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Abstract. Let p and q be anisotropic non-degenerate quadratic forms of dimension
≥ 2 over an arbitrary field F , let s be the unique non-negative integer for which 2s <
dim(p) ≤ 2s+1, and let k be the dimension of the anisotropic part of q after extension
to F (p). A recent conjecture of the author then asserts that dim(q) must lie within
k of an integer multiple of 2s+1. This statement, which holds trivially if k ≥ 2s − 1,
represents a natural generalization of the well-known separation theorem of Hoffmann,
bridging a gap between it and certain classical results on the Witt kernels of function
fields of quadrics. In the present article, we prove the conjecture in the case where
char(F ) 6= 2 and dim(p) > 2k − 2s−1. This implies, in particular, that the conjecture
holds if char(F ) 6= 2 and either k ≤ 2s−1 + 2s−2 or dim(p) ≥ 2s + 2s−1 − 4.

1. Introduction

Let p and q be anisotropic non-degenerate quadratic forms of dimension ≥ 2 over a
field F , and let s be the unique non-negative integer for which 2s < dim(p) ≤ 2s+1. An
important unifying problem in the algebraic theory of quadratic forms is to understand
the extent to which q can become isotropic after scalar extension to the function field
F (p) of the projective quadric {p = 0}

(
the extent of isotropy being measured by the Witt

index iW (qF (p))
)
. In the absence of any additional hypotheses, this problem is sufficiently

complex that it already represents a challenge to determine the constraints coming from
basic discrete invariants of the given forms, including the simplest invariants of all – the
dimensions of p and q. To this end, we formulated in [20] the following general conjecture
that aims to bridge a gap between two classic results in the literature:

Conjecture 1.1. In the above situation, let k = dim((qF (p))an) = dim(q) − 2iW (qF (p)).

Then dim(q) = a2s+1 + ε for some non-negative integer a and some −k ≤ ε ≤ k.

Loosely speaking, Conjecture 1.1 asserts that the more isotropic q becomes over F (p),
the closer its dimension must be to being divisible by 2s+1. From a geometric viewpoint,
this amounts to progressively severe dimension restrictions on the existence of rational
maps between the quadric defined by p and the isotropic grassmannians associated to q.
The two classic results alluded to above are visible at opposite extremities of the statement.
First, in the case where dim(q) ≤ 2s, the conjecture claims that k = dim(q), i.e., that q
remains anisotropic over F (p). This is precisely the statement of the so-called separation
theorem initially discovered by Hoffmann in [6] (and later extended to characteristic 2 by
Hoffmann and Laghribi in [7]). Second, in the case where k = 0

(
i.e., where q becomes

not merely isotropic, but hyperbolic over F (p)
)
, the conjecture proposes that dim(q) is

necessarily divisible by 2s+1, a strong refinement of the basic inequality dim(q) ≥ 2s+1

implied by the Cassels-Pfister subform theorem (which says that q must contain a subform
similar to p in this case – see [2, Thm. 22.5]). We note that although the Cassels-Pfister
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subform theorem played a key role in Hoffmann’s original proof of the separation theorem,
the statements themselves had previously appeared somewhat isolated from one another.

In [20], the following enhancement of the preceding statement concerning the case of
hyperbolicity was proved:1 If q becomes hyperbolic over F (p), then not only is dim(q)
divisible by 2s+1, but so too are all higher Witt indices of q, with the possible exