
however, the Knebusch splitting pattern will only constitute a subset of the full splitting
pattern. For example, one readily checks that if X, Y and Z are indeterminates, then
the quasilinear quadratic form 〈1, X, Y,XY,Z〉 over F (X,Y, Z) has Knebusch splitting
pattern {0, 1, 3, 4}, but full splitting pattern {0, 1, 2, 3, 4}. The point is that if we only
consider extensions that do not alter the defect index of ϕ (e.g., separable extensions),
then Knebusch’s construction gives a “universal” partial splitting tower for ϕ. If we wish
to allow ql(ϕ) to split, however, then this universality is lost.

Although the Knebusch splitting tower does not in general recover all possible isotropy
indices attained by ϕ over extensions of F , one can nevertheless show that j1(ϕ) is
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the second smallest integer in the full splitting pattern of ϕ when defined. In other
words, if ϕ is anisotropic of dimension ≥ 2, then i1(ϕ) is the smallest element of the set
{i0(ϕK) | K/F an extension} (see [10, §0]). The following theorem gives a nontrivial re-
striction on the possible values of i1(ϕ) in this case. The analogous statement over fields of
characteristic not 2 was first proved by Karpenko in [9]. In our setting, the case where ϕ
is quasilinear was treated in [12], and the nonquasilinear cases were more recently treated
by Primozic in [11] (nondegenerate case) and Karpenko in [10] (general case).

Theorem 2.5. Let ϕ be an anisotropic quadratic form of dimension ≥ 2 over F , and let
u be the largest integer for which dimIzhϕ is divisible by 2u. Then i1(ϕ) ≤ 2u.

When ϕ is nondegenerate or quasilinear, all values of the integer i1(ϕ) permitted by
Theorem 2.5 can be realized. In the case where ϕ is neither nondegenerate nor quasilinear,
however, we will see in §10 below that the type of ϕ imposes some further restrictions.
When ϕ is anisotropic of dimension ≥ 2, we shall define the Izhboldin dimension of ϕ to
be the integer dimIzhϕ := dimϕ− i1(ϕ). Theorem 2.5 then says that dimIzhϕ is divisible
by the smallest 2-power bounding i1(ϕ) from above. In particular, we have the following
result, which is due to Hoffmann and Laghribi ([7, Lem. 4.1]):

Corollary 2.6. Let ϕ be an anisotropic quadratic form of dimension 2n + m for some
non-negative integer n and integer 1 ≤ m ≤ 2n. Then dimIzhϕ ≥ 2n.

If equality holds in the conclusion of the corollary (equivalently, if i1(ϕ) = m), then we
shall say that ϕ has maximal splitting. Now, another key result on the Izhboldin dimension
is the following theorem which is due to Karpenko and Merkurjev in the nondegenerate
case ([3, Thm. 76.5]) and Totaro in the degenerate case ([15, Thm. 5.2]):

Theorem 2.7. Let ϕ and ψ be anisotropic quadratic forms of dimension ≥ 2 over F . If
ϕF (ψ) is isotropic, then dimIzhψ < dimϕ.

When combined with Corollary 2.6, this gives the following “separation theorem”, again
due to Hoffmann and Laghribi ([7, Thm. 1.1]):

Corollary 2.8. Let ϕ and ψ be anisotropic quadratic forms of dimension ≥ 2 over F . If
dimϕ ≤ 2n < dimψ for some non-negative integer n, then ϕF (ψ) is anisotropic.

2.F. Stable Birational Equivalence. Let ϕ and ψ be anisotropic quadratic forms of
dimension ≥ 2 over F . The following are then known to be equivalent:

(1) Xϕ and Xψ are stably birational as varieties over F ;
(2) For every field extension K/F , ϕK is isotropic if and only if ψK is isotropic;
(3) ϕF (ψ) and ψF (ϕ) are isotropic.

Indeed, since anisotropic quadratic forms remain anisotropic under purely transcendental
extensions, the implications (1) ⇒ (2) ⇒ (3) are clear. For (3) ⇒ (1), the case where
neither ϕ nor ψ are quasilinear is a straightforward consequence of Lemma 2.2 (2), and
the case where at least one of ϕ and ψ is quasilinear is a result due to Totaro ([15]). In
fact, if ϕ is quasilinear and (3) holds, then ψ must also be quasilinear by Lemma 2.2
(2) and the fact that anisotropic quasilinear quadratic forms remain anisotropic under
separable extensions. Under the assumption that both ϕ and ψ are quasilinear, however,
the implication (3) ⇒ (1) follows from [15, Thms. 5.2 and 6.5], and so the equivalence
holds in all cases. If (1), (2) and (3) hold, we shall say that ϕ and ψ are stably birationally

equivalent, and write ϕ
stb∼ ψ. The following important result, which extends Theorem 2.7,

is again due to Karpenko and Merkurjev in the nondegenerate case ([3, Thm. 76.5]) and
Totaro in the degenerate case ([15, Thm. 5.2]):
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Theorem 2.9. Let ϕ and ψ be anisotropic quadratic forms of dimension ≥ 2 over F .

Then ϕ
stb∼ ψ if and only if ϕF (ψ) is isotropic and dimIzhϕ = dimIzhψ.

We then have the following basic fact:

Lemma 2.10. Let ϕ and ψ be anisotropic quadratic forms of dimension ≥ 2 over F with

ψ ≺ ϕ. If dimψ > dimIzhϕ, then ϕ
stb∼ ψ. In particular, dimIzhϕ = dimIzhψ.

Proof. We can assume that ψ is the restriction of ϕ to a subspace U of Vϕ. It is clear that
ϕF (ψ) is clearly isotropic. Now, by definition, the F (ϕ)-vector space Vϕ ⊗F F (ϕ) admits
a totally isotropic subspace of dimension i1(ϕ). Since dimψ > dimIzhϕ, this subspace
must intersect U ⊗F F (ϕ) nontrivially, and so ψF (ϕ) is also isotropic. This proves the first
statement, and the second then follows by Theorem 2.9. �

2.G. Pfister Neighbours and (Strongly) Excellent Forms. Let a1, . . . , an ∈ F×. If
an+1 ∈ F , then we write 〈〈a1, . . . , an+1]] for the (n + 1)-fold Pfister form 〈〈a1, . . . , an〉〉b ⊗
[1, an+1]. Any such form π is round, in the sense that aπ ' π for all a ∈ F× represented
by π ([3, Cor. 9.9]). By a general (n+1)-fold Pfister form, we shall mean any form similar
to (i.e., isometric to a scalar multiple of) an (n + 1)-fold Pfister form. Any such form is
nondegenerate of dimension 2n+1. An isotropic general Pfister form is hyperbolic, i.e., has
Witt index equal to half its dimension. In particular, if π is an anisotropic general (n+1)-
fold Pfister form, then i1(π) = 2n, i.e., π has maximal splitting. Now, let ϕ be a nonzero
quadratic form over F , and let n be the unique integer for which 2n < dimϕ ≤ 2n+1. If
ϕ is is dominated by a general (n + 1)-fold Pfister form π, then we shall say that ϕ is
a Pfister neighbour. In this case, the form π is uniquely determined up to isometry, and
we refer to it as the ambient general Pfister form of ϕ. The complementary form ϕcπ (see
§2.C), which has dimension 2n+1 − dimϕ, will simply be denoted ϕc. We thus have that
ϕ ⊥ π ∼ ϕc. In the case where ϕ is anisotropic, it follows from the Cassels-Pfister subform
theorem ([3, Thm. 22.5]) and Lemma 2.10 that ϕ is a Pfister neighbour if and only if it
is stably birationally equivalent to some anisotropic Pfister form (which is then similar to
the ambient general Pfister form of ϕ). We note the following:

Lemma 2.11. Let ϕ be an anisotropic quadratic form of type (r, s) over F , and n the
unique integer for which 2n < dimϕ ≤ 2n+1. If ϕ is a Pfister neighbour, then:

(1) r + s ≤ 2n;
(2) ϕ1 ' (ϕc)F (ϕ).
(3) ϕ has maximal splitting, i.e., dimIzhϕ = 2n;

Proof. Let π be the ambient general Pfister form of ϕ.
(1) Per the discussion in §2.C, any nondegenerate form of even dimension that dominates

ϕ has dimension at least 2(r + s). Since dimπ = 2n+1, (1) then follows.

(2) Since ϕ
stb∼ π, πF (ϕ) is isotropic, and hence hyperbolic. Since ϕ ⊥ π ∼ ϕc, it follows

that ϕ1 ∼ (ϕc)F (ϕ). But dimϕc = 2n+1 − dimϕ < 2n, and so (ϕc)F (ϕ) is anisotropic
by the separation theorem (Corollary 2.8). As ϕ1 is also anisotropic, we then have that
ϕ1 ' (ϕc)F (ϕ).

(3) Implicit in (2). �

A quadratic form ϕ over F is said to be excellent if for every field extension K/F with
i0(ϕK) > i0(ϕ), there exists a quadratic form τ over F such that (ϕK)an ' τK . By [5,
Lem. 5.1], all quasilinear quadratic forms are excellent. For nonquasilinear forms, the
situation is more complicated. A source of examples is provided by the following:
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Lemma 2.12. Let ϕ be a nonquasilinear quadratic form over F with Knebusch splitting
tower F = F0 ⊆ F1 ⊆ · · · . Suppose that there exist a positive integer h and Pfister
neighbours ψ0, ψ1, . . . , ψh−1 over F such that:

(1) ψ0 = ϕan;
(2) ψi ' ψci−1 for all 1 ≤ i < h;
(3) ψch−1 ' (ql(ϕ))an.

Then ϕ is excellent of nondefective height h, and ϕi ' (ψi)Fi for all 0 ≤ i < h.

Proof. By part (2) of Lemma 2.11, we only have to prove the excellence of ϕ. To this end,
let K be an extension of F with i0(ϕK) > i0(ϕ). There then exists a largest integer i < h
with (ψi)K is isotropic. For each 0 ≤ j < h, let πj be the ambient general Pfister form of
ψj . Then (πj)K is hyperbolic for all j ≤ i, and so

ϕK ∼ (ψ0)K ∼ (ψc0)K ' (ψ1)K ∼ · · · ∼ (ψci−1)K ' (ψi)K ∼ (ψci )K = (ψi+1)K

by (1) and (2). If i 6= h− 1, we then have that (ϕK)an ' (ψi+1)K . If i = h− 1, then (3)
gives that (ϕK)an ' (ql(ϕ)K)an. By the remarks preceding the statement, however, we
then have that (ϕK)an ' τK for some quasilinear form τ over K, and so we’re done. �

If ϕ is as in Lemma 2.12, then we shall say that ϕ is strongly excellent. By a result
essentially due to Knebusch, all nondegenerate excellent forms are strongly excellent (see
[3, Thm. 28.3]). In general, however, excellence is weaker. For instance, anisotropic forms
of type (1, s) are readily seen to be excellent, but such a form cannot be strongly excellent
unless s = 2n − 1 for some integer n by Lemma 2.11 (1). Nevertheless, it is expected
that an excellent quadratic form of type (r, s) is strongly excellent when s is “sufficiently
small”. This can be made precise via a conjecture of Hoffmann and Laghribi on Pfister
neighbours that will be discussed in §9 below. Here, we note that anisotropic strongly
excellent forms can be described more explicitly as follows:

Proposition 2.13. Let ϕ be an anisotropic nonquasilinear quadratic form over F , and
let h be a positive integer. Then the following are equivalent:

(1) ϕ is strongly excellent of nondefective height h;
(2) There exist anisotropic Pfister forms π0, π1, . . . , πh−1 over F , an anisotropic quasi-

linear quadratic form τ over F , and a scalar a ∈ F× such that
(i) ϕ ∼ a(π0 ⊥ π1 ⊥ · · · ⊥ πh−1 ⊥ τ);
(ii) For all 1 ≤ i < h, πi is a proper subform of πi−1;

(iii) τ ≺ πh−1 and dimτ <
dimπh−1

2 ;
(iv) If τ = 0, then dimπh−2 > 2dimπh−1.

Proof. (1) ⇒ (2): Suppose that ϕ is strongly excellent of nondefective height h, and let
ψ0, . . . , ψh−1 be as in the statement of Lemma 2.12. For each 0 ≤ i ≤ h − 1, let ρi be
the ambient general Pfister form of ψi, and write ρi = aiπi for some Pfister form πi over
F and scalar ai ∈ F×. Since ψch−1 = ql(ϕ), the anisotropic quasilinear quadratic form
τ := ah−1ql(ϕ) satisfies condition (iii) in (2). Moreover, since ψi−1 ⊥ ρi−1 ∼ ψci−1 ' ψi for
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all 1 ≤ i < h, we have that

ϕ ⊥ (a0π0 ⊥ · · · ⊥ ah−1πh−1) ' (ψ0 ⊥ ρ0) ⊥ (ρ1 ⊥ · · · ⊥ ρh−1)

∼ (ψ1 ⊥ ρ1) ⊥ (ρ2 ⊥ · · · ⊥ ρh−1)

...
...

∼ ψh−1 ⊥ ρh−1

∼ ψch−1

' ql(ϕ)

' ah−1τ.

Since a0π0 ⊥ · · · ⊥ ah−1πh−1 is nondegenerate, we then have that ϕ ∼ a0π0 ⊥ · · · ⊥
ah−1πh−1 ⊥ ah−1τ (Lemma 2.1). To show that conditions (i) and (ii) in (2) are satisfied,
it now remains to show that for each 1 ≤ i < h, we have πi ⊂ πi−1 and ai−1πi−1 ' aiπi

(then (i) will hold with a = ah−1). For any such i, however, we have πi
stb∼ ψi = ψci−1 ≺

ρi−1 = ai−1πi−1, and so πi−1 becomes isotropic over F (πi). Since πi−1 is Pfister, it follows
that (πi−1)F (πi) is hyperbolic, and so πi ⊂ πi−1 by the Cassels-Pfister subform theorem
([3, Thm. 22.5]). Since ai−1πi−1 and aiπi = ρi both dominate ψi, it then follows that
πi−1 represents elements x, y ∈ F× such that ai−1x = aiy. By the roundness of Pfister
forms, we then have that aiπi−1 ' aixy−1πi−1 ' aiπi−1, as desired. Finally, if τ = 0, then

ψh−1 = ah−1πh−1. Since dimψh−1 = dimψch−2 = dimπh−2 − dimψh−2 <
dimπh−2

2 , we have
that dimπh−2 > 2dimπh−1 in this case, i.e. (iv) is satisfied.

(2)⇒ (1): Let π0, . . . , πh−1, τ and a be as in (2). For each 0 ≤ i < h, set ψi := a(πi ⊥
πi+1 ⊥ · · · ⊥ πh−1 ⊥ τ)an. By hypothesis, ψ0 ' a(π0 ⊥ π1 ⊥ · · · ⊥ πh−1 ⊥ τ)an ' ϕ. Since
the form a(π0 ⊥ π1 ⊥ · · · ⊥ πh−1) is nondegenerate, and since τ is anisotropic, we then
also have that ql(ϕ) ' aτ . To prove the claim, it therefore suffices to show the following:

• For each 1 ≤ i < h, ψi−1 is a Pfister neighbour with ambient general Pfister form
aπi−1 and complementary form ψi;
• ψh−1 is a Pfister neighbour with ψch−1 ' aτ .

We start with the second claim. By hypothesis, τ is dominated by πh−1. If we let τ c be
the complementary form, then ψh−1 = a(πh−1 ⊥ τ)an ∼ aτ c. Since πh−1 is anisotropic,

the same is true of τ c, and so ψh−1 ' aτ c. But since dimτ <
dimπh−1

2 , we have dimaτ c >
dimπh−1

2 , and so ψh−1 is a Pfister neighbour with complementary form aτ . For the first
claim, let 1 ≤ i < h. By definition, we have ψi−1 ' (aπi−1 ⊥ ψi)an. Arguing by
induction on i (and using the preceding discussion for i = h − 1), we can assume that
ψi is dominated by aπi, and hence by aπi+1. Since πi is anisotropic, it follows that
ψi−1 ' ψci . To prove the claim, it now only remains to check that dimψi−1 > dimψi.
Suppose, for the sake of contradiction, that this is not the case. Since ψi = ψci−1, we

have dimψi−1 = dimπi−1 − dimψi. Since ψi ≺ aπi, and since dimπi ≤ dimπi−1

2 , the only

possibility here is that ψi ' aπi and dimπi = dimπi−1

2 . But the first point implies that
i = h − 1 and τ = 0, and the second then contradicts assumption (iv). Thus, the first
claim also holds, and so the proposition is proved. �

Remarks 2.14. (1) Again, in the nondegenerate case, this is essentially due to Knebusch.
(2) In the statement of the proposition, the forms π0, . . . , πh−1, τ in (2) are uniquely

determined up to isometry. Indeed, as the proof shows τ ' ql(ϕ), aπ0 is the ambient
general Pfister form of ϕ, aπ1 is the ambient general Pfister form of ϕc, and so on.
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3. Preliminaries on Cycles

Recall that we use the letters Ch to denote Chow groups modulo 2. We record here
some preliminary facts on the latter.

3.A. Degree Homomorphisms and Numerical Triviality. Let Y be a scheme over
F . If Y is projective, then we have the degree homomorphism deg : Ch(Y ) → F2 defined
as pushforward along the structure morphism Y → Spec(F ). If Y is smooth, then we shall
say that an element α ∈ Ch(Y ) is numerically trivial if deg(αβ) = 0 for all β ∈ Ch(Y ).
The subset of Ch(Y ) consisting of all numerically trivial elements is an ideal in Ch(Y )
which we shall denote N0(Y ). In the sequel, we shall have occasion to consider a slightly
more general situation where these remarks still apply. More precisely, suppose now that
Y is an open subscheme of a projective F -scheme Y ′ for which the (reduced scheme of
the) complement Y ′ \ Y has no closed point of odd degree. In this case, the localization
sequence for the closed embedding Y ′ \Y → Y ′ shows that the the degree homomorphism
for Y ′ factors through Ch(Y ) by restriction to Y . Abusing notation, we shall also denote
the induced homomorphism Ch(Y ) → F2 by deg. By definition, deg sends the class of
any closed point y ∈ Y to the degree of the residue field extension F (y)/F , and sends the
classes of all other closed subvarieties of Y to 0. In particular, it is independent of Y ′,
and hence intrinsic to Y . Let us describe this situation by saying that Y admits a degree
homomorphism. If Y is also smooth, we can then define the ideal N0(Y ) of numerically
trivial elements in Ch(Y ) exactly as before. We will need the following observations:

Lemma 3.1. Let f : X → Y be a proper morphism of schemes over F . Assume that Y is
smooth and admits a degree homomorphism (in the sense above).

(1) If X has no closed point of odd degree, then the image of the pushforward f∗ : Ch(X)→
Ch(Y ) lies in N0(Y ). In particular, if N0(Y ) = 0, then f∗ is the zero map.

(2) Suppose that X is also smooth and admits a degree homomorphism (in the sense
above). If f is a closed embedding, then f∗(N0(Y )) ⊆ N0(X).

Proof. (1) Since Ch(X) is generated by classes of closed subvarieties of X, it suffices to
show that α := f∗([X]) lies in N0(Y ). But if β ∈ Ch(Y ), then αβ = f∗(f

∗(β)) by [3, Prop.
56.11], and so deg(αβ) = 0 on account of X having no closed point of odd degree.

(2) Let α ∈ N0(Y ) and let β ∈ Ch(X). We have to show that deg(f∗(α)β) = 0.
Since f is a closed embedding, we have deg(γ) = deg(f∗(γ)) for all γ ∈ Ch(X). By
the projection formula ([3, Prop. 56.9]), however, we have f∗(f

∗(α)β) = αf∗(β), and so
deg(f∗(α)β) = deg(αf∗(β)) = 0 by the numerical triviality of α. �

Remark 3.2. If Y is a product of projective spaces, then N0(Y ) = 0 by the projective
bundle formula.

3.B. Scalar Extension to an Algebraic Closure and Rationality. Let F be an
algebraic closure of F . Given a scheme X over F , we set X := XF , and write Ch(X)

for the image of the scalar extension homomorphism Ch(X) → Ch(X) (equipped with
its induced gradings by dimension and codimension). The elements of Ch(X) that lie in
Ch(X) will be said to be F -rational. If α is an element of Ch(X), then its image in Ch(X)
shall be denoted α. We need the following:

Lemma 3.3. Let f : X → Y be a proper morphism of schemes over F . Suppose that Y is
smooth and projective, and that N0(Y ) = 0. If X has no closed point of odd degree, and
the pushforward homomorphism f∗ : Ch(X)→ Ch(Y ) is injective, then Ch(X) = 0.
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Proof. Let α ∈ Ch(X). We have to show that α = 0. By hypothesis, it suffices to show

that f∗(α) = 0. But f∗(α) = f∗(α), and so the desired assertion holds by Lemma 3.1. �

3.C. A Vanishing Result for Products of Quasilinear Quadrics. Let ϕ be an
anisotropic quasilinear quadratic form of dimension ≥ 2 over F . Set V := Vϕ, and let
i : Xϕ → P(V ) be the canonical embedding.

Lemma 3.4. Let Z be a variety over F . In the above situation, there is then a natural F2-
vector space homomorphism π : Ch(P(V )× Z)→ Ch(Xϕ × Z) satisfying (i× id)∗ ◦π = id.
In particular, (i× id)∗ is injective.

Proof. Let W be the set of isotropic vectors in V ⊗F F . Since ϕ is quasilinear, W is an
F -linear subspace of V ⊗F F . Since F is algebraically closed, W has codimension 1 in
V ⊗F F and P(W ) is the reduced scheme of Xϕ. In particular, if we let j : P(W ) → Xϕ

be the canonical embedding, then the pushforward j∗ : Ch(P(W ) × Z) → Ch(Xϕ × Z) is
an isomorphism. By the projective bundle formula, there is a natural F2-vector space
homomorphism π′ : Ch(P(V )× Z)→ Ch(P(W )×Z) satisfying (i ◦ j × id)∗ ◦ π′ = id. The
composite map π := j ◦ π′ then has the desired property. �

This leads to the following, which will be a basic point in the sequel:

Proposition 3.5. Let X be a variety over F which is a product of projective spaces and
positively many anisotropic quasilinear quadrics. Then Ch(X) = 0.

Proof. By the projective bundle formula, we can assume that X is a product of positively
many anisotropic quasilinear quadrics. By Springer’s theorem, none of these quadrics have
a closed point of odd degree, and so the same is true of X. Let ϕ1, . . . , ϕm be anisotropic
quasilinear quadratic forms of dimension ≥ 2 over F such that X = Xϕ1 × · · · × Xϕm .
For each 1 ≤ t ≤ m, set Vt := Vϕt , and let it : Xϕt → P(Vi) be the canonical embedding.
Set Y := P(V1) × · · · × P(Vm) and i := i1 × · · · × im. Then N0(Y ) = 0 (Remark 3.2),
and repeated application of Lemma 3.4 shows that i∗ : Ch(X)→ Ch(Y ) is injective. The
claim then follows from Lemma 3.3. �

4. Rational Cycles on Products of Generically Smooth Nondefective
Quadrics

Let F be an algebraic closure of F . In this section, we consider the group Ch(X) (as
defined in §3.B above) in the case where X is a product of generically smooth projective
quadrics over F , each of which is nondefective (i.e., has anisotropic singular locus). For
products of several copies of a single quadric of this type, the results stated here were
previously established by Karpenko in [10], and the extension to the more general situation
considered here only requires minor adaptation of the arguments found in the latter.
For the remainder of this section, we fix nonquasilinear quadratic forms ϕ1, . . . , ϕm of
dimension ≥ 2 over F , each of which is assumed to be nondefective. For each 1 ≤ t ≤ m,
we let (rt, st) be the type of ϕt, and we set Vi := Vϕi and Xi := Xϕt . Finally, we set
X := X1 × · · · ×Xm. Since the ϕi are nonquasilinear, the integers rt are positive and X
is generically smooth. We start by formulating the results we wish to establish.

4.A. Statements. Let 1 ≤ t ≤ m. Since F is algebraically closed, we have iW ((ϕt)F ) =

rt. Let Ut be a (2rt)-dimensional subspace of Vt ⊗F F such that ϕ|Ut is hyperbolic, and
let Wt be an rt-dimensional totally isotropic subspace of Ut. For each 0 ≤ i < rt, let us
define hi ∈ Ch(Xi) to be the class of a codimension i-subquadric of Xt, and li ∈ Ch(Xi) to
be the class of any i-dimensional projective linear subspace of P(Wt) (viewed as a closed
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subvariety of Xt). Note that we are suppressing the dependency on t in order to avoid
overcomplicating our notation. The element hi clearly lies in Ch(Xt) and depends only on
ϕt (being the pullback of the unique nontrivial element of Chj(P(Vt)) along the canonical
embedding of Xt into P(Vt)). The element li need not be F -rational. While it a priori
depends on the choice of Wt, it again does not depend on the choice of i-dimensional
projective linear subspace of P(Wt). Below, we shall see that:

Lemma 4.1. {li, hi}0≤i<rt is an F2-linearly independent subset of Ch(Xt).

Let Rt be the 2rt-dimensional F2-linear subspace of Ch(Xt) generated by {li, hi}0≤i<rt .
We can equip Rt with the structure of a commutative ring by defining the multiplication
as follows:

hihj :=

{
hi+j if i+ j < rt

0 otherwise
; hilj :=

{
lj−i if i ≤ j
0 otherwise;

;

lilj :=

{
l0 if dimϕt ≡ 2 (mod 4) and i = j = dimϕt−2

2

0 otherwise.

Note that the identity element is h0. For each integer j ≥ 0, we can also define an F2-vector
space homomorphism Sj : Rt → Rt by setting

Sj(hi) :=

{(
i
j

)
hi+j if j < rt − i

0 otherwise
and Sj(li) :=

{(
dimϕ−i−1

j

)
li−j if j ≤ i

0 otherwise.

One readily checks that Sj(αβ) =
∑

j1+j2=j S
j1(α)Sj2(β) for all α, β ∈ Rt. Now the proof

of Lemma 4.1 (to be given below) also yields:

Lemma 4.2. The external product homomorphism R1⊗F2 · · ·⊗F2Rm → Ch(X) is injective.

Let RX be the image of R1 ⊗F2 · · · ⊗F2 Rm in Ch(X), equipped with the F2-algebra
structure it inherits from the F2-algebra structures on R1, . . . , Rm described above, and the
gradings by dimension and codimension it inherits from Ch(X). For each integer j ≥ 0, we
then have a unique F2-vector space homomorphism Sj : RX → RX with the property that
Sj(α1×· · ·×αm) =

∑
j1+···+jm=j S

j1(α1)×· · ·×Sjm(αm) for all α1 ∈ R1, . . . , αm ∈ Rm. We

then have that Sj(αβ) =
∑

j1+j2=j S
j1(α)Sj2(β) for all α, β ∈ RX . Now, if U is the smooth

locus of X, then the group Ch(U) has a canonical ring structure (with multiplication given
by the intersection product), as well as the action of the cohomological-type Steenrod

operations SjU of Brosnan ([1]). The result we need is the following:

Proposition 4.3. Let U be the smooth locus of X, and ι : : U → X the canonical open
embedding.

(1) The F2-algebra RX depends only on ϕ1, . . . , ϕn (and not on W1, . . . ,Wn);
(2) The set Ch(X) is a subring of RX and there is a unique surjective ring homomor-

phism θ : Ch(U)→ Ch(X) with the property that θ(ι∗(α)) = α for all α ∈ Ch(X).
(3) For each integer j ≥ 0, the set Ch(X) is stable under the map Sj, and we have

Sj(α) = θ(SjU (ι∗(α))) for all α ∈ Ch(X).

In light of (3), we refer to Sj : RX → RX as the jth cohomological-type Steenrod opera-
tion on RX .

Remark 4.4 (Orientations and standard bases). In the preceding discussion, we have de-
scribed an explicit basis of RX (as an F2-vector space) consisting of the external products
α1 × · · · × αm with αt ∈ {li, hi}0≤i<rt for each 1 ≤ t ≤ m. It is clear from the first part of
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the proposition that, one exception aside, the elements of the set {li, hi}0≤i<rt ⊂ Ch(Xt)
are independent of the choice of the linear subspace Wt. The exception concerns the ele-
ment lrt−1 in the case where ql(ϕt) is trivial (i.e., ϕt is nondegenerate of even dimension).
Here, it is well known that there are two non-equivalent classes of (rt − 1)-dimensional
projective linear subspaces of Xt in Ch(Xt). The two classes are exchanged by any reflec-
tion automorphism of Xt and their sum is the element hrt−1 (see [3, P. 308]). Following
[3], we refer to the choice of one of these classes as an orientation of Xt. An orientation
of X is then the choice of an orientation for each of the factors X1, . . . , Xm for which one
is required. By fixing an orientation of X (when required), we obtain as above a basis for
RX that we shall refer to as the standard basis. We shall then say that an element of RX
involves a given element of the standard basis if that element appears in its decomposition
as a sum of the standard basis element.

We now prove the above statements, following the arguments of [10]. We first note:

Lemma 4.5. To prove the statements above, we can assume that each of the forms
ϕ1, . . . , ϕm has maximal Witt index, i.e., that iW (ϕt) = rt for all 1 ≤ t ≤ m.

Proof. Let Fsep be the separable closure of F in F . Since anisotropic quasilinear quadratic
forms remain anisotropic under separable extensions, each of the forms ϕt remains nonde-
fective over Fsep. On the other hand, we also have that iW ((ϕt)Fsep) = rt for all 1 ≤ t ≤ m
by Lemma 2.3. What we are then claiming is that in order to prove the statements of
interest, we can replace F with Fsep. But this is clear in the case of Lemma 4.1, Lemma
4.2 and Proposition 4.3 (1), while for parts (2) and (3) Proposition 4.3 (2) and (3) we only
need to appeal to the commutativity of the diagram

Ch(X)

i∗

��

// Ch(XFsep)

i∗

��

// Ch(X)

i∗

��
Ch(U) // Ch(UFsep) // Ch(U)

(in which the horizontal maps are given by scalar extension) and the fact that the bot-
tom horizontal maps are ring homomorphisms that commute with the action of the
cohomological-type Steenrod operations. �

For the remainder of this section, we therefore assume that iW (ϕt) = rt for all 1 ≤ t ≤ m.
With this assumption, we can make use of standard partial cell decompositions of the
quadrics X1, . . . , Xm, which we now discuss.

4.B. Partial Cell Decomposition of a Generically Smooth Quadric with Max-
imal Witt Index. Let ϕ be a nonquasilinear quadratic form of dimension ≥ 2 over F
with underlying vector space V . Let (r, s) be the type of ϕ, and assume that iW (ϕ) = r.
As in §4.A above, we can then find a r-dimensional totally isotropic subspace W of V
which is a maximal totally isotropic subspace for a hyperbolic subform of V . For each
0 ≤ i < r, let us again write li for the class of an i-dimensional projective linear subspace
of P(W ) in Chi(Xϕ), and hi for the class of a codimension i subquadric of Xϕ in Chi(Xϕ)
(again, hi does not depend on the choice of subquadric). Set U := W + Vql(ϕ), and let Y
be the reduced closed subscheme of Xϕ given by the intersection of Xϕ and P(U). Note
that we can (and do) view the classes li as elements of Ch(Y ). Let us now fix a variety
Z over F . By the projective bundle theorem, the localization sequence for the canonical
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embedding P(W )× Z → Y × Z is split exact, and yields a split exact sequence

0→
r−1⊕
i=0

Ch∗−i(Z)→ Ch∗(Y × Z)→ Ch∗((Xϕ \ Y )× Z)→ 0

where the first map sends (α0, . . . , αr−1) to
∑r−1

i=0 li × αi. At the same time, since W ∩
Vql(ϕ) = 0, we have a canonical projection P(U) \ P(W ) → P(Vql(ϕ)) that induces a rank-
r affine bundle f : Y \ P(W ) → Xql(ϕ). By homotopy invariance, the above split exact
sequence then yields an F2-vector space isomorphism(

r−1⊕
i=0

Ch∗−i(Z)

)⊕
Ch∗−r(Xql(ϕ) × Z)→ Ch(Y × Z),

where again the map on the component in parentheses is given by the external product
map (α0, . . . , αr−1) 7→

∑r−1
i=0 li × αi. While we don’t have a similarly concrete description

of the map on the other component, we can at least say that its image lies in the image
of the canonical pushforward Ch(Xql(ϕ) × Y × Z)→ Ch(Y × Z) by [10, Lem. B.1]. Now,
the canonical projection P(V ) \ P(U)→ P(V/U) also induces a rank-(r + s) affine bundle
g : Xϕ\Y → P(V/U). Note that the preimage of a codimension i projective linear subspace
of P(V/U) under g is the intersection of a codimension-i subquadric of Xϕ and Xϕ \ Y .
By [3, Thm. 66.2] and the projective bundle formula, we then have an F2-vector space
isomorphism (

r−1⊕
i=0

Ch∗−dimϕ+i+2(Z)

)⊕
Ch∗(Y × Z)→ Ch∗(Xϕ × Z),

where the map on the component in parentheses is given by the external product map
(α0, . . . , αr−1) 7→

∑r−1
i=0 h

i×αi, and the map on the other component is pushforward along
the canonical embedding Y × Z → Xϕ × Z. Putting everything together, we get:

Proposition 4.6. If Z is a variety over F , then we have an F2-vector space decomposition
Ch∗(Xϕ × Z) = A

⊕
B, where

• A is isomorphic to
⊕r−1

i=0 (Ch∗−i(Z)
⊕

Ch∗−dimϕ+i+2(Z)) via the map

r−1⊕
i=0

(
Ch∗−i(Z)

⊕
Ch∗−dimϕ+i+2(Z)

)
→ Ch∗(Xϕ × Z)

that sends ((α0, β0), . . . , (αr−1, βr−1)) to
∑r−1

i=0 (li × αi + hi × βi);
• B is isomorphic to Ch∗−r(Xql(ϕ) × Z), and lies in the image of the pushforward

Ch∗(Xql(ϕ) ×Xϕ × Z)→ Ch∗(Xϕ × Z).

Note that the decomposition obtained here is clearly compatible with scalar extension.
We can now justify the statements in §4.A. We first consider the case of a single quadric.
Note that this case is covered by [10], but we include it here for completeness (and to
clarify some technicalities in our presentation of the needed results).

4.C. The Case Of a Single Quadric. Suppose here that m = 1. For ease of notation,
set ϕ := ϕ1, V := V1 and (r, s) := (r1, s1). In order to prove the desired assertions, Witt’s
extension theorem ([3, Thm. 8.3]) allows us to assume that the totally isotropic subspace
W1 is equal to W ⊗F F for some F -linear subspace W of V . As in the previous subsection,
we can then introduce elements li, h

i ∈ Ch(X) (0 ≤ i < r) restricting to the corresponding
elements of Ch(X) introduced in §4.A (we make no notational distinction here). Following
the statement of Proposition 4.3, let U be the smooth locus of X, and let ι : U → X be
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the canonical open embedding. By Proposition 3.5, we have Ch(Xql(ϕ)) = 0. By the
localization sequence for the canonical embedding Xql(ϕ) → X, it follows that there exists

a surjective F2-vector space homomorphism θ : Ch(U)→ Ch(X) such that θ(ι∗(α)) = α for
all α ∈ Ch(X). Now, by Proposition 4.6 (applied with Z = Spec(F )), the set {li, hi} is an
F2-linearly independent subset of Ch(X). Moreover, if we let A denote its F2-linear span,
then we have an F2-vector space decomposition Ch(X) = A

⊕
B, where B is isomorphic

to Ch(Xql(ϕ)) and lies in the image of the pushforward Ch(Xql(ϕ) ×X)→ Ch(X).

Lemma 4.7. In the above situation:

(1) α = 0 for all α ∈ B. In particular, ι∗(B) ⊆ Ker(θ);
(2) For all 0 ≤ i < rt, li 6= 0. In particular, θ(ι∗(li)) 6= 0.

Proof. (1) Since B lies in the image of the pushforward Ch(Xql(ϕ) × X) → Ch(X), it

suffices to show that Ch(Xql(ϕ) × X) = 0. By the Z = Xql(ϕ) case of Proposition 4.6,
however, Ch(Xϕ × X) is isomorphic to a direct sum of copies of Ch(Xql(ϕ) × Xql(ϕ))
and Ch(Xql(ϕ)), and this decomposition is compatible with scalar extension. The desired
assertion therefore follows from Lemma 3.3.

(2) Clear from the injectivity of the canonical pushforward Ch(P(W ))→ Ch(P(V )). �

Next, we have:

Lemma 4.8. In the ring Ch(U), the following identities hold modulo Ker(θ).

ι∗(hi)ι∗(hj) :=

{
ι∗(hi+j) if i+ j < rt

0 otherwise
; ι∗(hi)ι∗t (lj) :=

{
ι∗(lj−i) if i ≤ j
0 otherwise;

;

ι∗(li)ι
∗(lj) :=

{
ι∗(l0) if dimϕt ≡ 2 (mod 4) and i = j = dimϕt−2

2

0 otherwise.

Proof. For the sake of legibility, we shall drop ι∗ from our notation in what follows. Con-

sider the canonical closed embeddings P(W )
v−→ U

w−→ P(V ) \Xql(ϕ). Since X is a quadric,

the composition w∗ ◦w∗ is zero. Now, since w∗ is a ring homomorphism, hihj is the pull-
back of the class of a codimension-(i+j) projective linear subspace of P(V ). In particular,
if i+ j < rt, then hihj = hi+j . Suppose now that i+ j ≥ rt. To prove the first identity in
the statement, we have to show that hihj ∈ Ker(θ). By Lemma 4.7 (1), it suffices to show
that hihj ∈ B. If k := dimϕ+2−(i+j) is greater than or equal to rt, this is clear. Suppose
now that k < rt, and that hihj /∈ B. Then hihj ≡ lk (mod B). Since w∗ ◦w∗ = 0, it then

follows that w∗(lk) = 0. But since Ch(Xql(ϕ)) = 0, the scalar extension homomorphism

Ch(P(V ) \Xql(ϕ))→ Ch(P(V ) \Xql(ϕ)) is injective, and hence w∗(lk) = 0. As an element
of Ch(X), lk then lies in the image of the canonical pushforward Ch(Xql(ϕ)) → Ch(X).

But Lemma 3.3 then implies that lk = 0, contradicting part (2) of Lemma 4.7. Thus,
the first identity in the statement holds. For the second identity, the case where i > j
is clear, so assume that i ≤ j. One can then clearly choose a codimension-j projective
linear subspace of P(W ) and an i-dimensional projective linear subspace of P(W ) whose
scheme-theoretic intersection is a (j − i)-dimensional projective linear subspace of P(W ).
By [3, Prop. 57.21], the identity hilj = lj−i then holds. Finally, for the third identity,

dimension reasons give that lilj = 0 unless s = 0 and i = j = dimϕ−2
2 . But in this case, X

is smooth and the stated identity is a standard computation (see, e.g., [3, P. 308]). �

Recall now that Ch(U) contains the ideal N0(U) of numerically trivial elements (see
§3.A). With the above, we can now see the following:
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Lemma 4.9. Ker(θ) = N0(U) = ι∗(B).

Proof. We have already noted in Lemma 4.7 (1) that ι∗(B) ⊆ Ker(θ). At the same time,
since ι∗(B) lies in the image of the pushforward Ch(Xql(ϕ)×U)→ Ch(U), it is also lies in
N0(U) by Lemma 3.1 (Xql(ϕ) has no closed point of odd degree by Springer’s theorem and
the anisotropy of ql(ϕ)). To complete the proof, it now suffices to show that if α is an non-
zero element of A, then ι∗(α) is neither an element of Ker(θ) nor N0(U). To prove this, we
may assume that α ∈ Chk(X) for some integer k. By the multiplicative identities given

in Lemma 4.8, there then exists an element β ∈ Chk(U) such that ι∗(α)β = ι∗(l0). By
Lemma 4.7 (2), this shows that ι∗(α) /∈ Ker(θ). At the same time, we have deg(ι∗(l0)) = 1,
and so the same identity shows that α /∈ N0(U). This proves the lemma. �

With the preceding lemmas, we have the following: If α is a non-zero element of A, then
α 6= 0. In particular, the set {li, hi}0≤i<r is F2-linearly independent in Ch(X). Moreover,
RX = SpanF2

{li, hi}0≤i<r is precisely the the image of the map θ : Ch(U) → Ch(X), and
the map θ : Ch(U) → RX is a ring homomorphism by Lemma 4.8 (and the definition of
the multiplication on RX given in §4.A). This proves all statements in §4.A (with m = 1)
with the exception of part (3) of Proposition 4.3. This follows from:

Lemma 4.10. Let j be a positive integer. In Ch(U), the following identities hold modulo
Ker(θ):

SjU (ι∗(hi)) :=

{(
i
j

)
ι∗(hi+j) if j < r − i

0 otherwise
and SjU (ι∗(li)) :=

{(
dimϕ−i−1

j

)
ι∗(li−j) if j ≤ i

0 otherwise.

Proof. For the sake of legibility, we shall again drop ι∗ from our notation in what follows.

By Lemma 4.8, the first identity says that SjU (hi) =
(
i
j

)
hihj . Since the cohomological-type

Steenrod operations for smooth schemes commute with pullbacks, proving this identity
then amounts to showing that if α and β are the classes of codimension-i and codimension-

j projective linear subspaces in P(V ), respectively then SjP(V )(α) =
(
i
j

)
αβ. This is well

known, however (see [3, Ex. 6.16]; the argument given there is valid in any characteristic).
For the second identity, we can assume that j ≤ i. Let α be the class of an i-dimensional
projective linear subspace in P(W ). If v : P(W ) → U is the canonical closed embedding,

then we have that SjU (li) = v∗(cj(Nv)(α)), where Nv is the normal bundle of v (Wu
formula). Now an argument essentially identical to that found in [3, Lem. 78.1, Cor.

78.2] shows that cj(Nv) is multiplication by
(

dimϕ−i−1
j

)
β, where β is the unique element

of Chj(P(W )). Since αβ is the class of an (i− j)-dimensional subspace of P(W ), we then

get that SjU (li) = v∗(
(

dimϕ−i−1
j

)
αβ) =

(
dimϕ−i−1

j

)
li−j , as desired. �

4.D. The General Case. We now consider the general case. For each 1 ≤ t ≤ m, we
can again assume that Wt is obtained from a totally isotropic subspace of Vt by scalar
extension, and can introduce the elements li, hi ∈ Ch(Xt) (0 ≤ i < rt) restricting to the
corresponding elements of Ch(Xt) introduced in §4.A. Let A be the F2-linear subspace of
Ch(X) generated by all external products α1 × · · · × αm with αt ∈ {li, hi}0≤i<rt for all
t. By repeated application of Proposition 4.6, we get that these external products are
F2-linearly independent, and that Ch(X) = A

⊕
B, where B is:

(1) isomorphic to a direct sum of F2-vector spaces of the form Ch(Xql(ϕa1 ) × · · · ×
Xql(ϕal

)) for integers 1 ≤ a1 ≤ · · · ≤ al ≤ m;

(2) contained in the image of the pushforward Ch(Xql(ϕ1)×· · ·×Xql(ϕm)×X)→ Ch(X).
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Following the statement of Proposition 4.3, let U be the smooth locus of X, and let
ι : U → X be the canonical open embedding. Let Y = X \ U be the singular locus of X.
Explicitly, Y is the union of the closed subschemes X1×· · ·×Xt−1×Xql(ϕt)×Xt+1×· · ·×Xm

with 1 ≤ t ≤ m. By further repeated application of Proposition 4.6, Ch(Y ) is then also
isomorphic to a direct sum of F2-vector spaces of the form Ch(Xql(ϕa1 ) × · · · × Xql(ϕal

))

for integers 1 ≤ a1 ≤ · · · ≤ al ≤ m. By Lemma 3.3, we then have that Ch(Y ) = 0, and so
there exists a unique surjective F2-vector space homomorphism θ : Ch(U)→ Ch(X) such
that θ(ι∗(α)) = α for all α ∈ Ch(X). As in the previous subsection, we have:

Lemma 4.11. Ker(θ) = N0(U) = ι∗(B).

Proof. Recall that B lies in the image of the pushforward Ch(Xql(ϕ1)×· · ·×Xql(ϕm)×X)→
Ch(X). In particular ι∗(B) lies in the image of the pushforward Ch(Xql(ϕ1)×· · ·×Xql(ϕm)×
U) → Ch(U), and hence lies in N0(U) by Lemma 3.1 (again, the Xql(ϕt) have no closed
points of odd degree by Springer’s theorem). Moreover, to show that ι∗(B) ⊆ Ker(θ),
it suffices to show that Ch(Xql(ϕ1) × · · · × Xql(ϕm) × X) = 0. But repeated application
of Proposition 4.6 shows that this group is isomorphic to a direct sum of groups of the
form Ch(Z), where Z is a direct product of the quasilinear quadrics Xql(ϕ1), . . . , Xql(ϕm)

(with possibly repeated factors). The desired assertion then holds by Lemma 3.3. To
complete the proof of the lemma, it now only remains to show that if α is a non-zero
element of A, then ι∗(α) is neither an element of Ker(θ) nor N0(U). We can assume here
that α ∈ Chk(X) for some integer k. Since the multiplication in Ch(U) is compatible with

the formation of external products, Lemma 4.8 then shows that there exists a β ∈ Chk(U)
such that ι∗(α)β = ι∗(l0 × · · · × l0). Since deg(l0 × · · · × l0) = 1, the claims follow. �

With this, it follows that the map θ factors through RX . Since Ker(θ) = N0(U) is an
ideal in Ch(U), and since the multiplication in Ch(U) is compatible with the formation of
external products, it then follows from Lemma 4.8 (and the definition of the multiplication
onRX given in §4.A) that the map θ : Ch(U)→ RX is a ring homomorphism. In particular,
Ch(X) is a subring of RX , and θ is the unique surjective ring homomorphism Ch(U) →
Ch(X) with θ(ι∗(α)) = α for all α ∈ Ch(X). Since the cohomological-type Steenrod
operations on Ch(U) satisfy the Cartan formula, Lemma 4.10 (together with the definition

of the operations Sj : RX → RX given in §4.A) also gives that Sj(α) = θ(SjU (ι∗(α))) for
all integers j ≥ 0 and α ∈ Ch(X). Since we have already seen that RX depends only on
ϕ1, . . . , ϕm, this proves all the statements in §4.A.

5. Composition Law for Rational Correspondences

If X is a product of generically smooth nondefective quadrics over F , we have introduced
in §4 above the F2-algebra RX ⊆ Ch(X). If Y is another variety over F of the same type,
then the F2-algebra RX×Y is canonically identified with RX ⊗F2 RY via the external
product homomorphism Ch(X)⊗F2 Ch(Y )→ Ch(X × Y ).

5.A. Definitions. Let X, Y and Z be products of generically smooth nondefective-
quadrics over F . Let πXY : X × Y × Z → X × Y , πXZ : X × Y × Z → X × Z and
πY Z : X×Y ×Z → Y ×Z be the canonical (flat and proper) projections. On mod-2 Chow
groups, the pullbacks π∗XY and π∗Y Z are given by the assignments α 7→ α × h0 and α 7→
h0 × α, respectively. In particular, π∗XY (RX×Y ) ⊆ RX×Y×Z and π∗Y Z(RY×Z) ⊆ RX×Y×Z .

Similarly, if α ∈ Ch(X), β ∈ Ch(Y ) and γ ∈ Ch(Z), then (πXZ)∗(α×β×γ) = deg(β)α×γ,
and so (πXZ)∗(RX×Y×Z) ⊂ RX×Z . We therefore have an F2-vector space homomorphism

RX×Y ⊗F2 RY×Z → RX×Z , α⊗ β 7→ (πXZ)∗
(
π∗XY (α)π∗Y Z(β)

)
.
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We write β ◦ α for the image of α ⊗ β under this map. By the preceding discussion, we
have the following explicit description of this composition law:

Lemma 5.1. If α ∈ RX , β, β′ ∈ RY and γ ∈ RZ , then (β′×γ)◦ (α×β) = deg(ββ′)α×γ.

Note that our definition and the subsequent discussion remains valid if we take X or
Z to be Spec(F ). We therefore also permit this possibility in what follows. For a fixed
α ∈ RX×Y , we write α∗ (resp. α∗) for the F2-vector space homomorphism RY×Z → RX×Z
(resp. RZ×X → RZ×Y ) that sends β to β ◦ α (resp. α ◦ β).

By Proposition 4.3, our composition law restricts to a composition law

Ch(X × Y )⊗F2 Ch(Y × Z)→ Ch(X × Z), α⊗ β 7→ β ◦ α.

In particular, if α ∈ Ch(X × Y ), then α∗ (resp. α∗) induces a homomorphism from
Ch(Y × Z) to Ch(X × Z) (resp. Ch(Z ×X) to Ch(Z × Y )).

5.B. Graphs. Let X and Y be products of generically smooth nondefective quadrics.
Let UX and UY be the smooth loci of X and Y , respectively, and let ιX : UX → X and
ιY : UY → Y be the canonical open embeddings. Let f : X → Y be a morphism with the
property that f(UX) ⊆ UY , and let Γf be its graph in X ×Y . Note that f is proper. The
following lemma extends basic facts on morphisms of smooth schemes to our situation:

Proposition 5.2. Let Z be Spec(F ) or a product of generically smooth nondefective
quadrics over F . Then:

(1) [Γf ]∗ : RZ×X → RZ×Y coincides with the pushforward (id× f)∗;
(2) If f is flat or a regular closed embedding of constant relative dimension, or if Y ×Z

is smooth, then [Γf ]
∗
: RY×Z → RX×Z coincides with the pullback (f × id)∗.

Proof. In view of Lemma 5.1 (and the remarks at the beginning of this section), it suffices
to consider the case where Z = Spec(F ). As in the proof of Lemma 4.5, we may also replace
F with its separable closure in F , and hence assume that RX = Ch(X), RY = Ch(Y ) and
RX×Y = Ch(X×Y ) (see §4.B). Let πX : X×Y → X and πY : X×Y → Y be the canonical
projections. Set U := UX × UY and ι = ιX × ιY : U → X × Y . Since f(UX) ⊆ UY , we
then have the Cartesian diagram

UX

ιX
��

h // U

ι
��

X
g // X × Y

(5.1)

where g = id × f and h is the restriction of g to UX . In particular, ι∗ ◦ g∗ = h∗ ◦ ι∗X .
Under our assumption, Proposition 4.3 (2) tells us that there is a unique surjective ring
homomorphism θ : Ch(U)→ RX×Y such that θ(ι∗(α)) = α for all α ∈ Ch(X × Y ).

(1) Let α ∈ Ch(X). Since RX = Ch(X), proving the claim amounts to showing that

[Γf ]∗(α) = f∗(α). By definition, [Γf ]∗(α) is the image of the product π∗X(α) · [Γf ] ∈ RX×Y
under the pushforward (πY )∗. Since f∗ = (πY ◦ g)∗ = (πY )∗ ◦ g∗, proving the claim thus

reduces to showing that π∗X(α) · [Γf ] = g∗(α). Since the multiplication on RX×Y is induced
by that on Ch(U) via θ, it suffices here to show that ι∗ (π∗X(α)) · ι∗([Γf ]) = ι∗ (g∗(α)) in
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Ch(U). But since [Γf ] = g∗([X]), the projection formula gives that

ι∗ (π∗X(α)) · ι∗([Γf ]) = ι∗ (π∗X(α)) · h∗([UX ])

= h∗ (h∗ (ι∗ (π∗X(α))))

= h∗ ((πX ◦ ι ◦ h)∗(α))

= h∗ (ι∗X(α))

= ι∗ (g∗(α)) ,

and so the claim holds.
(2) Let α ∈ Ch(Y ). Since RY = Ch(Y ), proving the claim amounts to showing that

[Γf ]
∗
(α) = f∗(α). By definition, [Γf ]

∗
(α) is the image of the product π∗Y (α) · [Γf ] ∈

RX×Y under the pushforward (πX)∗. We first compute the product, which is the image
of ι∗ (π∗Y (α)) · ι∗([Γf ]) ∈ Ch(U) under θ. By the projection formula, we have

ι∗ (π∗Y (α)) ι∗([Γf ]) = ι∗ (π∗Y (α))h∗([UX ])

= h∗ (h∗ (ι∗ (π∗Y (α))))

= h∗ ((πY ◦ ι ◦ h)∗(α))

= h∗ ((f ◦ ιX)∗(α))

= h∗ (ι∗X (f∗(α)))

= ι∗ (g∗ (f∗(α))) ,

and so π∗Y (α)·[Γf ] = g∗ (f∗(α)) by the defining property of θ. Since (πX)∗◦g∗ = (πX◦g)∗ =
(idX)∗ is the identity, applying (πX)∗ then gives the desired result. �

5.C. The Algebra of Rational Correspondences. As above, let X be a product of
generically smooth nondefective quadrics over F . Taking Y = Z = X in §5.A, we get a
composition operation ◦ : RX2 × RX2 → RX2 . If we let ∆X be the image of the diagonal
embedding X → X ×X, then we have:

Proposition 5.3. The operation ◦ equips RX2 with the structure of an F2-algebra with
identity [∆X ]. Moreover, with this structure, RX2 admits Ch(X2) as an F2-subalgebra.

Proof. It is clear from Lemma 5.1 that ◦ is associative and F2-linear. Since ∆X is the graph
of the identity morphism X → X, the neutrality of [∆X ] for ◦ follows from Proposition 5.2.
This proves the first statement. At the same time, we have already noted that ◦ preserves
F -rationality of cycles, and since [∆X ] is F -rational, the second statement follows. �

6. Isotropic Reduction

Let ϕ1, . . . , ϕm be nonquasilinear nondefective quadratic forms over F . For each 1 ≤ t ≤
m, we set Xt := Xϕt . We are interested in the product X := X1 × · · · ×Xm. If necessary,
we fix an orientation of X (see Remark 4.4). We may then consider the standard basis
of the F2-vector space RX consisting of certain external products of classes of projective
linear subspaces and plane sections of the quadrics Xt (again, see Remark 4.4).

6.A. A Computation for a Single Quadric. Let us suppose here that m = 1. For
ease of notation, set ϕ := ϕ1 and V := Vϕ. Suppose that ϕ has type (r, s). We assume
that r − iW (ϕ) ≥ 1, i.e., that the anisotropic part of ϕ is not quasilinear. Set Y := Xϕan .
Again, we choose an orientation of Y if necessary, and consider the standard basis of the
F2-vector space RY . We then have the following:
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Lemma 6.1. If j = iW (ϕ), then the element

α :=

r−j−1∑
i=0

(hi+j × li) + (li+j × hi) ∈ RX×Y

is F -rational.

Proof. let W be a totally isotropic j-dimensional subspace of V . We can then identify
Y with the variety of totally isotropic (j + 1)-dimensional subspaces of V containing W .
Under this identification, let Z be the closed subscheme of X × Y consisting of all points
(L,U) with L ⊂ U . Note that the canonical projection Z → Y is a projective bundle of
rank j (Z is the projectivization of the restriction of the tautological vector bundle on the
Grassmannian of (j + 1)-dimensional subspaces of V to Y ). In particular, Z is integral of
dimension dim(Y ) + a = dim(X)− a. We state the following:

Claim. For each 0 ≤ i < r− j, we have [Z](hi+j × li) = [Z](li+j ×hi) = l0× l0 in RX×Y .

Given the claim, let us show that α is F -rational. Suppose first that s 6= 0, i.e., that
ql(ϕ) is non-trivial. Since dimZ = dimX − j, we have scalars ai, bi ∈ F2 such that

[Z] =

r−j−1∑
i=0

ai(h
i+j × li) + bi(li+j × hi)

in RX×Y . For each 0 ≤ i < r − j, the claim then gives that

l0 × l0 =

(
r−j−1∑
i=0

ai(h
i+j × li) + bi(li+j × hi)

)
(hi+j × li) = ail0 × l0

and

l0 × l0 =

(
r−j−1∑
i=0

ai(h
i+j × li) + bi(li+j × hi)

)
(li+j × hi) = bil0 × l0,

and so ai = bi = 1. Thus, in this case, we have α = [Z] ∈ Ch(X × Y ). Suppose now that
s = 0, i.e., that ϕ is nondegenerate of even dimension. Then

[Z] =

(
r−j−2∑
i=0

ai(h
i+j × li) + bi(li+j × hi)

)
+
(
hr−1 × α

)
+ (lr−1 × β)

for some ai, bi ∈ F2 and α, β ∈ F2h
r−1 + F2lr−1 ⊂ RY . Using the claim as above, we

get that ai = bi = 1 for all 0 ≤ i < r − j − 1, and that αhr−j−1 = l0 = βlr−j−1 in RY .
The equality αhr−j−1 gives that α = lr−j−1 + ahr−j−1 for some a ∈ F2. Let b, c ∈ F2 be

such that β = bhr−j−1 + clr−j−1. Then [Z](hr−1 × hr−j−1) = cl0 × l0 in RX×Y . Since

hr−1×hr−j−1 is F -rational, it follows that cl0× l0 ∈ Ch(X×Y ), so X×Y admits a 0-cycle
of degree c. In particular, Y admits a 0-cycle of degree c. Since Y has no F -rational points,
Springer’s theorem then tells us that c = 0, and so β = bhr−j−1. Since βlr−j−1 = l0, we
must then have that b = 1, and so

[Z] =

(
r−j−2∑
i=0

(hi+j × li) + (li+j × hi)

)
+
(
hr−1 × (lr−j−1 + ahr−j−1)

)
+
(
lr−1 × hr−j−1

)
= α+

(
ahr−1 × hr−j−1

)
.

Since hr−1 × hr−j−1 is F -rational, the same is then true of α = [Z] +
(
ahr−1 × hr−j−1

)
.
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It now only remains to prove the claim. Let 0 ≤ i < r − j − 1. To prove the desired
identities, we are free to pass from F to its separable closure in F . As in the proof
of Lemma 4.5, this preserves the nondefectivity of ϕ while allowing us to assume that
iW (ϕ) = r. Let W ′ be an (i+j+1)-dimensional totally isotropic subspace of V containing
W . In the case where s = 0 and i = r − j − 1, we choose W ′ so that its restriction to F
represents the class lr−j in RY (this can always be achieved by Remark 4.4). Choose also
an (i+ j)-codimensional subspace V ′ of V such that V ′ ∩W ′ is a 1-dimensional subspace
of V not contained in W . Let S be the closed subscheme of X ×Y consisting of all points
(L,U) with L ⊂ V ′ and U ⊂ W ′. The (scheme-theoretic) intersection Z ∩ S is then the
reduced subscheme of X×Y given by the F -rational point (V ′∩W ′,W +(V ′∩W ′)). Since
ϕ is nondefective, this point lies in the smooth locus of X × Y . By Proposition 4.3 (2), it

then follows that [Z] · [S] is the class of an F -rational point in X × Y . Since [S] = hi+j× li
by construction, this means that [Z](hi+j × li) = l0 × l0 in RX×Y . This proves the first of
the desired identities, and the other may be obtained by analogous considerations. �

6.B. Isotropic Reduction. We now return to the general situation considered at the
beginning of this section. For each 1 ≤ t ≤ m, let (rt, st) be the type of ϕt. We assume
that rt > iW (ϕt), i.e., that the anisotropic part of ϕt is nonquasilinear. We set Y :=
X(ϕ1)an × · · · ×X(ϕm)an . We fix an orientation of Y if needed, and consider the standard
basis of the F2 vector space RY .

Proposition 6.2. There are unique F2-vector space homomorphisms f : RX → RY and
g : RY → RX such that:

(1) f ◦ g = id;
(2) f(Ch(X)) = Ch(Y ) and g(Ch(Y )) ⊆ f(Ch(X));
(3) If α = α1×· · ·×αm is a standard basis element of RX , then f(α) = β1×· · ·×βm,

where for each 1 ≤ t ≤ m, we have

βt =


li−iW (ϕt) if αt = li for some iW (ϕt) ≤ i < rt

hi−iW (ϕt) if αt = hi for some iW (ϕt) ≤ i < rt

0 otherwise.

(4) If β = β1×· · ·×βm is a standard basis element of RY , then g(β) = α1×· · ·×αm,
where for each 1 ≤ t ≤ m, we have

αt =

{
li+iW (ϕt) if βt = li for some 0 ≤ i < rt − iW (ϕt)

hi+iW (ϕt) if β = hi for some 0 ≤ i < rt − iW (ϕt).

Proof. Note that the conditions in (3) and (4) determine f and g uniquely, and imply
that they satisfy (1). It therefore suffices to construct a pair (f, g) satisfying (2), (3) and
(4). By the discussion of §5.A, it will be enough to exhibit an F -rational correspondence
α ∈ Ch(X×Y ) such that the pair (f = α∗, g = α∗) satisfies (3) and (4). Since the obvious
external product map

⊗m
i=1RXi×Yi → RX×Y is an isomorphism of F2-algebras (Lemma

4.2), we may assume that m = 1. For ease of notation, set ϕ := ϕ1 and j := iW (ϕ). If
(r, s) is the type of ϕ, then r − j ≥ 1 by hypothesis, and Lemma 6.1 gives that

α :=

r−j−1∑
i=0

(hi+j × li) + (li+j × hi) ∈ RX×Y

is F -rational. Using Lemma 5.1, one readily checks that α has the desired properties. �
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6.C. Isotropy Restrictions on the Ring of Rational Cycles. Let us now relax the
assumption on the anisotropic parts of the ϕt from the previous subsection. Recall (Re-
mark 4.4) that we say an element of RX involves a given element of the standard basis if
that element appears in its decomposition as a sum of the standard basis elements. With
Proposition 6.2, we can establish the following restriction on the subring Ch(X) ⊆ RX :

Proposition 6.3. Let α be an element of Ch(X) involving the standard basis element
hi1 × · · · × hik × lik+1

× · · · × lim for some non-negative integers k < m and i1, . . . , im.
Suppose that K is an extension of F with the following properties:

(i) iW ((ϕt)K) > it for all 1 ≤ t ≤ k;
(ii) (ϕt)K is nondefective for all 1 ≤ t ≤ m.

Then iW ((ϕt)K) > it for all k < t ≤ m.

Proof. In view of (ii), we can replace F with K and F with K to reduce to the case
where K = F . Let k < t ≤ m, and set X ′ :=

∏
1≤i≤m,i 6=tXϕi . By (i), the element

β := li1 × · · · × lik × hik+1 × · · ·hit−1 × hit+1 × · · · × him ∈ RX′ lies in Ch(X ′). If we
view α as a correspondence from X ′ to Xϕt , then α∗(β) = lit ∈ RXϕt

. Since α and β

are F -rational, it follows that lit ∈ Ch(Xϕt). Suppose, for the sake of contradiction, that

iW (ϕt) ≤ it. If we set Y := X(ϕt)an , Proposition 6.2 then implies that li ∈ Ch(Y ) for some

i ≥ 0. Since Ch(Y ) is a subring of RY , l0 = hili then lies in Ch(Y ), and so Y admits a
0-cycle of degree 1. By Springer’s theorem, however, this implies that (ϕt)an is isotropic,
which is impossible. The desired assertion therefore holds. �

Additional (and more subtle) restrictions on Ch(X) may be obtained by considering
the action of the Steenrod operations of §4.A (see Proposition 4.3 (3)). We will take these
into account in the next section, where we restrict to the case where X is the product of
two copies of a single generically smooth nondefective quadric.

7. The MDT Invariant

In this section, we fix a nondefective quadratic form ϕ of type (r, s) over F . We assume
that r ≥ 1, i.e., that ϕ is not quasilinear. We let hnd be the nondefective height and
F = F0 ⊆ F1 ⊆ · · · ⊆ Fhnd the nondefective splitting tower of ϕ (see §2.E). Recall that
for each 0 ≤ t < hnd, we write ϕt for the anisotropic part of ϕ over Ft, which is still
nondefective and nonquasilinear. For each 0 ≤ t ≤ hnd, we set jt := jt(ϕ) and it := it(ϕ).
We also set X := Xϕ and Xt := Xϕt for t 6= hnd. In the case where s = 0, we choose
orientations of X and each Xt (Remark 4.4). For each positive integer m, we choose the
orientation of Xm (resp. Xm

t ) by assigning the given orientation of X (resp. Xt) to each
factor. This being fixed, we can then consider in all cases the standard basis of RXm

(resp. RmXt
) consisting of m-fold external products of elements in the set {hi, li}0≤i<r

(resp. {hi, li}0≤i<r−jt) (Lemma 4.2). We will also have occasion to pass from F to some
larger field K. When doing so, we shall give XK the orientation compatible with the given
one on X (i.e., if π : XK → X is the canonical projection, then we choose the orientation
of XK for which π∗(lr−1) = lr−1). This also applies to powers of XK . In what follows,
we are mainly interested in studying the rationality of cycles on X2. However, this also
necessitates consideration of higher powers of X. We start with some generalities.

7.A. Notation, Terminology and Preliminary Facts. Fix a positive integer m. Fol-
lowing [3, §72], we say that an element of RXm is essential if it is doesn’t involve any
standard basis elements of the form hi1×· · ·×him for some 0 ≤ it < r. If Ess(RXm) is the
F2-linear subspace of RXm consisting of these elements, then there is a unique F2-vector
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space homomorphism ess : RXm → Ess(RXm) that fixes each essential element of the stan-
dard basis and sends the others to 0. Since the elements hi1 ×· · ·×him are F -rational, ess
preserves Ch(Xm). For all non-negative integers k1, . . . , km, we let Dk1,...,km be the F2-
linear endomorphism of RXm given by multiplication by the element hk1×· · ·×hkm . Since
the latter is F -rational, Dk1,...,km preserves Ch(Xm). Note that if α ∈ RXm is homoge-
neous of degree j, then Dk1,...,km(α) is homogeneous of degree j−

∑m
i=1 ki. If α, β ∈ RXm ,

then we write α ∩ β for the sum of all the standard basis elements of RXm involved in
both α and β. If α and β are both essential, then the same is true of α ∩ β. If α ∩ β = 0,
then we say that α and β are disjoint. If α ∩ β = β, then we write β ⊂ α. An F -rational
element β ∈ Ch(Xm) is said to be indecomposable (or minimal) if for any β ∈ Ch(Xm)
with β ⊂ α, we have β = α. Such elements are clearly essential.

We shall need two further technical tools beyond those already developed. First, let
mult : RX2m → RXm be the F2-linear map obtained by composing the inverse of the
external product isomorphism RXm⊗F2RXm → RX2m (Lemma 4.2) and the multiplication
map RXm ⊗F2 RXm → RXm . For any nonnegative integer j, we may then get a product
homomorphism mult⊗ id : RX2m+j → RXm+j by identifying RXi+j with RXi ⊗F2 RXj for
each i ∈ {2m,m} (Lemma 4.2). We then have the following:

Proposition 7.1. For any nonnegative integer j, the map mult ⊗ id : RX2m+j → RXm+j

sends Ch(X2m+j) to Ch(Xm+j).

Proof. The given map factors as RX2m+j
π∗−→ RX2(m+j)

mult−−−→ RXm+j , where π : X2(m+j) →
X2m+j is the obvious projection. To prove the claim, we may therefore assume that j = 0.
Let U be the smooth locus of X, and let ∆: Um → U2m be the diagonal embedding (here
we are concretely identifying U2m with Um×Um). Since the powers of U are smooth, we
have the pullback ∆∗ : Ch(U2m)→ Ch(Um). We may then consider the diagram

Ch(U2m)

��

∆∗ // Ch(Um)

��
RX2m

mult // RXm

where the vertical maps are the canonical ring homomorphisms described in Proposition
4.3 (2). Since the images of these homomorphisms are Ch(X2m) and Ch(Xm) respectively,
it suffices to show that this diagram is commutative. For this, we are free to replace F
with its separable closure in F and hence assume that iW (ϕ) = r (see the proof Lemma
4.5). In this case, the map θ : Ch(U)→ RX of Proposition 4.3 is surjective (see §4.B), and
so each element of Ch(Um) can be expressed as the sum of an element in the image of the
external product homomorphism Ch(Um)⊗F2 Ch(Um)→ Ch(U2m) and an element in the
kernel of the left-vertical map in the diagram. If α, β ∈ Ch(Um), then αβ = ∆∗(α×β) by
definition. Since the left-vertical map in our diagram is a ring homomorphism, it follows
from the definition of mult that our diagram commutes if we replace Ch(U2m) with the
image of the aforementioned external product homomorphism. To prove commutativity
of the diagram in general, it then suffices to show that ∆∗ sends elements in the kernel of
the left-vertical map to elements in the kernel of the right-vertical map. But U2m and Um

are smooth varieties admitting a degree function (in the sense of §3.A), and the kernels
in question are the numerically trivial ideals N0(U2m) and N0(Um) by Lemma 4.11. An
application of Lemma 3.1 (2) with f = ∆ then gives the desired assertion. �

Remark 7.2. When ϕ is nondegenerate (so that X is smooth), the proof of the proposition
shows that mult is given by pullback along the diagonal embedding Xm → X2m. Such
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pullbacks play a basic role in the treatment of nondegenerate forms found in [3, Ch. XIII],
and the above will allow us to extend the relevant arguments to our setting.

Another basic tool in what follows will be extension of scalars to a field in the nonde-
fective splitting tower of ϕ. Here, Proposition 6.2 gives the following:

Proposition 7.3. For each 0 ≤ t < hnd, there exist unique F2-vector space homomor-
phisms ft : RXm → RXm

t
and gt : RXm

t
→ RXm

Ft
such that:

(1) ft(Ch(Xm)) ⊆ Ch(Xm
t ) and gt(Ch(Xm

t )) ⊆ Ch(Xm
Ft

);
(2) If α = α1×· · ·×αm is a standard basis element of RXm, then ft(α) = β1×· · ·×βm,

where for each 1 ≤ s ≤ m, we have

βs =


li−jt if αs = li for some jt ≤ i
hi+jt if αs = hi for some i < r − jt

0 otherwise.

(3) If β = β1×· · ·×βm is a standard basis element of RXm
t

, then gt(β) = α1×· · ·×αm,
where for each 1 ≤ s ≤ m, we have

αs =

{
li+jt if βs = li for some 0 ≤ i < r − jt

hi−jt if βs = hi for some i < r − jt.

Proof. Properties (2) and (3) characterize ft and gt uniquely, so it suffices to show that
maps satisfying (1), (2) and (3) exist. But if π : XFt → X is the canonical projection, then
we can take ft = f ◦ π∗ and gt = g, where f : RXm

Ft
→ RXm

t
and g : RXm

t
→ RXm

Ft
are the

maps from Proposition 6.2 (see the statement of the latter). �

7.B. Rational Cycles on X2. Our goal now is to study the F2-vector space ChdX (X2) ⊆
(RX2)dX . When ϕ is nondegenerate, this gives critical information about the structure
motive of the quadric X is the category of Chow motives with F2-coefficients (which
remembers a great deal about ϕ itself – see [3, Ch. XVII]). In [3, Chs. XIII, XV],
various results are obtained in the nondegenerate case using the basic tools of Chow theory
for smooth varieties (in particular, pullbacks, intersection products and composition of
correspondences). Using the results of §§4–6, as well as Proposition 7.1, we can now adapt
some of the arguments to our more general setting.

As observed by Karpenko in the nondegenerate case (see [3, Ch. XIII]), it is convenient
to extend the discussion to a study of the larger space Ch≥dX (X2) ⊆ (RX2)≥dX . By
Proposition 5.3, the composition law introduced in §5 extends the F2-vector space structure
on (RX2)≥dX to an F2-algebra structure. Note also that (RX2)dX is an F2-subalgebra of

this algebra, and the same is true of Ch≥dX (X2) and ChdX (X2) (again, see Proposition
5.3). Observe now that, one exceptional case aside, the essential standard basis elements
in (RX2)≥dX are those of the form hi × li+j or li+j × li for some integers j ≥ 0 and
0 ≤ i < r− j. The exceptional case is where s = 0, in which case lr−1× lr−1 is an essential
standard basis element in (RX2)dX . By Proposition 6.3, however, this can only be involved

in an element of Chd(X
2) when s = 0 and ϕ is hyperbolic, and will therefore be effectively

irrelevant for our considerations. We can also exclude additional elements of higher degree
by taking the non-defective splitting pattern of ϕ into account:

Lemma 7.4. Let i and j be integers with j ≥ 1 and 0 ≤ i < r − j. If an element of
Ch>dX (X2) involves either of the standard basis elements hi× li+j or li+j ×hi, then there
exists an integer 0 ≤ t < hnd such that jt ≤ i < jt+1 − j.
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Proof. Since i < r, there is a smallest integer 0 ≤ t < hnd such that jt+1 > i. Since
iW (ϕFt+1) = jt+1, Proposition 6.3 then tells us that we in fact have jt+1 > i + j, and so
the claim holds. �

Let EX2 be the subset of (RX2)≥dX consisting of all elements of the form hi × li+j or
li+j × hi for integers j ≥ 0 and 0 ≤ i < r− j satisfying the restriction of Lemma 7.4 when
j ≥ 1. If 0 ≤ t < hnd, then the tth shell of EX2 is the subset consisting of the elements
hi × li+j or li+j × hi with jt−1 ≤ i < jt − j. Following the treatment of nondegenerate
forms in [3, §73], the elements of EX2 may be assembled in a “shell pyramid diagram”:

0 1 2 2 1 0

The nodes in the jth row of the diagram (the bottom one being the 0th row) represent of
the elements of EX2 of the form hi × li+j and li+j × hi. Reading from left to right, the
elements are ordered as follows: h0×lj , h1×lj+1, . . . , h

r−1×lr−1+j , lr−1+j×hr−1, . . . , lj×h0.
If 0 ≤ t < hnd, then the elements of the tth shell of EX2 correspond to the elements in
the tth pyramid from the left as well the tth pyramid from the right. For instance, the
diagram above depicts the situation where r = 12 and ϕ has nondefective splitting pattern
{2, 8, 12} (the numbers beneath index the shell numbers). For the reader familiar with the
nondegenerate case, one may interpret things as follows: Suppose ψ is a nondegenerate
form of dimension 2r+ s over F with the same nondefective splitting pattern as ϕ. Then
the shell pyramid diagram for X is the shell pyramid diagram for Xψ found in [3, §73],

but with the the shells indexed by integers ≥ hnd deleted.4 For non-negative integers
j, k1, k2 with k1 + k2 ≤ j, the operator Dk1,k2 : (RX2)dX+j → (RX2)dX+j−k1−k2 preserves
the elements of EX2 , and admits the following simple visualization in terms of its action
on any given node: Shift the given node k1 times along the negative diagonal containing
it, and then the resulting node k2 times along the positive diagonal containing that node
(cf. [3, Ex. 73.9]). For each 0 ≤ t < hnd, the maps ft and gt of Proposition 7.3 (with
m = 2) also admit simple visualizations in this setup: The shell pyramid diagram for Xt

may be viewed as the diagram for X with the shells numbered 0, 1, . . . , t− 1 deleted. The
restriction of ft to EX2 (resp. EX2

t
) may then be visualized as the obvious projection of

one diagram onto the other (c.f. [3, Ill. 73.25]). Similarly, gt may be visualized as the
obvious inclusion of the diagram for Xt into the diagram for XFt . If ϕ is not hyperbolic,
then every essential element of Ch≥dX (X2) may be visualized by shading the nodes in the
diagram corresponding to the standard basis elements it involves. The determination of
Ch≥dX (X2) then amounts to determine the permissable shadings. In fact, it suffices to

determine those that correspond to the indecomposable elements of Ch≥dX (X2). Following
[3, Ch. XIII], we note some simple restrictions on the possibilities here.

First, if α and β are essential elements of (RX2)dX+j for some nonnegative integer j,
neither of which involves lr−1× lr−1 in the case where s = j = 0, then a quick computation
using Lemma 5.1 reveals that the cycle α ∩ β coincides with ess(Dj,0 ◦ α). This gives:

Lemma 7.5. Suppose that α, β ∈ ChdX+j(X
2) for some nonnegative integer j. Then:

4In [3, §73], the authors restrict their considerations to anisotropic forms. When ϕ is anisotropic, the
0th shell of our diagram is empty, and so the discussions agree in this case.
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(1) α ∩ β ∈ ChdX+j(X
2);

(2) If α is indecomposable and α ∩ β 6= 0, then α ⊂ β.

Proof. (1) If ϕ is hyperbolic, there is nothing to show. If not, then neither α nor β involves
lr−1 × lr−1 in the case where s = j = 0, and so the claim holds by the remarks above. (2)
If α is indecomposable, then (1) implies that either α ∩ β = 0 or α ∩ β = α. �

The computation underlying the proof of the previous lemma also reveals that for any
nonegative integer j, the map Dj,0 : ChdX+j(X

2) → ChdX (X2) sends indecomposable

elements to indecomposable elements. Since Dk,0 = (D1,0)◦k for any positive integer k,
the same is then true of Dk,0 : ChdX+j(X

2) → ChdX+j−k(X
2) for any 1 ≤ k ≤ j. Taking

into account the factor exchange automorphism of X2, we also get the same assertion for
the maps D0,k : ChdX+j(X

2)→ ChdX+j−k(X
2). Combining, we then get:

Lemma 7.6. Let j, k1, k2 be nonnegative integers with k1 + k2 ≤ j. Then the F2-linear
map Dk1,k2 : Chd+j(X × X) → Chd+j−k1−k2(X2) is injective and sends indecomposable
elements to indecomposable elements.

Proof. Injectivity is clear from the definition, and since Dk1,k2 = Dk1,0 ◦D0,k2 , the second
statement holds by the remarks above. �

7.C. The MDT Invariant. We now introduce a discrete invariant of ϕ that reconstructs
the space ChdX (X2). For each integer i, we introduce formal symbols ilo and iup. For any
integer j, there is a shifting map on the set consisting of these symbols that sends ilo to
ilo[j] := (i + j)lo and iup to iup[j] := (i + j)up. If Λ is a subset of this set, then we write
Λ[j] for the image of Λ under this shifting map.

Let Λ(X) be the set consisting of the symbols ilo with 0 ≤ i < r and iup with dX − r <
i ≤ dX . If Λ is a subset of Λ(X), then we write Λlo (resp. Λup) for the subset of Λ
consisting of the elements of the form ilo (resp. iup). If Λlo 6= ∅ (resp. Λup 6= ∅), then
we set a(Λ) := min{i | ilo ∈ Λ} (resp. b(Λ) := max{i | iup ∈ Λ}). For each integer
0 ≤ i < r, we set αilo := hi × li ∈ EX2 . For each integer dX − r < i ≤ dX , we set
αiup := ldX−i × hdX−i ∈ EX2 . Using Lemma 5.1, one readily observes that these elements
are idempotent (RX2)dX . Moreover, one exceptional case aside, they are pairwise mutually
orthogonal. The exceptional case is that where s = 0 and dimϕ ≡ 2 (mod 4), as there
we have (hr−1 × lr−1) ◦ (lr−1 ◦ hr−1) = hr−1 × hr−1. If Λ is a subset of Λ(X), then we
write αΛ for the essential cycle

∑
λ∈Λ αλ ∈ (RX2)dX . If ϕ is not hyperbolic, then every

element of ChdX (X2) is of this form. In this case, we write Λ(α) for the subset of Λ(X)

corresponding to a given element α ∈ ChdX (X2).

Remark 7.7. If 0 ≤ t < hnd, then dXt = dX − 2jt, and one readily checks that the maps ft
and gt from Proposition 7.3 (for m = 2) have the following properties:

• If Λ ⊆ Λ(X), then f(αΛ) = αΛ[−jt]∩Λ(Xt);
• If Λ ⊆ Λ(Xt), then gt(αΛ) = αΛ[jt].

Now, Lemma 6.1 yields the following:

Lemma 7.8. αΛ(X) ∈ ChdX (X2).

Proof. The claim is that
∑r−1

i=0 (hi× li+ li×hi) is F -rational. If iW (ϕ) = r, this is clear. If
not, then Proposition 6.2 allows us to reduce to the case where ϕ is anisotropic, and here
the claim holds by Lemma 6.1. �

By Lemma 7.5, it follows that Λ(X) admits a unique partition into disjoint subsets
Λ1, . . . ,Λt such that each of the cycles αΛi is an indecomposable element of ChdX (X2).
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The set consisting of the subsets Λ1, . . . ,Λt shall be denoted MDT(ϕ), and its elements
shall be called the connected components of Λ(X). We shall also say that two elements
of Λ(X) belonging to the same connected component are connected. By a summand of
Λ(X), we shall mean a union of the connected components. Our notation and terminology
is informed by the case where ϕ is nondegenerate, where we have the following:

Remarks 7.9 (MDT in the nondegenerate case). Suppose that ϕ is nondegenerate (so that
X is smooth).

(1) The invariant MDT(ϕ) has the following interpretation: For a field k, let Chow(k,F2)
be the category of Chow motives over F with F2-coefficients. By a result (essentially)
due to Vishik, the motive of any smooth projective quadric in this category admits an
essentially unique decomposition as a direct sum of indecomposable objects. Over F ,
the idempotents αλ ∈ ChdX (X2) = EndChow(F ,F2)(M(X)) give rise to a decomposition

of M(X) as a direct sum of Tate motives indexed by the elements of Λ(X). Via scalar
extension, the complete decomposition of M(X) in Chow(F,F2) yields a partition of
these Tate motives, and the corresponding partition of Λ(X) is exactly MDT(ϕ) (see
[3, Ch. XVII] for more details). For this reason, MDT(ϕ) is sometimes referred to
in this setting as the motivic decomposition type of ϕ. Although we do not have a
definitive motivic framework within which we can discuss the case of degenerate forms,
we nevertheless adopt the MDT notation for the sake of consistency.

(2) In one respect, our notation differs slightly from what can be found elsewhere in the
literature in this case. In particular, in [17], Λ(X) is (essentially) taken to be the set
consisting of the symbols ilo and iup with 0 ≤ i < r, with αiup being now the cycle
li×hi. As indicated above, our notation is rather in line with indexing of Tate motives.
This allows for cleaner use of the shift notation introduced above in later statements.

Isotropic reduction gives the following:

Lemma 7.10. If iW (ϕ) < r, then MDT(ϕ) consists of the following sets:

• {ilo} with 0 ≤ i < iW (ϕ);
• {iup} with dX − iW (ϕ) < i ≤ dX ;
• Λ[iW (ϕ)] with Λ an element of MDT(ϕan).

Proof. If 0 ≤ i < iW (ϕ), then hi × li and li × hi are clearly indecomposable elements of
ChdX (X2), and so the sets in the first two points are connected components of Λ(X). Now,
if Λ is an element of MDT(ϕan), then g0(αΛ) = αΛ[iW (ϕ)], where g0 : RX2 → RX2

0
is the

map from Proposition 7.3 (Remark 7.7). But it is clear from the statement of Proposition
7.3 that g0 sends indecomposable elements of ChdX0

(X2
0 ) to indecomposable elements of

ChdX (X2), and so the listed sets are all the connected components of MDT(ϕ). �

Using Proposition 7.1, we then get:

Lemma 7.11. The following are equivalent:

(1) ϕ is isotropic;
(2) {0lo} is an element of MDT(ϕ);
(3) There is an odd-cardinality element of MDT(ϕ);
(4) There is an odd-cardinality subset Λ of Λ(X) with αΛ ∈ Chd(X

2).

Proof. (1)⇒ (2): Apply Lemma 7.10.
(2)⇒ (3)⇒ (4): Clear.
(4) ⇒ (1): Consider the map mult : RX2 → RX of Proposition 7.1. By definition, we

have mult(αλ) = l0 for all λ ∈ Λ(X). Since mult preserves F -rationality (Proposition 7.1),
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it follows that l0 = |Λ|l0 = mult(
∑

λ∈Λ αλ) is F -rational, and so X admits a 0-cycle of
degree 1. But Springer’s theorem then tells us that ϕ is isotropic, as desired. �

Before proceeding to the anisotropic case, we make one further basic observation:

Lemma 7.12. If K/F is a purely transcendental extension, then MDT(ϕK) = MDT(ϕ).

Proof. We claim that the scalar extension map ChdX (X2)→ ChdX (X2
K) is surjective. For

this, it suffices to consider the case whereK = F (T ) for a single variable T . In this case, the
projection X2

K → X2 factors as the composition X2
K = Spec(K)×X2 → A1 ×X2 → X2,

where the second map is the canonical projection, and the first is given by inclusion of the
generic point of A1 on the first factor and the identity on the second. The pullback along
the second map is surjective by homotopy invariance, and the pullback along the second
is surjective by [3, Cor. 57.11], so the claim holds. In particular, the scalar extension map
ChdX (X2)→ ChdX (X2

K) is an isomorphism, and so MDT(ϕK) = MDT(ϕ). �

7.D. Splitting Pattern Connections. In view of Lemma 7.10, we shall now assume for
the remainder of this section that ϕ is anisotropic. The following extends [3, Lem. 73.19]
to our setting:

Proposition 7.13. Let 1 ≤ t ≤ hnd. For any integer 0 ≤ i < it − 1, the elements
(jt−1 + i)lo and (dX − (jt − 1− i))up are then connected in Λ(X).

Proof. With what has been established thus far, the proof of [3, Lem. 73.19] goes through.
Briefly, one readily reduces to the case where t = 1 by using the map ft−1 : RX2 → RX2

t−1

of Proposition 7.3 (note that j1(ϕt−1) = jt − jt−1). For t = 1, let µ : XF1 = Spec(F1) ×
X → X2 be the map given by inclusion of the generic point of X on the first factor and
the identity on the second. By [3, Cor. 57.11], µ∗ : Ch(X2) → Ch(XF1) is surjective.
Since iW (ϕF1) = j1, the target contains lj1−1. By the definition of µ, it follows that
there exists an indecomposable cycle β ∈ ChdX+j1−1(X2) involving h0 × lj1−1. Consider

α := Di,j1−i−1(β) ∈ ChdX (X2). By Lemma 7.6, α is indecomposable. Now by Lemma
7.4, the only elements in the 1st shell of EX2 that have degree dX + j1 − 1 are h0 × lj1−1

and lj1−1 × h0. As a result, α = (hi × li) + a(lj1−1−i × hj1−1−i) + β for some a ∈ F2 and
some β ∈ (RX2)dX that involves no elements in the 1st shell of EX2 . Now since ϕ is
anisotropic, |Λ(α)| is even by Lemma 7.11. At the same time, the same is also true of
|Λ(β)|. Indeed, if β = 0, this is clear; if not, then hnd > 1, and an application of Lemma
7.11 to g1(β) ∈ ChdX1

(X2
1 ) gives the claim.As a result, we must have that a = 1, and so

both ilo and (dX− (j1−1− i))up lie in Λ(α), which is a connected component of Λ(X). �

Thus, if Λ is an summand of Λ(X), then each element of Λlo admits a “dual” element
of Λup determined by the nondefective splitting pattern of ϕ. In particular, if the latter
is known, then Λ is determined by Λlo. Moreover, the integers a(Λ) and b(Λ) are defined,
and if jt−1 ≤ a(Λ) < jt with 1 ≤ t ≤ hnd, then dX − jt < b(Λ) ≤ dX − jt−1. We can make
this more precise with the following result, the first assertion of which extends [3, Prop.
73.23] to our setting:

Proposition 7.14. Let 1 ≤ t < hnd. If MDT(ϕ) admits an element Λ′ with jt−1 ≤
a(Λ′) < jt, then it admits an element Λ with a(Λ) = jt−1. Moreover:

(1) The sets Λ,Λ[1], . . . ,Λ[it−1] are all elements of MDT(ϕ), and Λ′ = Λ[a(Λ′)−jt−1];
(2) Fix an integer t ≤ t′ ≤ hnd. If ilo ∈ Λ for some jt′−1 ≤ i < jt′, then i+ it ≤ jt′. In

particular, it′ ≥ it.
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Proof. Let 0 ≤ j < it− 1 be such that a(Λ′) = jt−1 + j. By the definition of a(Λ′) and the
remarks preceding the statement, αΛ involves no element of EX2 in the shells numbered
1, . . . , t− 1. The key step is proving:

Claim. There is an indecomposable element α ∈ ChdX+it−1−j(X
2) that involves hjt−1+j×

ljt−1, but no element of EX2 in the shells numbered 1, . . . , t− 1.

Before remarking on this, let us show how it gives the desired conclusion. Let α be as
in the claim. By Lemma 7.6, Dit−1−j,0(β) is an indecomposable element of ChdX (X2).
By construction, it involves hjt−1 × ljt−1, but no element of EX2 in the shells numbered
1, . . . , t−1. By Proposition 7.13, it also involves ljt−1×hjt−1 . Letting γ be its image under

pushforward along the factor exchange automorphism of X2, we then get that Λ := Λ(γ) is
an element of MDT(ϕ) with a(Λ) = jt−1. The claim then holds with j = 0, and so we have
an indecomposable element β ∈ ChdX+it−1(X2) that involves hjt−1 × ljt−1, but no element
of EX2 in the shells numbers 1, . . . , t− 1. For each 0 ≤ k < it, set βk := Dk,it−1−k(β). By
Lemma 7.6, βk is an indecomposable element of ChdX (X2) involving no elements of EX2 in
the shells numbered 1, . . . , t−1. Since β0 involves hjt−1×ljt−1, we have Λ(β0) = Λ, and then
Λ(βk) = Λ[k] for all 1 ≤ k < it−1 by construction. Thus, Λ,Λ[1], . . . ,Λ[it−1] are elements
of MDT(ϕ), and since a(Λ′) = a(Λ[j]) = a(Λ[a(Λ′)− jt−1]), we have Λ′ = Λ[a(Λ′)− jt−1],
proving (1). At the same time, since β0 = D0,it−1(β), it involves hi × li if and only if β
involves hi × li+it−1. Thus, if ilo ∈ Λ for some integers t ≤ t′ ≤ hnd and jt′−1 ≤ i < jt′ ,
then β must involve hi × li+it−1, and so i+ it − 1 < jt′ by Lemma 7.4, proving (2).

As for the claim, the case where t = 1 is already implicit in the proof of Proposition
7.13. When t > 1, an explicit construction of α from αΛ′ in the nondegenerate case is given
in [3, Proof of Prop. 73.23] using scalar extension to the function field of X, composition
of correspondences between powers of X and pullback along a partial diagonal embedding
X2 → X3 (in [3, Ill. 73.24], this is the construction allowing one to move from position 2
in the diagram to position 3). With the results of §5, together with Propositions 7.3 and
7.1 (the latter being our substitute for pullback along partial diagonals), the very same
construction also gives the desired element in our more general setting. �

In view of the remarks preceding the statement of the proposition, we get:

Corollary 7.15. Let Λ be an element of MDT(ϕ), and let 1 ≤ t ≤ hnd be the unique
integer with jt−1 ≤ a(Λ) < jt. Then b(Λ) = dX − (a(Λ) + (it − 1)).

The element of MDT(ϕ) that contains 0lo shall be denoted ΛU (X). We refer to it as
the upper connected component of Λ(X).5 This set has the following properties:

Proposition 7.16.

(1) a(ΛU (X)) = 0 and b(ΛU (X)) = dimIzhϕ− 1.
(2) If |ΛU (X)| 6= 2, then |ΛU (X)lo| ≥ 2, and min{i > 0 | ilo ∈ ΛU (X)} = jt for some

integer 1 ≤ t < hnd.
(3) If ilo ∈ ΛU (X) for some integer j1 ≤ i < j2, then i1 divides i2 and {j1 ≤ i <

j2 | ilo ∈ ΛU (X)} = {i1, 2i1, . . . , j2 − i1}.

Proof. (1) Immediate from Corollary 7.15 and the definition.
(2) If |ΛU (X)| 6= 2, then |ΛU (X)|lo ≥ 2 by Proposition 7.13. Let 1 ≤ t < hnd and

0 ≤ j < it+1 be such that jt + j = min{i > 0 | ilo ∈ ΛU (X)}. We have to show
that j = 0. Suppose otherwise. By Proposition 7.14 (2), we have jt + i1 − 1 < jt+1.

5When ϕ is nondegenerate, this is the connected component of Λ(X) corresponding to what in the
literature is called the upper motive of X – see Remarks 7.9.
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We claim that there exists an indecomposable element α ∈ ChdX+i1−1(X2) that involves
hjt × ljt+i1−1, but no element of EX2 in the shells numbered 1, . . . , t − 1. Given this,
Lemma 7.6 gives that β := D0,i1−1 is an indecomposable element of ChdX (X2) with
a(Λ(β)) = jt. By Proposition 7.14 (1), however, Λ(β)[j] is then an element of MDT(ϕ)
with a(Λ(β)[j]) = jt+j, contradicting the fact that jt+j ∈ ΛU (X). We must therefore have
that j = 0. For the claim, an explicit construction of α from αΛU (X) in the nondegenerate

case is given in [3, Proof of Prop. 73.27] using scalar extension to the function field of
X, composition of correspondences between powers of X and pullback along a partial
diagonal embedding X2 → X3. With the results of §5, together with Propositions 7.3 and
7.1, the very same construction also yields the desired element in our setting.

(3) Let Λ′ be an element of MDT(ϕ) containing ilo for some j1 ≤ i < j2. If we had
a(Λ′) ≥ j1, then Proposition 7.14 (1) would imply that the same is true of every element
of MDT(ϕ) containing ilo for some j1 ≤ i < j2. Since ΛU (X) is one of these elements, we
must then have that a(Λ′) < j1. By another application of Proposition 7.14 (1), we then
have that Λ′ = ΛU (X)[j] for some 0 ≤ j < i1. At the same time, Proposition 7.14 (2)
implies that the components ΛU (X),ΛU (X)[1], . . . ,ΛU (X)[i1−1] contain an equal number
of elements ilo with j1 ≤ i < j2, and so the claims follow. �

Recall (Theorem 2.9) that dimIzhϕ is a stable birational invariant of X (among the
class of quadrics we are considering). We shall see shortly that the same is true of ΛU (X).

7.E. Example: Forms of Nondefective Height 1. We consider here the simplest
possible case, namely that where hnd = 1 Note that we have the following:

Lemma 7.17. The following are equivalent:

(1) hnd = 1;
(2) i1(ϕ) = r;
(3) ϕ1 ' ql(ϕ)F (ϕ).

Proof. (1)⇔ (2): By definition.
(2) ⇔ (3): Since ϕ remains nondefective over F (ϕ), we have ϕ1 = (ϕF (ϕ))an

∼= τ ⊥
ql(ϕ)F (ϕ) for some nondegenerate form τ of dimension 2r − 2i1(ϕ) over F (ϕ). Thus,
i1(ϕ) = r if and only if ϕ1 ' ql(ϕ)F (ϕ). �

Now, the results of the previous section immediately give the following:

Proposition 7.18. If hnd = 1, then MDT(ϕ) consists of the sets ΛU (X)[i] with 0 ≤ i < r,
and we have ΛU (X) = {0lo, (r + s− 1)up}.

Proof. Since hnd = 1, we have i1(ϕ) = r. In particular, dimIzhϕ = dimϕ − i1(ϕ) =
(2r + s)− r = r + s. By Proposition (1), it follows that ΛU (X) contains the elements 0lo

and (r + s − 1)up. On the other hand, Proposition 7.14 (1) tells us that each of the sets
ΛU (X)[i] with 0 ≤ i < r is an element of MDT(ϕ). Since |Λ(X)| = 2r, we conclude that
these are the only elements of MDT(ϕ), and that ΛU (X) = {0lo, (r + s− 1)up}. �

If r = 1, then we clearly have that hnd = 1. For larger values of r, examples may be
produced with the following:

Lemma 7.19. Write dimϕ = 2n+m for integers n ≥ 0 and 1 ≤ m ≤ 2n. If ϕ is a Pfister
neighbour, then r + s ≤ 2n, and the following are equivalent:

(1) hnd = 1;
(2) r + s = 2n;
(3) dimϕ = 2n+1 − s.
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Proof. The first statement holds by Lemma 2.11 (1). By part (3) of the same lemma, we
have i1(ϕ) = dimϕ−2n = 2r+s−2n. In particular, hnd = 1 if and only if 2r+s−2n = r,
i.e., r+ s = 2n. This shows the equivalence of (1) and (2), and the equivalence of (2) and
(3) is clear since dimϕ = 2r + s = 2(r + s)− s. �

The forms satisfying the conditions of the lemma are said to be close Pfister neigh-
bours. The nondegenerate close Pfister neighbours are the general Pfister forms and their
codimension-1 subforms. It is expected that most anisotropic forms of nondefective height
1 are close Pfister neighbours - see §9 below for more precise statements.

Remark 7.20. If ϕ is a general (n + 1)-fold Pfister form (resp. a codimension-1 subform
of such a form), then the preceding discussion shows that ΛU (X) = {0lo, (2

n − 1)up}, and
that MDT(ϕ) consists of the shifts ΛU (X)[i] with 0 ≤ i < 2n (resp. 0 ≤ i < 2n − 1). The
deeper point underlying this is that the motive of X in Chow(F,F2) decomposes are a
direct sum of shifts of the (binary) Rost motive attached to ϕ – see [3, Ex. 94.3].

7.F. Further Restrictions Arising From the Steenrod Operations. Finer restric-
tions on MDT(ϕ) may be obtained using the action of the cohomological-type Steenrod
operations on Ch(X2) (see Proposition 4.3 (3)). For a positive integer x, we write v2(x)
for the 2-adic valuation of x. The following, which refines parts (2) and (3) of Propositon
7.16, extends a result of Karpenko ([3, Prop. 83.2, Thm. 83.3, Cor. 83.4]) to our setting:

Theorem 7.21. Let v be the smallest integer for which i ≤ 2v. If |ΛU (X)| > 2, then:

(1) Each positive integer i with ilo ∈ ΛU (X) is divisible by 2v;
(2) If i the smallest positive integer for which ilo ∈ ΛU (X), then i = jt for some integer

1 ≤ t < hnd with v(it+1) ≥ v2(i1). In particular,

v2(i1) ≤ max{v2(i2), . . . , v2(ihnd)}.

Proof. (1) Let 0 ≤ i < r be an integer with ilo ∈ ΛU (X). We show that i is divisible by 2v

by induction on i. If i = 0, there is nothing to show. Suppose now that i > 0, and that
each integer j < i with jlo ∈ ΛU (X) is divisible by 2v. Set w := v2(i). We have to show
that w ≥ v. Suppose, for the sake of contradiction, that w < v. By the definition of v, we
then have that 2w < i1. In particular, we may consider the map

f := D0,i1−1−2w ◦ S2w : Chd+i1−1(X2)→ Chd(X
2).

Now, by the proof of Proposition 7.13, there is an indecomposable element π ∈ Chd+i1−1(X2)
that involves h0 × li1−1. By Lemma 7.6, D0,i1−1(π) is then an indecomposable element of
Chd(X

2) that involves h0× l0. In particular, for any integer j, we have jlo ∈ ΛU (X) (resp.
jup ∈ ΛU (X)) if and only if π involves hj × li1−1+j (resp. π involves ldX−j+i1 × hdX−j).
Let j be an integer with jlo ∈ ΛU (X). By the definition of S2w (see §4.A), we have

f(hj × li1−1+j) =

2w∑
k≥0

(
j

2w − k

)(
dimIzhϕ− j

k

)
hj+2w−k × lj+2w−k.

Observe now that if j < i, then the products
(

j
2w−k

)(
dimIzhϕ−j

k

)
appearing in the sum are

0 in F2. Indeed, in this case, j is divisible by 2v by hypothesis, and the same is true of
dimIzhϕ by Theorem 2.5. Both j and dimIzhϕ − j are therefore divisible by 2v, and the
claim then follows from Lucas’ theorem (see [3, Lem. 78.6]). In particular, we see that
if we express f(π) as an F2-linear combination of the essential standard basis elements in

Chd(X
2), then the coefficient of hk × lk is 0 when k < i and

(
dimIzhϕ−i

2w

)
when j = i. Since

ilo is connected to 0lo in Λ(X) (being an element of ΛU (X)), it follows that
(

dimIzhϕ−i
2w

)
= 0
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in F2. But since dimIzhϕ is divisible by 2v, another application of Lucas’ theorem then
tells us that i is not divisible by 2w, a contradiction. The result follows.

(2) We already know from part (2) of Proposition 7.16 that i = jt for some integer
1 ≤ t < hnd with it+1 ≥ i1. Set n := v2(i1). By Theorem 2.5, dimϕ = dimIzhϕ + i1
is divisible by 2n. By part (1), the same is then true of dimϕt = dimϕ − 2jt. Let m
be the smallest integer for which it+1 ≤ 2m. Since it+1 ≥ i1, we have m ≥ n. Now
dimϕt − it+1 = dimIzhϕt is divisible by 2m by another application of Theorem 2.5. Since
m ≥ n,and since dimϕt is divisible by 2n, it follows that it+1 is also divisible by 2n, i.e.,
v2(it+1) ≥ n. This proves the result. �

When ϕ is nondegenerate, another non-trivial restriction on the integer i from part (2)
due to Karpenko is essentially established in [3, Thm. 81.2, Cor. 81.19] (the characteristic
assumption in [3] was only imposed since the Steenrod operations of [11] where not avail-
able at that time). The same arguments, modulo the kind of adjustments implemented in
the preceding discussion, yield an analogous result in our setting. Since the proof is long
and technical, we omit the details and simply state here the conclusion:

Theorem 7.22. Suppose that |ΛU (X)| > 2, and let 1 ≤ t < hnd be such that jt = min{i >
0 | ilo ∈ ΛU (X)} (see Theorem 7.21). If v2(jt− i1) ≥ v2(i1) + 2, then v2(it+1) ≤ v2(i1) + 1.
In particular,

v2(i1) ≥ min{v2(i2), . . . , v2(ihnd)} − 1.

Remark 7.23. When ϕ is nondegenerate, a sufficient condition for the inequality |ΛU (X)| >
2 is that ϕ does not have maximal splitting: This is the “binary motive theorem” of Vishik,
a special case of Theorem 10.4 below. When ϕ is degenerate, this is no longer valid in
general, but some sufficient conditions are (implicitly) discussed in §10 below.

8. Decompositions Arising from Stable Birational Equivalences of
Quadratic Grassmannians

Over fields of characteristic different from 2, a basic but important result of Vishik (see
[17, Thm. 4.7]) allows to relate the Chow motives of the (smooth) projective quadrics
attached to two anisotropic quadratic forms in situations where certain of their associated
quadratic Grassmannians are stably birationally isomorphic. In particular, one can relate
the motivic decomposition types of the two forms under the appropriate hypotheses (see
Remarks 7.9). In this section, we prove the analogous statement for the MDT invariant
in our setting. While Vishik’s arguments make use of quadratic Grassmannians and their
motives, we give here a more direct argument lying within the framework of the previous
sections. For nondegenerate forms, this yields the stronger motivic statement as in [17].6

8.A. The Result. Let ϕ and ψ be anisotropic quadratic forms over F of types (r, s) and
(r′, s′), respectively. We assume that r, r′ ≥ 1, i.e., that ϕ and ψ are nonquasilinear. Set
X := Xϕ and Y := Yϕ. If necessary, we choose orientations of X and Y . When considering
separable extensions K of F , we choose orientations of XK and YK compatible with those
for X and Y (note that ϕK and ψK remain nondefective here). When considering products
of copies of these quadrics (over F or a separable extension of F ), we orient the product
using the given orientations of the individual factors.

Lemma 8.1. Suppose we have integers 1 ≤ s < hnd(ϕ) and 1 ≤ t < hnd(ψ) such that
for every separable extension K/F , we have iW (ϕK) > js−1(ϕ) if and only if iW (ψK) >

6The characteristic-2 case of Vishik’s result for nondegenerate forms appears to be absent from the
literature.
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jt−1(ψ). Let F = F0 ⊆ F1 ⊆ · · · ⊆ Fhnd(ϕ) be the nondefective splitting tower of ϕ, let
0 ≤ s′ < s, and set ϕ′ := ϕs′ = (ϕFs′ )an and ψ′ := (ψFs′ )an. Then:

(1) The nondefective splitting pattern of ψ′ is contained in the set {jk(ϕ)−iW (ψFs′ ) | 0 ≤
k ≤ hnd(ψ)}, and contains jt(ψ)− iW (ψFs′ ).

(2) There exists an integer 0 ≤ t′ < t such that jt′(ψ)−iW (ψFs′ ) lies in the nondefective
splitting pattern of ψ′, and such that the following are equivalent for every separable
extension K/Fs′:
• iW (ϕ′K) > js−1(ϕ)− js′(ϕ)
• iW (ψ′K) > jt′(ϕ)− iW (ψFs′ );
• iW (ψ′K) ≥ jt(ϕ)− iW (ψFs′ )− 1.

Proof. (1) Since any separable extension of Fs′ is a separable extension of F , the first
statement holds by Lemma 2.3. For the second statement, let K be the unique field in
the nondefective splitting tower of ψ for which iW (ψK) = jt(ψ). By construction, K/F
is separable, and so iW (ϕK) > js−1(ϕ) by hypothesis. By repeated application of Lemma
2.2 (2), the compositum K · Fs′ is then a purely transcendental extension of K, and so
iW (ψ′K·Fs′

) = iW (ψK)− iW (ψFs′ ) = jt(ψ)− iW (ψFs′ ). Since K/F and Fs′/F are separable,

so is K · Fs′/F , and another application of Lemma 2.3 then gives the claim.
(2) Since iW (ϕFs′ ) = js′(ϕ) ≤ js−1(ϕ), and since Fs′/F is separable, we have iW (ψFs′ ) ≤

jt−1(ψ). By (1), there is then a largest integer 0 ≤ t′ < t such that jt′(ψ)− iW (ψFs′ ) lies in
the nondefective splitting pattern of ψ′. Since jt(ψ)− iW (ψFs′ ) also lies in this set by (1),
it then follows from our standing assumption (and the fact that any separable extension
of Fs′ is a separable extension of F ) that t′ has the desired property. �

Lemma 8.2. Let 1 ≤ t < hnd(ψ), and set a := dX−dY + jt−1(ψ)+ jt(ψ)−1. Suppose that
for every separable extension K/F , iW (ϕK) > 0 if and only if iW (ψK) > jt−1. Then a ≥ 0,

and any element of ChdX+jt(ψ)−1 that involves h0 × ljt(ψ)−1 also involves la × hjt−1(ψ).

Proof. As a matter of notation, let us set li := 0 whenever i < 0. Let Ft−1 be the unique
field in the nondefective splitting tower for ψ with iW (ψFt−1) = jt−1(ψ). By hypothesis,
ϕ remains anisotropic over Ft−1. Set ψ′ = ψt−1 = (ψFt−1)an and Y ′ := Xψ′ . If necessary,
we choose an orientation of Y ′ and use this to orient XFt−1 × Y ′. Let p : RX×Y →
RXFt−1

×Y ′ be the composition of the scalar extension map RX×Y → R(X×Y )Ft−1
and

the map f : R(X×Y )Ft−1
→ RXFt−1

×Y ′ of Proposition 6.2. By the latter, p sends F -rational

elements of the source to Ft−1-rational elements of the target, sends h0 × ljt(ψ)−1 to h0 ×
lj1(ψt−1) and sends la × hjt−1(ψ) to la′ × h0, where a′ = a− jt−1(ψ) = dX − dY ′ + j1(ψt−1)−
1 (note that dY ′ = dY − 2jt−1(ψ)). If K/Ft−1 is a separable extension, then we have
iW (ϕK) > 0 if and only if iW (ψ′K) > 0 by Lemma 8.1. To prove the lemma, we can
therefore assume that t = 1. Under this assumption, ϕ becomes isotropic over F1 :=
F (ψ). Consider the map µ : XF1 = Spec(F1) × X → Y × X given by the inclusion of
the generic point of Y on the first factor and the identity on the second. By [3, Cor.
57.11], the pullback µ∗ : Ch(Y ×X) → Ch(XF1) is surjective. Since ϕF1 is isotropic, the
target contains l0. By the definition of µ, it follows that there exists an indecomposable
element of ChdY (Y × X) involving h0 × l0. Applying Dj1(ψ)−1,0 to this element, we get

an indecomposable element β ∈ ChdY −j1(ψ)+1(Y ×X) that involves hj1(ϕ)−1× l0. Suppose

now that α is an element of ChdX+j1(ψ)−1(X ×Y ) that involves h0× lj1(ψ)−1. We can then

write α = (h0× lj1(ψ)−1)+λ(la×h0)+α′ for some λ ∈ F2 and some α′ ∈ (RX×Y )dX+j1(ψ)−1

that involves neither h0 × lj1(ψ)−1 or la × h0. Replacing α with ess(α) if needed, we can

further assume that α′ involves no standard basis elements with h0 as the second factor.
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Consider now the composition α ◦ β ∈ ChdY (Y 2). Since β involves hj1(ψ)−1× l0, and since

α involves h0× lj1(ψ)−1, Lemma 5.1 shows that α ◦ β involves hj1(ψ)−1× lj1(ψ)−1. Applying

Proposition 7.13 to an indecomposable element η ∈ ChdY (Y 2) involving hj1(ψ)−1× lj1(ψ)−1

and satisfying η ⊂ α ◦ β, we then get that α ◦ β also involves l0 × h0. Since α′ involves
no standard basis elements with h0 as the second factor, Lemma 5.1 then tells us that
λ(la × h0) ◦ β 6= 0, and so a ≥ 0 and λ = 1, proving the lemma. �

Our version of Vishik’s result is now the following:

Theorem 8.3. Suppose that there are integers 0 ≤ m < r and 0 ≤ n < r′ such that
for every separable extension K/F , we have iW (ϕK) > m if and only if iW (ψK) > n. If
MDT(ϕ) admits an element Λ with a(Λ) = m, then Λ[n−m] is an element of MDT(ψ).

Proof. Let s and t be the unique integers with js−1(ϕ) ≤ m < js(ϕ) and jt−1(ψ) ≤ n <
jt(ψ). By Lemma 2.3 and Proposition 7.14, our hypotheses are then equivalent to:

• For every separable extension K/F , iW (ϕK) > js−1(ϕ) if and only if iW (ψK) >
jt−1(ψ);
• MDT(ϕ) admits an element Λ′ with a(Λ′) = js−1(ϕ).

We may thus assume that m = js−1(ϕ) and n = jt−1(ψ). Let us set

a := dX − dY − js−1(ϕ) + jt−1(ψ) + jt(ϕ)− 1

and
b := jt(ϕ)− 1− js−1(ϕ) = a+ dY − dX − jt−1(ψ).

We make the following claim:

Claim. In the above situation, a ≥ js−1(ϕ), and there exists a cycle β ∈ ChdX+b(X × Y )
with the following properties:

(i) β involves hjs−1(ϕ) × ljt(ψ)−1 and la × hjt−1(ψ);
(ii) If β involves hu × lv (resp. lu × hv) for some integers u, v, then ulo ∈ Λ (resp.

(dX − u)up ∈ Λ);
(iii) β involves no terms of the form hu × hv or lu × lv for integers u and v.

Before proving it, let us first show how the claim yields the desired result. Let β be as
in the claim, and let βt be its image under pushforward along the canonical isomorphism
X × Y → Y ×X. Set

γ := (hit(ϕ)−1 × h0)βt ∈ ChdX+b−(it(ψ)−1)(Y ×X).

By (i), β involves hjs−1(ϕ)×ljt(ψ)−1 and γ involves hjt(ψ)−1×la. Using (ii) and (iii), together

with Lemma 5.1, one then checks that γ ◦ β ∈ ChdX−js−1(ϕ)+a(X
2) involves

(hjt(ψ)−1 × la) ◦ (hjs−1(ϕ) × ljt(ψ)−1) = hjs−1(ϕ) × la.

By Lemma 7.4 it follows that a < js(ϕ). But since β involves la × hjt−1(ψ), (ii) tells us
that (dX − a)up. Since a(Λ) = js−1(ϕ), Corollary 7.15 then gives that a ≥ js(ϕ) − 1, and
so a = js(ϕ)− 1. Let us now consider the cycle

η := (his(ϕ)−1 × h0)β ∈ ChdX+b−(is(ϕ)−1)(X × Y ).

By (i) and the preceding remarks βt involves hjt−1(ψ)×la = hjt−1(ψ)×ljs(ϕ)−1 and η involves

hjs(ϕ)−1 × ljt(ψ)−1. Using properties (ii) and (iii) of β, together with Lemma 5.1, one then

checks that η ◦ βt ∈ Ch(Y 2) involves

(hjs(ϕ)−1 × ljt(ψ)−1) ◦ (hjt−1(ψ) × ljs(ϕ)−1) = hjt−1(ψ) × ljt(ψ)−1.
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Let α be the unique indecomposable element of ChdY (Y 2) which is essential and involves

ljt(ψ)−1 × hjt(ψ)−1. By the preceding remarks, both αt and Dit(ψ)−1,0(η ◦ βt) ∈ ChdY (Y 2)

involve hjt(ψ)−1 × ljt(ψ)−1, and so αt ⊂ Dit(ψ)−1,0(η ◦ βt). We now claim that Λ(α) =
Λ[jt−1(ψ)− js−1(ϕ)] = Λ[m−n]. Since α is indecomposable, this will prove what we want.
Let 0 ≤ i < r′. If α involves hi×li, then αt involves li×hi, and so η◦βt involves li+(jt(ψ)−1)×
hi. By Lemma 5.1, βt ∈ ChdX+b(Y ×X) must then involve li+(jt(ψ)−1)×hi+(jt(ψ)−1)−b, and

so β involves hi+(jt(ψ)−1)−b × li+(jt(ψ)−1). Setting k := jt−1(ψ)− jt−1(ϕ) = b− (it(ψ)− 1),

we see that α involves hi × li only if β involves hi−k × li+(jt(ψ)−1). By property (ii) of
β, this implies that ilo ∈ Λ(α) only if (i − k)lo ∈ Λ. In other words, Λ(α)lo ⊆ Λ[k]lo.
A similar calculation shows that Λ(α)up ⊆ Λ[k]up, and so Λ(α) ⊆ Λ[k]. Now since α

involves ljt(ψ)−1 × hjt(ψ)−1, we have (dY − (jt(ψ) − 1))up ∈ Λ(α). By Proposition 7.13,
it follows that jt−1(ψ)lo ∈ Λ(α). Since a(Λ(k)) = a(Λ) + k = js−1(ϕ) + k = jt−1(ψ),
we then have that a(Λ(α)) = jt−1(ψ). As Λ(α) is an elememt of MDT(ψ), this puts us
in a position to switch the roles of ϕ and ψ in the preceding arguments. In doing so,
the roles of Λ and Λ(α) are switched, and the role played by k is assumed by −k. The
preceding arguments then tells us that Λ ⊆ Λ(α)[−k]. In other words, Λ[k] ⊆ Λ(α), and
so Λ(α) = Λ[k] = Λ[jt−1(ψ)− js−1(ϕ)], as desired.

It remains to prove the claim. We first show by induction on s that there exists an
element ν ∈ ChdX+b(X × Y ) involving hjs−1(ϕ) × ljt(ψ)−1. The case where s = 1 was
already done as part of the proof of Lemma 8.2. Suppose now that s ≥ 2, and let
F1 = F (ϕ). Set ϕ′ := ϕ1 = (ϕF1)an and ψ′ := (ψF1)an. By Lemma 8.1, jt(ψ)− iW (ψF1) lies
in the nondefective splitting pattern of ψ. Moreover, for any separable extension K/F1,
we have iW (ϕ′K) > js−1(ϕ) − i1(ϕ) if and only if iW (ψ′K) ≥ jt(ψ) − iW (ψF1) − 1. Set
X ′ := Xϕ′ and Y ′ := Xψ′ . If necessary, we choose orientations of X ′ and Y ′, and use these

to orient X ′ × Y ′. By the induction hypothesis, ChdX+b−i1(ϕ)−iW (ψF1
)(X

′ × Y ′) has an

element involving hjs−1(ϕ)−i1(ϕ) × ljt(ψ)−1−iW (ψF1
). Using the map g from Proposition 6.2,

we then get a cycle in ChdX+b((X × Y )F1) involving hjs−1(ϕ) × ljt(ψ)−1. As in the proof of

Lemma 8.2, [3, Cor. 57.11] allows us to lift this to a cycle ξ ∈ Ch2dX+b(X
2×Y ) involving

h0×hjs−1(ϕ)× ljt(ψ)−1. In ChdX+dY (X2×Y ), we also have the element ξ′ := αΛ×h0. Using

that Λ(α) = js−1(ϕ), one readily checks that the product ξξ′ ∈ ChdX+b(X
2 × Y ) involves

hjs−1(ϕ) × l0 × ljt(ψ)−1. Pushing forward along the projection from X2 × Y to the product
of its two outer factors then gives the desired cycle ν. Let us now set β := ess(ν ◦ αΛ).

Since αΛ involves hjs−1(ϕ) × ljs−1(ϕ), Lemma 5.1 gives that β involves

(hjs−1(ϕ) × ljt(ψ)−1) ◦ (hjs−1(ϕ) × ljs−1(ϕ)) = hjs−1(ϕ) × ljt(ψ)−1.

At the same time, β satisfies condition (ii) in the statement of our claim by construction.
It also satisfies condition (iii): Let 0 ≤ u < r and 0 ≤ v < r′. Since β is essential, β does
not involve hu × hv. If it involved lu × lv, then we would have that (hu × hv)β = l0 × l0,
and so X × Y would have a 0-cycle of degree 1. But then the same would be true of X
and Y , contradicting the anisotropy of ϕ and ψ via Springer’s theorem. To complete the
proof, it now only remains to show that a ≥ js−1(ϕ) and that β involves la × hjt−1(ψ).
To see this, let Fs−1 be the unique field in the nondefective splitting tower of ϕ with
iW (ϕFs−1) := js−1(ϕ). Overriding the notation used in the construction of β, let us now
set ϕ′ := ϕs−1 = (ϕFs−1)an and ψ′ := (ψFs−1)an. As before, set X ′ := Xϕ′ and Y ′ := Xψ′ .
If needed, we choose orientations of X ′ and Y ′, and use these to orient X ′ × Y ′. Let
p : RX×Y → RX′×Y ′ be the composition of the scalar extension map RX×Y → R(X×Y )Fs−1

and the map f : R(X×Y )Fs−1
→ RX′×Y ′ of Proposition 6.2. By the latter, p(β) is then an
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element of ChdX+b(X
′ × Y ′) involving h0 × ljt(ϕ)−1−iW (ψFs−1

). By Lemma 8.1, there is an

integer 0 ≤ t′ < t such that for any separable extension K/Fs−1, we have iW (ϕ′K) > 0
if and only if iW (ψ′K) > jt′(ϕ) − iW (ψFs−1). Since p(β) involves h0 × ljt(ϕ)−1−iW (ψFs−1

),

Lemma 8.2 then tells us that it also involves la′ ×hjt′ (ψ)−iW (ψFs−1
) for some integer a′ ≥ 0.

In particular, β involves ljs−1(ϕ)+a′ × hjt′ (ψ). Let K be the unique field in the nondefective

splitting tower of ψ such that iW (ψK) = jt′+1(ψ). Since β involves ljs−1(ϕ)+a′ × hjt′ (ψ),
Proposition 6.3 then implies that iW (ϕK) > js−1(ϕ) + a′. Since a′ > 0, our standing
assumption on ϕ and ψ then tells us that iW (ψK) > jt−1(ψ), and so t′ = t − 1. Thus, β

involves ljs−1(ϕ)+a′×hjt−1(ψ). Since β has degree dX + b = dY − (jt−1(ψ)+a), we then have
that a = js−1(ϕ) + a′. Since a′ ≥ 0, this completes the proof. �

In the course of the proof, we showed that the integer a := dX−dY − js−1(ϕ)+ jt−1(ψ)+
jt(ϕ)− 1 coincides with js(ϕ)− 1 under the standing hypotheses. In other words:

Corollary 8.4. Suppose there are integers 1 ≤ s ≤ hnd(ϕ) and 1 ≤ t ≤ hnd(ψ) such that
for every separable extension K/F , we have iW (ϕK) > js−1(ϕ) if and only if iW (ψK) >
jt−1(ψ). Then

dimϕ− js−1(ϕ)− js(ϕ) = dimψ − jt−1(ψ)− jt(ψ).

Now, since a(ΛU (X)) = 0, the m = 0 case of Theorem 8.3 gives:

Corollary 8.5. Suppose there exists an integer 0 ≤ n < r′ such that for every separable
extension K/F , we have iW (ϕK) > 0 if and only if iW (ψK) > n. Then ΛU (X)[n] is an
element of MDT(ψ).

In particular, we get our earlier claim (extending the stable birational invariance of the
Izhboldin dimension):

Corollary 8.6. If ϕ
stb∼ ψ, then ΛU (X) = ΛU (Y ).

Proof. In this case, we have iW (ϕK) > 0 if and only if iW (ψK) > 0 for every separable
extension K/F . By the previous corollary, it follows that ΛU (X) is an element of MDT(ψ).
Since a(ΛU (X)) = 0, we then have that ΛU (Y ) = ΛU (X). �

Remarks 8.7 (Nondegenerate forms). In the case where ϕ and ψ are nondegenerate, The-
orem 8.3 gives the following stronger result: Suppose there are integers 0 ≤ m < r and
0 ≤ n < r′ such that for every separable extension K/F , we have iW (ϕK) > m if and only
if iW (ψK) > n. If M(X) admits a direct summand N in Chow(F,F2) such that a(N) = m,
then M(Y ) admits a direct summand isomorphic to the Tate twist N(n−m). This follows
from Theorem 8.3 and the discussion of [3, Ch. XVII]. Similarly, Corollary 8.6 yields that

when ϕ
stb∼ ψ, the upper motives of X and Y in Chow(F,F2) are isomorphic.

8.B. Examples: Pfister Neighbours and Strongly Excellent Forms. Let ϕ be
an anisotropic nonquasilinear quadratic form over F of type (r, s). We set X := Xϕ,
h := hnd(ϕ), and write dimϕ = 2n +m for integers n ≥ 0 and 1 ≤ m ≤ 2n.

Lemma 8.8. If ϕ is a Pfister neighbour with ambient general Pfister form π and comple-
mentary form ϕc, then:

(1) For every integer 0 ≤ i < m and every separable extension K/F , we have iW (πK) >
0 if and only if iW (ϕK) > i;

(2) If m < r, then for every integer m ≤ i < r and every separable extension K/F ,
we have iW (ϕcK) > i−m if and only if iW (ϕK) > i.
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Proof. (1) This holds since π and ϕ are stably birationally equivalent forms with maximal
splitting (Lemma 2.11).

(2) Recall that ϕc is an anisotropic form of dimension 2n −m = dimϕ− 2m satisfying
ϕc ∼ ϕ ⊥ π. Like ϕ, ϕc is dominated by π. In particular, if K/F is a separable extension
such that either ϕK or ϕcK is isotropic, then πK is isotropic, and hence hyperbolic. Then
ϕcK ∼ ϕK , and so iW (ϕcK) = iW (ϕK)−m. The desired assertion therefore holds. �

Applying Theorem 8.3, we get:

Theorem 8.9. Suppose that ϕ is a Pfister neighbour with complementary form ϕc. Then
r ≥ m, and the following hold:

(1) If r = m, then MDT(ϕ) consists of the sets {0lo, (2
n − 1)up}[i] with 0 ≤ i < m;

(2) If r > m, then ϕc is a nonquasilinear nondefective form, and MDT(ϕ) consists
of the sets {0lo, (2

n − 1)up}[i] with 0 ≤ i < m, together with the sets Λ[m] with
Λ ∈ MDT(ϕc).

Proof. By Lemma 2.11, we have

r ≤ 2n − s = dimϕ−m− s = (2r + s)−m− s = 2r −m,

and so r ≥ m. Let π be the ambient Pfister form of ϕ. Then hnd(π) = 1 (Lemma 7.19), and
so ΛU (Xπ) = {0lo, (2

n − 1)up} by Proposition 7.18. In view of Lemma 8.8 (1), Corollary
8.5 then implies that MDT(ϕ) contains the sets {0lo, (2

n − 1)up}[i] with 0 ≤ i < m. We
now consider the two cases.

(1) If r = m, then the union of the elements of MDT(ϕ) found above is all of Λ(X),
and so MDT(ϕ) is as stated.

(2) If r > m, then Lemma 2.11 (3) gives that i1(ϕ) = m < r, and so h ≥ 2. Moreover,
we have ϕ1 ' ϕcF (ϕ) by Lemma 2.11 (2), so ϕ is nonquasilinear and nondefective of type

(r−m, s). Now if m ≤ i < r, then Lemma 8.8 (2) tells us that for every separable extension
K/F , we have iW (ϕcK) > i−m if and only if iW (ϕK) > i. By Theorem 8.3, it follows that
MDT(ϕ) also contains sets Λ[m] with Λ ∈ MDT(ϕc). Since |Λ(Xϕc) = 2(r−m) = |Λ|−2m,
the union of these sets and the other elements of MDT(ϕ) found previously is all of Λ(X),
and so MDT(ϕ) is as stated. �

We can enhance this as follows. Recall that we write ϕ1 for the form (ϕF (ϕ))an. When
ϕ is a Pfister neighbour with complementary form ϕc, we have ϕ1 ' (ϕc)F (ϕ) by Lemma
2.11 (2). We now have:

Proposition 8.10. In the situation of Theorem 8.9 (2), we have MDT(ϕc) = MDT(ϕ1).
Thus, MDT(ϕ) consists of the sets {0lo, (2

n − 1)up}[i] with 0 ≤ i < m, together with the
sets Λ[m] with Λ ∈ MDT(ϕ1).

Proof. Set Y := Xϕc . Let π be the ambient general Pfister form of ϕ, and set X := Xπ. If
y ∈ Y ×Y , then Y (F (y)) 6= ∅, and so ϕcF (y) is isotropic. Since π dominates ϕ, it follows that

πF (y) is isotropic, and hence hyperbolic. The canonical map Ch(XF (y))→ RXF (y)
is then

an isomorphism (see §4.B), so we may identify Ch(XF (y)) with RXF (y)
. Let 0 ≤ i ≤ dY .

Since dY = 2n−m−2 < 2n−1 = dX
2 , the only non-zero element of Chi(XF (y)) is hi, which

lies in the image of the scalar extension map Chi(X)→ Chi(XF (y)). By [3, Lem. 88.5], it

follows that the scalar extension map ChdY (Y 2)→ ChdY (Y 2
F (π)) is surjective. The induced

map ChdY (Y 2)→ ChdY (Y 2
F (π)) is then an isomorphism, and so MDT(ϕc) = MDT(ϕcF (π)).

Now since ϕ
stb∼ π, the fields F (ϕ) and F (π) admit a common extension which is purely
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transcendental over both. By Lemma 7.12, we then have that

MDT(ϕc) = MDT(ϕcF (π)) = MDT(ϕcF (ϕ)) = MDT(ϕ1),

as desired. �

This yields:

Proposition 8.11. Suppose that ϕi is a Pfister neighbour for every 0 ≤ i < h. Then
there exist unique integers n + 1 = n1 > n2 > · · · > nh > log2(s) + 1 such that dimϕ =
2n1 − 2n2 + · · ·+ (−1)h−12nh + (−1)hs. Moreover:

(1) For each 0 ≤ i < h, we have dimϕi = 2ni+1−2ni+2 +· · ·+(−1)h−1−i2nh +(−1)h−is.
(2) If we set mi+1 := dimϕi−2ni+1−1 = 2ni+1−1−2ni+2 +2ni+3 + · · ·+(−1)h−1−i2nh +

(−1)h−is for each 0 ≤ i < h, then MDT(ϕ) consists of the sets

{0lo, (2
ni+1−1 − 1)up}[m1 + · · ·+mi + j]

with 0 ≤ i < h and 0 ≤ j < mi+1.

Proof. Per the statement, let us set n1 := n + 1. The integer m1 in (2) is then equal to
m, which equals i1(ϕ) by Lemma 2.11 (3). By hypothesis, ϕ is a neighbour of an n1-fold
general Pfister form, and so dimϕ1 = 2n1 − dimϕ1. We now proceed by induction on h.
If h = 1, then ϕ1 ' ql(ϕ)F (ϕ), and so s < 2n1−1 and dimϕ = 2n1 − s. It is clear that
n1 is the unique integer satisfying these conditions. Moreover, we have r = i1(ϕ) = m,
and so Theorem 8.9 (1) gives that MDT(ϕ) consists of the sets {0lo, (2

n1−1−1)up}[j] with
0 ≤ j < m = m0. This proves the desired assertions in this case. Suppose now that
h ≥ 2. In this case, r > i1(ϕ) = m. By Theorem 8.9 and Proposition 8.10, MDT(ϕ)
then consists of the sets {0lo, (2

n1−1 − 1)up}[j] with 0 ≤ j < m = m1, together with the
sets Λ[m] = Λ[m1] with Λ ∈ MDT(ϕ1). Note, however, that ϕ1 is an anisotropic form
of type (r − m, s), nondefective height h − 1 and dimension < 2n1 satisfying the same
condition as ϕ. By the induction hypothesis, it follows that there exist unique integers
n1 > n2 > · · · > nh > log2(s) + 1 such that:

• For each 1 ≤ i < h, dimϕi = 2ni+1 − 2ni+2 + · · ·+ (−1)h−1−i2nh + (−1)h−is;
• If we set mi+1 := dimϕi−2ni+1−1 = 2ni+1−1−2ni+2 + 2ni+3 + · · ·+ (−1)h−1−i2nh +

(−1)h−is for each 1 ≤ i < h, then MDT(ϕ1) consists of the sets

{0lo, (2
ni+1−1 − 1)up}[m1 + · · ·+mi + j]

with 1 ≤ i < h and 0 ≤ j < mi+1.

In view of the preceding remarks, the desired assertions then follow. �

By Lemmas 2.11 (2) and 2.12, the hypothesis in the proposition is satisfied when ϕ is
strongly excellent (see the discussion following Lemma 2.12). Thus:

Corollary 8.12. If ϕ is strongly excellent, then there exist unique integers n+ 1 = n1 >
n2 > · · · > nh > log2(s) + 1 such that dimϕ = 2n1 − 2n2 + · · · + (−1)h−12nh + (−1)hs.
Moreover:

(1) For each 0 ≤ i < h, we have dimϕi = 2ni+1−2ni+2 +· · ·+(−1)h−1−i2nh +(−1)h−is.
(2) If we set mi+1 := dimϕi−2ni+1−1 = 2ni+1−1−2ni+2 +2ni+3 + · · ·+(−1)h−1−i2nh +

(−1)h−is for each 0 ≤ i < h, then MDT(ϕ) consists of the sets

{0lo, (2
ni+1−1 − 1)up}[m1 + · · ·+mi + j]

with 0 ≤ i < h and 0 ≤ j < mi+1.
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We expect that Proposition 8.11 says nothing more than this, i.e., that if ϕi is a Pfister
neighbour for every 0 ≤ i < h, then ϕ is strongly excellent. Proving this amounts to
showing that if h ≥ 2 and both ϕ and ϕ1 are Pfister neighbours, then ϕc is also a Pfister
neighbour. Specifically, what has to be shown here is that if π is the ambient general
Pfister form of ϕ1, then π descends from F (ϕ) to F . However, we currently do not know
how to prove this, even in the case where ϕ is nondegenerate.

8.C. Addendum: Virtual Pfister Neighbours. As in the previous subsection, let
ϕ be a nonquasilinear anisotropic quadratic form over F of type (r, s). Set X := Xϕ,
h = hnd(ϕ), and write dimϕ = 2n +m for integers n ≥ 0 and 1 ≤ m ≤ 2n.

If there exists an extension K/F such that ϕK is an anisotropic Pfister neighbour,
then we say that ϕ is a virtual Pfister neighbour. Using the main result of the previous
subsection, we get the following restriction on the MDT invariant for these forms:

Lemma 8.13. If ϕ is a virtual Pfister neighbour, then:

(1) m is in the nondefective splitting pattern of ϕ;
(2) For each integer 0 ≤ i < m, ilo and (2n + i− 1)up are connected in Λ(X);
(3) If 1 ≤ t ≤ h is such that jt(ϕ) = m, then jt−1(ϕ)lo ∈ ΛU (X).

Proof. (1) If ϕ is a Pfister neighbour, then m = i1(ϕ) (Lemma 2.11 (3)). If ϕ is a virtual
Pfister neighbour, m then lies in the nondefective splitting pattern of ϕ by Lemma 2.3.

(2) If K/F is a field extension with id(ϕ) = 0, then it is clear that any connections
existing in Λ(XK) also exist in Λ(X). To prove the assertion, we can therefore assume
that ϕ is a Pfister neighbour. But in this case, the claim holds by Theorem 8.9.

(3) As 0lo ∈ ΛU (X), we have (2n−1)up ∈ ΛU (X) by (2). Since jt(ϕ) = m = dimϕ−2n =
dX − 2n − 2, we then also have that jt−1(ϕ)lo ∈ ΛU (X) by Proposition 7.13. �

It is an intriguing problem to determine sufficient conditions for an anisotropic quadratic
form to be a virtual Pfister neighbour. While the nondefective spiltting pattern is unable
to detect this property in general, we do have the following special cases:

Proposition 8.14. ϕ is a virtual Pfister neighbour in the following cases:

(1) ϕ has maximal splitting, i.e, i1(ϕ) = m;
(2) m = 1;
(3) m = 2 and 2 lies in the nondefective splitting pattern of ϕ;

Note that case (2) has been treated in [7, Prop. 3.1]. A small modification of the
argument gives the more general case (1). Over fields of characteristic not 2, the analogues
of cases (1) and (3) are due to Hoffmann ([4, Cor. 3]) and Izhboldin ([8, Thm. 5.8]),
respectively. The basis of the arguments (which goes back to [4]) is the following: Let
T1, . . . , Tn+1 be indeterminates, and set K := F (T1, . . . , Tn+1). Consider the (n + 1)-
fold Pfister form π := 〈〈T1, . . . , Tn+1〉〉b over K. It is straightforward to check that π is
anisotropic, and showing that ϕ is a Pfister neighbour amounts to showing that there exists
an extension L/K such that πL is anisotropic and dominates a nonzero scalar multiple of
ϕL. We have the following lemma:

Lemma 8.15. In the above situation, set ψ := ϕ ⊥ π, and let K = K0 ⊂ K1 ⊂ · · · ⊂
Khnd(ψ) be the nondefective splitting tower of ψ.

(1) Let i be a nonnegative integer in the nondefective spitting pattern of ϕ. Then:
(i) There exists an integer 1 ≤ t < hnd(ψ) such that iW (ϕKt) = i and dimψt =

2n +m− 2i;
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(ii) If i ≥ m, then there exists a separable extension L/K such that iW (ϕL) = i
and dim(ψL)an = 2n −m+ 2i.

(2) Let 1 ≤ t < hnd(ψ) be such that ϕKt is anisotropic. Suppose that one of the
following holds:
(i) πKt+1 is isotropic;
(ii) dim((ψt)Kt(ϕ))an < 2n +m− 2i1(ϕ);

(iii) dim(ϕKt+1)an < 2n+1 − dimψt+1.
Then ϕKt ≺ πKt, and so ϕKt is a Pfister neighbour.

Proof. (1) Since πK(π) is hyperbolic, we have ψK(π) ∼ ϕK(π). But it is straightforward to
see that K(π) is a purely transcendental extension of F , and so (i) holds by Lemma 2.3.
Suppose now that i ≥ m. By Lemma 2.3, there exists a separable extension F ′/F such
that iW (ϕF ′) = i. Set ϕ′ := (ϕF ′)an. Then dimϕ′ = dimϕ − 2i = 2n + m − 2i < 2n. By
[7, Prop. 3.1], it follows that exists a separable extension L of F ′(T1, . . . , Tn+1) = K · F ′
such that πL is anisotropic and ϕ′L ≺ πL. Then iW (ϕL) = i, and we have

ψL ∼ (ϕ ⊥ π)L ∼ ϕ′L ⊥ πL ∼ (ϕ′L)cπL .

Since dim(ϕ′L)cπL = 2n+1−dimϕ′ = 2n +m− 2i, it follows that dim(ψL)an = 2n−m+ 2i,
proving the claim (note that L/F is separable, being a tower of separable extensions).

(2) By definition, we have ψt ∼ ϕKt ⊥ πKt . Let us now consider the three cases of
interest.

Suppose first that we are in case (i), and let j ≤ t be the largest integer for which πKj

is anisotropic. By Lemma 2.1, we have

ψj ⊥ πKj ∼ ϕKj ⊥ πKj ⊥ πKj ∼ ϕKj .

Since dimϕKj = 2n + m < dim(ψj ⊥ πKj ), and since πKj is anisotropic, πKj and πKj

represent a common nonzero value of Kj . Since πKj+1 is isotropic, and hence hyperbolic,
the Cassels-Pfister subform theorem ([3, Thm. 22.5]), then gives that ψj ≺ πKj . By
Lemma 2.1, we then have that

ϕKj ∼ ϕKj ⊥ πKj ⊥ πKj ∼ ψj ⊥ πKj ∼ (ψj)
c
πKj

,

and so ϕKj ' (ψj)
c
πKj
≺ πKj (both forms being anisotropic). In particular, ϕKt ≺ πKt .

Suppose now that we are in case (ii) or (iii). Let L be Kt(ϕ) or Kt+1, depending on
whether we are in the former or latter cases, and set ϕ′ := (ϕL)an and ψ′ := (ψL)an =
((ψt)L)an. Then ψ′ ∼ ϕ′ ⊥ πL, and the dimension hypothesis in each case tells us that
dimϕ′ + dimψ′ < 2n+1 = dimπ. Since L/K is separable, Lemma 7.17 then gives that

i0(ϕ′ ⊥ πL) = iW (ϕ′ ⊥ πL) =
dimϕ′ + dimπ − dimψ′

2
> dimϕ′.

IfπL were anisotropic, it would then follow from [6, Prop. 3.11] that ϕ′ ≺ πL. But we would
then have that ψ′ ∼ ϕ′ ⊥ πL ∼ ϕ′πL , giving that dimψ′ = 2n+1 − dimϕ′, a contradiction.
Thus, πL is isotropic, and hence hyperbolic. If L = Kt+1, we are then back in case (i).
Suppose therefore that L = Kt(ϕ). Again, if πKt+1 is isotropic, then we are in case (i),
so we may assume otherwise. In particular, we may assume that πKt is anisotropic. Now
since t ≥ 1, ϕKt ⊥ πKt = ψKt is isotropic. Since both ϕKt and πKt are anisotropic, they
then represent a common element of K×t . Since πL is hyperbolic, another application of
the Cassels-Pfister subform theorem then gives that ϕKt ≺ πKt , as desired. �

We can now prove Proposition 8.14:
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Proof of Proposition 8.14. As in Lemma 8.15, set ψ := ϕ ⊥ π, and let K = K0 ⊂ K1 ⊂
· · · ⊂ Khnd(ψ) be the nondefective splitting tower of ψ. By part (1)(i) of the lemma
(with i = 0) there exists an integer 1 ≤ j < hnd(ψ) such that ϕKj is anisotropic and
dimψj = dimϕ = 2n +m. Now in all cases we are considering, m lies in the nondefective
splitting pattern of ϕ. By part (1)(ii) of the lemma, it follows that there exists an extension
L/K such that iW (ϕL) = m and dim(ψL)an = 2n + m. By repeated application of
Lemma 2.2 (2), the compositum L ·Kj is then a purely transcendental extension of L. In
particular, dim(ψL·Kj )an = dim(ψL)an = 2n +m = dimψj , and so ψj remains anisotropic
over L ·Kj . Since ϕL·Kj is isotropic, it follows that ϕKj and ψj are not stably birationally
equivalent. At the same time, part (1)(i) of Lemma 8.15 also tells us that dimIzhψj ≥
dimIzhϕ ≥ dimIzhϕKj . Since ϕKj and ψj are not stably birationally equivalent, Theorems
2.7 and 2.9 then imply that ϕKj+1 is anisotropic. Since ψj+1 ∼ ϕKj+1 ⊥ πKj+1 , and since
dimψj+1 < dimψj = dimϕ, it follows that πKj+1 is not hyperbolic, and is hence also
anisotropic. There are now two cases to consider.

Case 1. ϕ has maximal splitting. In this case, we have

dim(ψKj+1(ϕ))an ≤ dimψj+1 < dimψj = 2n +m = 2n −m+ 2i1(ϕ).

Since ϕKt+1 is anisotropic, Lemma 8.15 (2) (case (ii)) then tells us that it is a Pfister
neighbour, and so ϕ is a virtual Pfister neighbour.

Case 2. m = 2 and i1(ϕ) = 1. In this case, part (1)(i) of Lemma 8.15 shows that
j ≤ hnd(ψ) − 2, and that dimψj+1 = 2n and dimψj+2 = 2n − 2 < 2n + m − 2i1(ϕ). If
ϕKj+2 is anisotropic then Lemma 8.15 (2) (case (ii) with t = j + 2) tells us that it is a
Pfister neighbour. On the other hand, if ϕKj+2 is isotropic, then

dim(ϕKj+2)an < dimϕ = 2n + 2 = 2n+1 − (2n − 2) = 2n+1 − dimψj+2,

and so the same lemma (now case (iii) with t = j+ 1) then tells us that ϕKj+1 is a Pfister
neighbour. Thus, in this case, either ϕKj+1 or ϕKj+2 is an anisotropic Pfister neighbour.
Either way, ϕ is a virtual Pfister neighbour, and so the result holds. �

9. The Degenerate Pfister Neighbour Problem

In this section we fix an anisotropic quadratic form ϕ of type (r, s) over F . We assume
that r ≥ 1 (i.e., that ϕ is not quasilinear) and set X := Xϕ. We also write dimϕ = 2n+m
for integers n ≥ 0 and 1 ≤ m ≤ 2n. Our goal is to investigate the conditions under which
ϕ is a Pfister neighbour. By Lemma 2.11 (1), a necessary condition is that r + s ≤ 2n,
and so we assume that this is satisfied in everything that follows.

Now, if ϕ is a Pfister neighbour, then ϕ1 is defined over F . More precisely, we have
ϕ1 ' (ϕc)F (ϕ), where ϕc is the complementary form of ϕ in its ambient general Pfister
form (Lemma 2.11 (2)). For nondegenerate forms, a well-known result (essentially due to
Knebusch) asserts that the converse holds: If ϕ is nondegenerate and ϕ1 is defined over F ,
then ϕ is a Pfister neighbour ([3, Thm. 28.1]). If we relax the nondegeneracy assumption,
however, then this is no longer true in general. For instance, if ϕ has nondefective height
1, then ϕ1 ' ql(ϕ)F (ϕ) (Lemma 7.17), but ϕ need not be a Pfister neighbour. Simple
examples may be constructed as follows:

Example 9.1. Suppose that r = 1. Since r + s ≤ 2n and 2r + s = dimϕ > 2n, we
then have that s = 2n − 1. Now, since r = 1, we automatically have that hnd = 1
(Lemma 7.17). However, ϕ need not be a Pfister neighbour in this case. For example,
let X1, . . . , X2n be indeterminates, and let σ be the form [1, X1] ⊥ 〈X2, . . . , X2n〉 of type
(1, 2n − 1) over the rational function field F2(X1, . . . , X2n). It is straightforward to see
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that σ is anisotropic. If n ≥ 2, however, then σ is not a Pfister neighbour. Indeed, suppose
that σ were a neighbour of an anisotropic (n+1)-fold Pfister form π over F2(X1, . . . , X2n).
The complementary form σc is then 〈X2, . . . , X2n〉. Over K := F2(X1, . . . , X2n)(

√
X2X3),

σc is isotropic, so πK is isotropic and hence hyperbolic. Then σK ∼ (σ ⊥ π)K ∼ σcK .
Since σcK is isotropic, it follows that i0(ϕK) ≥ 2. But it is again straightforward to check
that [1, X1] ⊥ 〈X3, . . . , X2n〉 remains anisotropic over K. Since this is a codimension-1
subform of σ, we cannot have that i0(σK) ≥ 2, and so σ is not a Pfister neighbour.

Nevertheless, it has been conjectured by Hoffmann and Laghribi that the such examples
cannot arise when s is sufficiently small relative to r:

Conjecture 9.2 ([6, Conj. 6.5]). Suppose that r + s ≤ 2n, and that s < 2r. If ϕ1 is
defined over F , then ϕ is a Pfister neighbour.

At present, this has only been established in the case where s ≤ 4 ([6, Thm. 6.6]). Note

that since r + s ≤ 2n, the inequality s < 2r implies that s < 2n+1

3 . We expect that the
latter condition is in fact sufficient:

Conjecture 9.3. Suppose that r + s ≤ 2n, and that s < 2n+1

3 . If ϕ1 is defined over F ,
then ϕ is a Pfister neighbour.

We provide in this section some evidence for this conjecture. The basic result is the
following, which shows that when ϕ1 is defined over F , ϕ exhibits key behaviour expected
of a Pfister neighbour (see Lemma 2.11 and Theorem 8.9, in particular):

Theorem 9.4. Suppose that r + s ≤ 2n, and that ϕ1 is defined over F . Then:

(1) ϕ has maximal splitting;
(2) ϕ is a virtual Pfister neighbour;
(3) ΛU (X) = {0lo, (2

n − 1)up};
(4) There exists an anisotropic form ψ of type (2n − s, s) over F such that ϕ

stb∼ ψ.
Moreover, if hnd = 1, then ψ may be taken to be ϕ itself, i.e., r = 2n − s.

Proof. Let τ be a form over F with ϕ1 ' τF (ϕ). Since ϕF (ϕ) is nondefective, we have

ql(τ)F (ϕ) ' ql(τF (ϕ)) ' ql(ϕ1) ' ql(ϕF (ϕ)) ' ql(ϕ)F (ϕ).

By Lemma 2.1, we then have that i0((ql(ϕ) ⊥ ql(ψ))F (ϕ)) = s. Since F (ϕ)/F is separa-
ble, however, this implies that i0(ql(ϕ) ⊥ ql(ψ)) = s, and so ql(ϕ) ' ql(ψ) by another
application of Lemma 2.1. Let ϕ′ (resp. τ ′) be a nondegenerate form of dimension 2r
(resp. 2r − 2i1(ϕ))) over F such that ϕ ' ϕ′ ⊥ ql(ϕ) (resp. τ ' τ ′ ⊥ ql(ϕ)). Set
ψ := ϕ′ ⊥ τ ′ ⊥ ql(ϕ). By definition, ψ has type (2r − i1(ϕ), s). Moreover, if ϕ has
nondefective height 1, then τ ′ = 0, and so ψ = ϕ. We state the following claim:

Claim. For any separable extension K/F , we have iW (ϕK) > 0 if and only if iW (ψK) >
2r − i1(ϕ)− 1.

Before proving the claim, let us first use it to complete the proof of the proposition. Set
i := iW (ψ). If i were equal to 2r − i1(ϕ), then we would have that ψ ∼ ql(ϕ). By Lemma
2.1, however, this would give that

ϕ ∼ ϕ ⊥ τ ′ ⊥ τ ′ ' ψ ⊥ τ ′ ∼ ql(ϕ) ⊥ τ ′ ' τ,
contradicting the anisotropy of ϕ (note that dimτ = dimϕ−2i1(ϕ) < dimϕ). We therefore
have that i < 2r − i1(ϕ), and so ψ′ := ψan is a nondefective and nonquasilinear form of
type (2r − i1(ϕ) − i, s). If K/F is a separable extension, then the claim tells us that
iW (ϕK) > 0 if and only if iW (ψ′K) > 2r − i1(ϕ) − i − 1. By Corollary 8.5, it follows that
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Λ := ΛU (X)[2r− i1(ϕ)− i−1] is an element of MDT(ψ′). Let h be the nondefective height
of ψ′. Since ψ′ has type (2r− i1(ϕ)− i, s), and since a(Λ) = 2r− i1(ϕ)− i− 1, Proposition
7.14 and Corollary 7.15 imply that Λ = {(2r− i1(ϕ)− i− 1)lo, (dimψ′ − 2− jh−1(ψ′))up}.
Since b(ΛU (X)) = dimIzhϕ− 1 (Proposition 7.16), it then follows that

(dimIzhϕ− 1) + (2r − i1(ϕ)− i− 1) = dimψ′ − 2− jh−1(ψ′).

Since dimIzhϕ = 2r + s − i1(ϕ) and dimψ′ = 2(2r − i1(ϕ) − i − 1) + s, this amounts to
the equality i = −jh−1(ψ′), and so i = jh−1(ψ′) = 0. In other words, ψ is anisotropic

of nondefective height 1. By the claim, we then have that ϕ
stb∼ ψ. In particular,

dimIzhψ = dimIzhϕ ≥ 2n (Theorem 2.9, Corollary 2.6). On the other hand, since
ψ has nondefective height 1, we have dimψ1 = dimql(ψ) = s < 2n (Lemma 7.17).
By Theorem 2.5 (Karpenko’s theorem on the values of i1), we must then have that
dimIzhψ = 2n. By the preceding remarks, we then also have that dimIzhϕ = 2n, and
so (1) holds. In view of Proposition 8.14, this also gives (2). For (3), we have already
seen above that |ΛU (X)| = |Λ| = 2. By Proposition 7.16, however, we then have that
ΛU (X) = {0lo, (dimIzhϕ− 1)up} = {0lo, (2

n − 1)up}, and so the desired assertion holds. It

now only remains to prove (4). Since we have already shown that ϕ
stb∼ ψ, we just have to

show that ψ has type (2n − s, s), i.e., that 2r − i1(ϕ) = 2n − s. But since dimϕ = 2r + s,
this is simply a reformulation of the fact that dimIzhϕ = 2n.

We now complete the proof by proving the claim. Let K/F be a separable extension.
Suppose first that iW (ψK) > 2r− i1(ϕ)− 1. Since ψ has type (2r− i1(ϕ), s), we then have
that ψK ∼ ql(ψ)K = ql(ϕ)K . By Lemma 2.1, we then have that

ϕK ∼ (ϕ ⊥ ql(ϕ))K ∼ (ϕ ⊥ ψ)K ∼ (τ ′ ⊥ ql(ϕ))K ' τK ,
and so ϕK is isotropic (again, we have dimτ < dimϕ). Since K/F is separable, we then
have that iW (ϕK) > 0 (Lemma 2.3). Conversely, if iW (ϕK) > 0, then the extension
K(ϕ)/K is purely transcendental by Lemma 2.2 (2). In particular, we have iW (ψK) =
iW (ψK(ϕ)) ≥ iW (ψF (ϕ)). But since ψ = ϕ′ ⊥ τ , we have

ψF (ϕ) ' ϕ′F (ϕ) ⊥ τF (ϕ) ' ϕ′F (ϕ) ⊥ ϕ1 ∼ (ϕ′ ⊥ ϕ)F (ϕ) ∼ (ϕ′ ⊥ ϕ′ ⊥ ql(ϕ))F (ϕ) ∼ ql(ϕ)F (ϕ)

by Lemma 2.1, and so iW (ψF (ϕ)) > 2r− i1(ϕ)−1. In particular, iW (ψK) > 2r− i1(ϕ)−1,
and so the claim holds. �

Note, in particular, that we have the following dimension restriction on the forms of
nondefective height 1 (under our assumption that r + s ≤ 2n):

Corollary 9.5. Suppose that r + s ≤ 2n. If ϕ has nondefective height 1, then dimϕ =
2n+1 − s.

Proof. In this case, part (4) of Theorem 9.4 tells us that r = 2n − s, and so dimϕ =
2r + s = 2(2n − s) + s = 2n+1 − s. �

As remarked above, ϕ1 is trivially defined over F in the case where hnd(ϕ) = 1. In
particular, Conjecture 9.3 includes the following as a special case:

Conjecture 9.6. Suppose that r+s ≤ 2n, and that s < 2n+1

3 . If ϕ has nondefective height
1, then is a Pfister neighbour.

Recall that we use the term close Pfister neighbour for a Pfister neighbour of nonde-
fective height 1. If ϕ is a close Pfister neighbour, then dimϕ = 2n+1 − s by Lemma 7.19.
Thus, Corollary 9.5 confirms the dimension part of Conjecture 9.6. Moreover, as far as
Conjecture 9.3 goes, Theorem 9.4 gives the following:
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Corollary 9.7. Conjectures 9.2, 9.3 and 9.6 are equivalent.

Proof. We have already noted that Conjecture 9.3 implies 9.2.

Conjecture 9.2 ⇒ Conjecture 9.6: Suppose that s < 2n+1

3 . If ϕ has nondefective height
1, then ϕ1 is defined over F (see the preceding discussion). Moreover, Corollary 9.5 tells
us that dimϕ = 2n+1 − s, and so

2r = dimϕ− s = 2n+1 − 2s > 2n+1 − 2

(
2n+1

3

)
=

2n+1

3
> s.

By Conjecture 9.2, ϕ is then a Pfister neighbour.

Conjecture 9.6⇒ Conjecture 9.3: Suppose that s < 2n+1

3 and that ϕ1 is defined over F .
By Theorem 9.4, ϕ has maximal splitting, and there exists an anisotropic form ψ of type

(2n− s, s) over F such that ϕ
stb∼ ψ. By Theorem 2.9 (or Corollary 8.5), we then have that

dimIzhψ = dimIzhϕ = 2n, and so i1(ψ) = dimψ − 2n = 2(2n − s) + s − 2n = 2n − s. By

Lemma 7.17, this means that ψ has nondefective height 1. Since s < 2n+1

3 , Conjecture 9.6

then implies that ψ is a Pfister neighbour. But since ϕ
stb∼ ψ, the same is then true of ϕ,

and so the claim holds. �

If we impose a slightly stronger assumption on s, then we can also relate Conjecture 9.3
to a well-known conjecture on nondegenerate forms. In fact, we state here two conjectures,
the first of which is (essentially) due to Vishik, and the second of which is (essentially)
due to Hoffmann (note that the r + s ≤ 2n condition is vacuously satisfied here):

Conjectures 9.8. Suppose that ϕ is nondegenerate.

(1) If |ΛU (X)| = 2, then ϕ is a Pfister neighbour.
(2) If ϕ has maximal splitting and dimϕ > 2n + 2n−2, then ϕ is a Pfister neighbour.

Note that in (2), the standing hypotheses imply that i1(ϕ) > it(ϕ) for all 1 ≤ t < hnd(ϕ).
It then follows from Proposition 7.14 (2) that |ΛU (X)| = 2, and so (2) is in fact implied
by (1). Nevertheless, one may hope that a more direct approach to (2) is achievable, and
so we include it in our discussion. Using Theorem 9.4, we can now show the following:

Proposition 9.9. Suppose that r + s ≤ 2n, and that ϕ1 is defined over F . Then ϕ is a
Pfister neighbour in the following cases:

(1) s ≤ 2n−1 and Conjecture 9.8 (1) holds;
(2) s ≤ 2n−1 − 2n−3 and Conjecture 9.8 (2) holds.

Proof. We may assume that s ≤ 2n−1. By Theorem 9.4 (4), there exists an anisotropic

form ψ of type (2n − s, s) over F such that ϕ
stb∼ ψ. Per the proof of Corollary 9.7, ψ

has nondefective height 1, and so ψ1 is defined over F . Moreover, since r + s ≤ 2n, we
have dimϕ = 2r + s = 2(r + s) − s ≤ 2n+1 − s = dimψ. Since ϕ is a Pfister neighbour
if and only if ψ is, we can then replace ϕ with ψ in order to reduce to the case where
dimϕ = 2n+1−s. By Theorem 9.4 (1), we then have that i1(ϕ) = dimϕ−2n = 2n−s ≥ s.
Let τ be a nondegenerate subform of codimension s − 1 in ϕ. Since i1(ϕ) ≥ s, τF (ϕ) is

isotropic and so ϕ
stb∼ τ . To prove that ϕ is a Pfister neighbour in cases (1) and (2), it

then suffices to show that the same is true of τ .

(1) Since τ
stb∼ ϕ, we have ΛU (Xτ ) = ΛU (X) by Corollary 8.6. But since ϕ1 is de-

fined over F , Theorem 9.4 (3) then tells us that |ΛU (Xτ )| = |ΛU (X)| = 2. Since τ is
nondegenerate, it is then a Pfister neighbour by our hypothesis.
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(2) Since τ
stb∼ ϕ, we have dimIzh τ = dimIzhϕ = 2n by Theorem 2.9 (or Corollary 8.6).

In other words, τ has maximal splitting. At the same time, we also have that

dimτ > dimϕ− s = 2n+1 − 2s ≥ 2n+1 − (2n−1 − 2n−3) = 2n + 2n−2.

Since τ is nondegenerate, it is then a Pfister neighbour by our hypothesis. �

10. Excellent Connections and the First Higher Isotropy Index

In this last section, we fix an anisotropic quadratic form ϕ of type (r, s) over F . We
assume that r ≥ 1 (i.e., that ϕ is not quasilinear), and set h := hnd(ϕ) and X := Xϕ. For
ease of notation, we also set jt := jt(ϕ) and it := it(ϕ) for all 1 ≤ t ≤ h.

10.A. Excellent Pairs. Let j and n1, . . . , nj be the unique nonnegative integers for which
dimϕ = 2n1 − 2n2 + · · ·+ (−1)j−12nj and n1 > n2 > · · · > nj−1 > nj + 1. For each integer
1 ≤ i ≤ j, set

mi := 2ni−1 − 2ni+1 + · · ·+ (−1)j−i2nj .

Let j′ be j or j − 1 depending on whether dimϕ is even or odd. Accounting for Remark
7.9 (2), the following definition is taken from [17, §3]:

Definition 10.1. Let a, b be integers with 0 ≤ a, dX − b < r. We say that the pair (a, b)
is excellent (for ϕ) if there exists an integer 1 ≤ k ≤ j′ such that the following hold:

(1) b− a = 2nk−1 − 1;

(2)
∑k−1

i=1 mi ≤ a, dX − b <
∑k

i=1mi.

The following lemma, which is a translation of Corollary 8.12, explains the terminology:

Lemma 10.2. Let a and b be integers with 0 ≤ a, dX − b < r. If ϕ is strongly excellent,
then the pair (a, b) is excellent if and only if alo and bup are connected in Λ(X).

10.B. Excellent Connections for Nondegenerate Forms. In the situation of Lemma
10.2, one may whether the nessecity part of the statement remains valid if we relax the
assumption that ϕ be strongly excellent. Over fields of characteristic different from 2,
the analogous problem was shown to have a positive answer by Vishik in [17, Thm. 1.3].
Aside from the fact that anisotropic forms are nondegenerate in that setting, the only other
reason for the characteristic restriction in the latter was the use of Brosnan’s Steenrod
operations for Chow groups modulo 2. Thanks to [11], exactly the same arguments now
go through for nondegenerate forms in characteristic 2, and so we have:

Theorem 10.3. Suppose that ϕ is nondegenerate, and let a and b be integers with 0 ≤
a, dX − b < r. If the pair (a, b) is excellent, then alo and bup are connected in Λ(X).

Theorem 10.3 is perhaps the most profound known result concerning the MDT invariant.
As shown by Vishik, it has a number of deep implications, including the following:

Theorem 10.4. Let 1 ≤ t < h. Suppose that ϕ is nondegenerate, and that MDT(ϕ)
admits an element Λ with a(Λ) = jt−1. Let j and n1, . . . , nj be the unique nonnegative
integers for which dimϕ− 2jt−1 − jt = 2n1 − 2n2 + · · ·+ (−1)j−12nj and n1 > n2 > · · · >
nj−1 > nj + 1. For each integer 1 ≤ k ≤ j, consider the integer

dk :=

(
dimϕ− 2jt−1 − jt

2

)
+

k∑
i=k

(−1)k+i−12ni−1.

Then (dk)lo ∈ Λ. Moreover, if t ≤ t′ ≤ h is such that jt′−1 < dk ≤ jt′, then dk + it ≤ jt′.
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Proof. The second statement follows from the first and Proposition 7.14 (2). It therefore
suffices to prove the first statement. In the notation of [17], the element Λ ∈ MDT(ϕ)
gives an indecomposable direct summand N of M(X) in Chow(F,F2) with a(N) = jt−1

(see Remark 7.9 (1)). The integer dX − 2jt−1 − jt is then equal to dim(N) + 1, and the
claim is equivalent to the second statement in [17, Thm. 2.1] (formulated in our setting).
Given Theorem 10.3, however, the proof of the latter goes through in characteristic 2:
The auxiliary roles played by [17, Prop. 1.1] and [17, Obs. 2.3] are assumed here by
Proposition 7.13 and Lemma 7.10, and the assertion of [17, Lem. 2.2] remains valid in
light of Corollary 8.6. With these remarks, the proof then goes through verbatim. �

We expect that Theorem 10.3 remains valid if we relax the requirement that ϕ be
nondegenerate. Before discussing this and its implications, we first give some applications
of Theorem 10.4 to problems in the degenerate setting.

10.C. Forms of Nondefective Height 1 Revisited. Let n be the unique integer for
which 2n < dimϕ ≤ 2n+1. In this subsection, we return to the case where h = 1, i.e.,
where ϕ has nondefective height 1. If r + s ≤ 2n (equivalently, dimϕ ≤ 2n+1 − s) and

s < 2n+1

3 , then Conjecture 9.6 predicts that ϕ is a (close) Pfister neighbour in this case.
With a slight weakning of the second condition, the first condition may in fact be removed:

Proposition 10.5. Suppose that ϕ has nondefective height 1. If s ≤ dimϕ
3 , then dimϕ =

2n+1 − s.

Proof. Since dimϕ = 2r+ s, the assumption on s tells us that r ≥ s. Since h = 1, we then
have that i1 = r ≤ s (Lemma 7.17). Let ψ be a form of type (r, 1) dominated by ϕ. Since

i1 ≥ s, we have that ϕ
stb∼ ψ (Lemma 2.10). In particular, we have ΛU (X) = ΛU (Xψ)

(Corollary 8.6). Since h = 1, Proposition 7.18 then gives that |ΛU (Xψ)| = |ΛU (X)| = 2.
Since ψ is nondegenerate, Theorem 10.4 then tells us that dimIzhψ is a power of 2. But

since ϕ
stb∼ ψ, Theorem 2.9 then gives that

r + s = dimϕ− r = dimϕ− i1 = dimIzhϕ

is a power of 2. By Corollary 2.6, we then have that r+s = 2n, and so dimϕ = 2(r+s)−s =
2n+1 − s, as claimed. �

In view of the discussion of the previous section, we therefore make the following con-
jecture on the classification of forms of nondefective height 1:

Conjecture 10.6. If ϕ has nondefective height 1, and s ≤ dimϕ
3 , then ϕ is a Pfister

neighbour.

For larger values of s, it is less clear what can be expected.

10.D. The Values of the First Higher Isotropy Index. In this subsection, we con-
sider the possible values of the integer i1. Recall from Theorem 2.5 that i1 is at most the
largest 2-power divisor of dimϕ − i1 = dimIzhϕ. If we fix the value of dimϕ and take
no further information into account, then this result cannot be bettered: Given integers
d ≥ and i ≥ 1 such that i is at most the largest power of 2 that divides d − i, there
exist an extension K/F and an anisotropic quadratic form ψ over K such that dimψ = d
and i1(ψ) = i. If we take into account the type (r, s), however, then the situation already
changes. First, the standard construction that demonstrates the optimality of the previous
assertion (cf. [3, Thm. 79.9]) yields only the following:

Lemma 10.7. Let v be a nonnegative integer, and let x be the unique integer for which
x2v < r ≤ (x+1)2v. Suppose that i is a positive integer satisfying the following conditions:
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(i) 2r + s− i is divisible by 2v;
(ii) i ≤ r − x2v;

Then there exist an extension K/F anisotropic quadratic form ψ of type (r, s) over K such
that i1(ψ) = i. Moreover, we have dimIzhψ = 2r+s− i = y2v for some integer y ≥ 2x+1.

Proof. By (i), there exists an integer y such that 2r + s− i = y2v. By (ii), we have

y2v = 2r + s− i ≥ 2r + s− (r − x2v) = r + s+ x2v > 2x2v,

and so y ≥ 2x+ 1. Let X1, . . . , XvY1, . . . , Y2x+2, Z1, . . . , Zy−(2x+1) be indeterminates, and
set K := F (X1, . . . , Zy−(2x+1)). Over K, we may consider the form τ := b ⊗ q, where
b := 〈〈X1, . . . , Xv〉〉b and q := Y1[1, Y2] ⊥ · · · ⊥ Y2x+1[1, Y2x+2] ⊥ 〈Z1, . . . , Zy−(2x+1)〉. We

claim that i1(τ) = 2v. Consider the field L := K[T ]/(T 2 +T +Y2). A routine computation

(using the rationality of L/F (X1, . . . , Ŷ2, . . . , Zy−(2x+1)), where the hat indicates omission)
shows that iW (τL) = 2v. Since L/K is separable, Lemma 2.3 then gives that i1(τ) ≤ 2v. On
the other hand, if L/K is any other separable extension, then bL is anisotropic (anisotropic
quasilinear quadratic forms remain anisotropic under separable extensions) and is still a
divisor of (τL)an (a routine consequence of the roundness of bilinear and quadratic Pfister
forms). We therefore have that i1(ϕ) ≥ 2v, whence the claim. Observe now that τ has
dimension (y+1)2v and type (r′, s′), where r′ = (x+1)2v, and s′ = (y− (2x+1))2v. Since

s = y2v + i− 2r

≤ y2v + (r − x2v)− 2r

= (y − x)2v − r
= ((x+ 1)2v − r) + (y − (2x+ 1)) 2v

= (r′ − r) + s′,

τ therefore admits a subform ψ of type (r, s). Then

dimψ = 2r + s = y2v + i = (y + 1)2v − (2v − i) = dimτ − (2v − i),
and since i ≤ 2v (assumption (ii)), we then have that i1(ψ) = i by Lemma 2.10. This
proves the first statement, and we then have that dimIzhψ = y2v, whence the second. �

All examples of anisotropic forms with nontrivial first higher isotropy index of which
we are currently aware of are either of this type or stably of this type (i.e., acquire the
desired shape over an extension that preserves the anisotropy of the form). We therefore
formulate the following question, a positive integer to which would yield a refinement of
Theorem 2.5 that takes the type invariant into account:

Question 10.8. Let u be the largest integer for which dimIzhϕ is divisible by 2u, and let
x be the unique integer for which x2u < r ≤ (x+ 1)2u. Is is then true that i1 ≤ r − x2u?

Theorem 2.5 gives the following:

Lemma 10.9. Let u be the largest integer for which dimIzhϕ is divisible by 2u, and let
x be the unique integer for which x2u < r ≤ (x + 1)2u. Then dimIzhϕ = y2u for an odd
integer y ≥ 2x+ 1. In particular i1 ≤ 2(r − x2u) + s− 2u.

Proof. By hypothesis there is an odd integer y with dimIzhϕ = y2u. Set α := r − x2u.
Note that α > 0 by definition. Now by Theorem 2.5, we have i1 ≤ 2u, and so

y2u = dimIzhϕ = 2r + s− i1 ≥ 2r + s− 2u = (2x− 1)2u + 2α.

Since y is odd, the first statement follows. Then

i1 = 2r + s− y2u ≤ 2r + s− (2x+ 1)2u = 2α+ s− 2u,
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and so the second statement also holds. �

Consider in particular the case where s < 2u + i1. With the notation of the lemma, we
then have that

(y − 2x)2u = dimIzhϕ− (2x)2u = 2(r − x2u) + s− i1 < 2(r − x2u) + 2u < 3 · 2u.

Since y is odd and at least 2x+ 1, it follows that y = 2x+ 1, i.e., dimIzhϕ = (2x+ 1)2u.
Put another way, we have

i1 = 2(r − x2u)− (2u − s).
Thus, when s < 2u + i1, a positive answer to Question 10.8 amounts to a positive answer
to the following:

Conjecture 10.10. Let u be the largest integer for which dimIzhϕ is divisible by 2u,
and let x be the unique integer for which x2u < r ≤ (x + 1)2u. If s < 2u + i1, then
r − x2u ≤ 2u − s.

In this direction, Theorem 10.4 allows us to say the following:

Theorem 10.11. Let u be the largest integer for which dimIzhϕ is divisible by 2u, and
let x be th unique integer for which x2u < r ≤ (x + 1)2u. If i1(ϕ) ≥ s, then s < 2u and
i1 ≤ r − x2u ≤ 2u − s. In particular, Conjecture 10.10 holds in this case.

Proof. We proceed as in the proof of Proposition 10.5. Let ψ be a form of type (r, 1)

dominated by ϕ. Since i1 ≥ s, we have that ϕ
stb∼ ψ (Lemma 2.10). In particular, we have

that dimIzhϕ = dimIzhψ and ΛU (X) = ΛU (Xψ) (Lemma 2.10, Corollary 8.6). Let j and
n1, . . . , nj be the unique integers for which dimIzhϕ = 2n1 − 2n2 + · · · + (−1)j−12nj and
n1 > n2 > · · · > nj−1 > nj + 1. By definition, we have nj = u. Consider the integer

dj :=
dimIzhϕ

2
− 2u−1 =

(
dimϕ− 2j0 − j1

2

)
+ (−1)2j−12nj−1.

Since ψ is nondegenerate, and since dimIzhψ = dimIzhϕ, Theorem 10.4 tells us that
(dj)lo ∈ ΛU (Xψ). Since ΛU (Xψ) = ΛU (X), Proposition 7.14 (2) then tells us that dimIzhϕ

2 −
2u−1 + i1 ≤ r. But since dimIzhϕ = 2r + s − i1, this says that i1 ≤ 2u − s. In particular,
s < 2u. By the remarks preceding the statement of Conjecture 10.10, we then have that
i1 = 2(r−x2u)−(2u−s). Since i1 ≤ 2u−s, we then in fact have that i1 ≤ r−x2u ≤ 2u−s,
as desired. �

The preceding result is enough, for instance, to completely describe the situation in
which dimϕ ≤ 9:

Examples 10.12. Suppose dimϕ ≤ 9. We discuss the possible values of i1 and when they
may occur. Note that i1 ≤ r by Lemma 2.3.

dimϕ ∈ {2, 3, 5, 9}. In this case i1 = 1 by Corollary 2.6.

dimϕ = 4. In this case, i1 is either 1 or 2. If i1 = 2, then r = 2, so ϕ is nondegenerate of
Knebusch height 1. It is well-known that the nondegenerate anisotropic forms of dimension
4 and Knebusch height 1 are precisely the anisotropic general 2-fold Pfister forms ([3, Prop.
25.6]), so i1 = 2 when ϕ is a general 2-fold Pfister form, and i1 = 1 otherwise.

dimϕ = 6. In this case, i1 is again either 1 or 2 by Corollary 2.6. If ϕ is a Pfister neighbour,
then i1(ϕ) = 2 by Lemma 2.11 (3). Conversely, if i1 = 2, then ϕ has maximal splitting,
and is hence a Pfister neighbour by [7, Thm. 1.2]. Thus, i1 = 2 if ϕ is a Pfister neighbour,
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and i1 = 1 otherwise. Note that in order to be in the first case, we require that r ≥ 2, i.e.,
that ϕ is either nondegenerate or of type (2, 2).

dimϕ = 8. In this case, i1 is 1, 2 or 4 by Theorem 2.5. In order for i1 to be 4, we must have
that r = 4, i.e., that ϕ is nondegenerate of Knebusch height 1. Again, it is well-known that
the nondegenerate anisotropic forms of dimension 8 and Knebusch height 1 are precisely
the anisotropic 3-fold general Pfister forms ([3, Prop. 25.6]). Next, if ϕ ' 〈〈a〉〉b ⊗ q for
some a ∈ F× and 4-dimensional form q over F , then i1 is even (see the proof of Lemma
10.7). Thus, if ϕ is not a general Pfister form (i.e., not divisible by a 2-fold bilinear Pfister
form), then i1 = 2. Conversely, suppose that i1 = 2. Then r ≥ 2, and so ϕ has type (4, 0),
(3, 2) or (2, 4). However, Theorem 10.11 shows that the second case is not possible, so ϕ
is either nondegenerate or of type (2, 4). Consider first the case where ϕ is nondegenerate.
If ϕ ' b⊗ [1, a] for some 4-dimensional bilinear form b over F and a ∈ F , then i1 is even.
Indeed, consider the separable quadratic extesion K := F [T ]/(T 2 +T +a). Since [1, a]K is
hyperbolic, so is ϕK , and hence (ϕ1)K(ϕ). By [3, Cor. 23.6], it follows that ϕ1 ' c⊗ [1, a]K
for some symmetric bilinear form c over K. But ϕ has trivial discriminant, so the same is
true of ϕ1, and hence c must be of even-dimension, proving the claim. In particular, since
r = 4, we have i1(ϕ) = 2 provided that ϕ is not a general 3-fold Pfister form. Conversely,
suppose that i1 = 2. The dimIzhϕ = 8 − 2, and so 2lo ∈ ΛU (X) by Theorem 10.4. By
Proposition 7.16, it follows that i2 = 2. In view of the preceding discussion, this means
that ϕ1 is a 2-fold general Pfister form. In particular, the Clifford algebra of ϕ1 is Brauer
equivalent to a quaternion algebra. By the index reduction theorem, the same is then true
of the Clifford algebra of ϕ. In particular, there exists a 2-fold general Pfister form τ over
F such that the 12-dimensional form ϕ ⊥ τ represents an element of I3

q (F ). Scaling τ if
needed, we can assume that ϕ ⊥ τ is isotropic. The anisotropic part of ϕ ⊥ τ then has
dimension at most 8 ([2, Thm. 4.10]), and so ϕ ⊥ τ ∼ π for a general 3-fold Pfister form
π over F ([3, Cor. 25.12]). Since π ⊥ τ ∼ ϕ (Lemma 2.1), π ⊥ τ is isotropic. By [3,
Thm. 24.2 and Prop. 24.1], it follows that there exist symmetric bilinear forms c and d
over F , and an element a ∈ F such that π ' c ⊗ [1, a] and τ ' d ⊗ [1, a]. If we again set
K := F [T ]/(T 2 +T +a), we then get that ϕK ∼ πK ⊥ τK is hyperbolic. By [3, Cor. 23.6],
it then follows that ϕ ' b ⊗ [1, a] for a 4-dimensional symmetric bilinear form b over F .
Consider now the case where ϕ has type (2, 4). If ϕ ' 〈〈a〉〉b⊗ q for some a ∈ F× and form
q of type (1, 2) over F , then i1 is even by the argument in the proof of Lemma 10.7. Since
r = 2, we must then have that i1 = 2. Conversely, if i1 = 2, then ϕ ' 〈〈a〉〉b ⊗ q for some
a ∈ F× and form q of type (1, 2) over F by [6, Theorem 7.5]. In summary:

• i1 = 4 if and only if ϕ is a general 3-fold Pfister form;
• i1 = 2 if and only if ϕ is not a general 3-fold Pfister form, and one of the following

holds:
– ϕ ' b⊗ [1, a] for some 4-dimensional symmetric bilinear form b of non-trivial

determinant over F ;
– ϕ ' 〈〈a〉〉b ⊗ q for some a ∈ F× and some form q of type (1, 2) over F .;

• i1 = 1 in all other cases.

As far as Question 10.8 goes, the first open case appears in dimension 12: If ϕ is a
12-dimensional form of type (3, 6), we do not know if it is possible for i1 to equal 2. Our
expectation is that this is not possible, and we present in the next subsection a conjectural
approach to this based on the methods of this article. This approach should allow to treat
Conjecture 10.10, as well as other cases of Question 10.8 in which s is small relative to r.
In general, however, it is unclear to what extent the methods used here are applicable in
situations where s is “large”. For example, we also do not know if i1 can equal 2 if ϕ is a
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14-dimensional form of type (3, 8) or (5, 4). Unlike the situation for forms of type (3, 6),
however, we do not have any clear approach to this problem at present.

10.E. Excellent Connections for Degenerate Forms. We conclude this article by
making the conjecture that Theorem 10.3 remains valid in the case where ϕ is degenerate:

Conjecture 10.13. Let a and b be integers with 0 ≤ a, dX − b < r. If the pair (a, b) is
excellent, then alo and bup are connected in Λ(X).

The proof of Theorem 10.3 given in [17] is currently not transferrable to the degenerate
setting, since although we have an action of cohomological-type Steenrod operations on
Ch(X ×X), we do not have an action such operations on Ch(X ×X) itself. Over fields of
characteristic different from 2, however, there are Steenrod operations of homological type
acting on the mod-2 Chow groups of any variety, smooth or not (see [1] or [3, Ch. XI]). We
expect that analogous operations should exist in characteristic 2, and that these operations
are more or less sufficient to prove Conjecture 10.13. We give here some implications of
the validity of Conjecture 10.13:

Proposition 10.14. Suppose that Conjecture 10.13 holds. Then:

(1) Let 1 ≤ t < h, and suppose that MDT(ϕ) admits an element Λ with a(Λ) = jt−1.
Let j and n1, . . . , nj be the unique nonnegative integers for which dimϕ−2jt−1−jt =
2n1 − 2n2 + · · ·+ (−1)j−12nj and n1 > n2 > · · · > nj−1 > nj + 1. For each integer
1 ≤ k ≤ j, consider the integer

dk :=

(
dimϕ− 2jt−1 − jt

2

)
+

k∑
i=k

(−1)k+i−12ni−1.

If dk < r, we then have that (dk)lo ∈ Λ. Moreover, if t ≤ t′ ≤ h is such that
jt′−1 < dk ≤ jt′, then then dk + it ≤ jt′.

(2) Write dimϕ = 2n + m for integers n ≥ 0 and 1 ≤ m ≤ 2n. If r < m, then
i1(ϕ) ≤ m− r.

(3) Conjecture 10.10 holds.

Proof. (1) Again, the second statement follows from the first and Proposition 7.14 (2).
Given the validity of Conjecture 10.13, however, the proof of Theorem 10.4 carries over
verbatim.

Now, in proving the remaining statements, let first us note that since a(ΛU (X)) = 0 = j0,
we are in a position to apply (1) with t = 1.

(2) Since i1 ≤ r, we have i1 < m, and hence dimIzhϕ = 2n+1 − d for some integer
1 ≤ d < 2n. Taking t = 1 in (1), we then have that the integer d1 is defined and equal
to dimIzhϕ − 2n = m − i1. If we had m − i1 < r, part (1) would then give that m ≤ r,
contradicting our assumption. We must therefore have that m− i1 ≥ r, i.e., i1 ≤ m− r.

(3) As in the statement of Conjecture 10.10, let u be the largest integer for which
dimIzhϕ is divisible by 2u. Suppose that s < 2u + i1. We again consider the statement of
(1) with t = 1. As in the proof of Theorem 10.11, the integer dj is equal to dimIzhϕ

2 −2u−1.
Since s < 2n + i1, we have

dimIzhϕ

2
− 2u−1 =

2r + s− i1
2

− 2u−1 = r +
s− (2u + i1)

2
< r,

and so dimIzhϕ
2 − 2u−1 + i1 ≤ r by (1). Exactly as in the proof of Theorem 10.11, this then

leads to the conclusion that i1 ≤ r − x2u ≤ 2u − s. �
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Remarks 10.15. (1) The statement in part (1) of the preceding proposition may be inter-
preted as follows: Suppose ψ is an anisotropic nondegenerate form over an extension
of F such that dimψ = dimϕ and jt(ψ) = jt for all 1 ≤ t ≤ h. The set Λ(X) may be
viewed as a subset of Λ(Xψ). We expect that any connections among elements of this
subset that are forced to exist by the Knebusch splitting pattern of ψ (in particular,
those given by the t = 1 case of Theorem 10.4) remain valid in Λ(X) (now understood
as an invariant of ϕ). More generally, recall that the shell pyramid diagram for X is
the shell pyramid diagram for Xψ, but with the shells indexed by integers ≥ h deleted
(see §7.B). Suppose that we have a restriction on the diagram for Xψ that is entirely
determined by the Knebusch splitting pattern of ψ. If we delete the shells indexed by
integers ≥ h, then we expect that what remains of the restriction is a valid restriction
on the diagram for X.

(2) Note the statement in part (2) implies that i1 6= 2 when ϕ is a 12-dimensional form of
type (3, 6) (i.e., settles the first open case of Question 10.8). This is not implied by
Conjecture 10.10, and so the scope of Conjecture 10.13 is broader. At the same time,
the statement in part (1) says nothing about the problem of whether i1 can equal 2
when ϕ is a 14-dimensional form of type (3, 8) or (5, 4).

We conclude with the following lemma, which gives some meagre evidence for Conjecture
10.13:

Lemma 10.16. Conjecture 10.13 holds in the case where dimϕ ≤ 10.

Proof. In view of Theorem 10.3, we may assume that ϕ is degenerate, i.e., that s ≥ 2. We
then have that dimϕ ≥ 4.

dimϕ = 4. In this case, ϕ has type (1, 2), and there are no excellent pairs to consider.

dimϕ = 5. In this case, ϕ has type (1, 3), and the only excellent pair to consider is (0, 3).
But in this case we have i1 = 1 (Examples 10.12), and so 0lo and 3up are connected in
Λ(X) by Proposition 7.13.

dimϕ = 6. In this case, ϕ has type (1, 4) or (2, 2). In the first case, however, there are
no excellent pairs to consider, and so we can assume that ϕ has type (2, 2). Here, there
are two excellent pairs to consider, namely (0, 3) and (1, 4). But since r = 2, 2 lies in
the nondefective splitting pattern of ϕ. By Proposition 8.14, it follows that ϕ is a virtual
Pfister neighbour. But Lemma 8.13 then gives the desired connections in Λ(X) between
0lo and 3up as well as 1lo and 4up.

dimϕ = 7. In this case, ϕ has type (1, 5) or (2, 3). In the first case, there are no excellent
pairs to consider. Suppose therefore that ϕ has type (2, 3). Here, there is one excellent
pair to consider, namely (1, 4). But since ϕ has type (2, 3), we have i1 = 1 (Examples
10.12). Since r = 2, we must then also have that h = 2 and i2 = 1. By Proposition 7.13,
it then follows that 1lo and 4up are connected in Λ(X).

dimϕ = 8. In this case, ϕ has type (1, 6), (2, 4) or (3, 2). In the first two cases, there are
no excellent pairs to consider. Suppose therefore that ϕ has type (3, 2). Then there are
two excellent pairs to consider, namely (1, 4) and (2, 5). Since ϕ has type (3, 2), we have
i1 = 1 (Examples 10.12). Then ϕ1 is a 6-dimensional form of type (1, 3). By the preceding
discussion, 0lo and 3up, as well as 1lo and 4up are then connected in Λ(Xϕ1). By Lemma
7.10, 1lo and 4up, as well as 2lo and 5up are then connected in Λ(X).

dimϕ = 9. In this case, ϕ has type (1, 7), (2, 5) or (3, 3). In all cases, we have the excellent
pair (0, 7). But i1 = 1 in this case (Examples 10.12), so 0lo and 7up are connected in Λ(X)
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by Proposition 7.13. If ϕ has type (1, 7) or (2, 5), then there are no other excellent pairs
to consider. Suppose now that ϕ has type (3, 3). We then have one other excellent pair to
consider, namely (2, 5). Again, however, since i1 = 1, ϕ1 is a 7-dimensional form of type
(2, 3). By the preceding discussion, 1lo and 4up are then connected in Λ(Xϕ1). By Lemma
7.10, 2lo and 5up are then connected in Λ(X). �

When dimϕ = 10, there is just one case in which we do not know the validity of
Conjecture 10.13, namely the case where ϕ has type (3, 4) and nondefective splitting
pattern (1, 3). Here, 2 is not in the nondefective splitting pattern of ϕ, and so ϕ is
not a virtual Pfister neighbour. In particular, the argument used to handle the case of
6-dimensional forms in the proof of the preceding lemma is not applicable here. Note
that it is relatively straightforward to classify the anisotropic forms of type (3, 4) and
nondefective splitting pattern (1, 3): They are precisely the 10-dimensional forms similar
to (〈〈a, b, c]] ⊥ 〈1, d, e, de〉)an for some a, b, c, d, e ∈ F×. Thus, if we exclude this specific
class of forms, then the statement of Conjecture 10.13 is also valid in dimension 10.
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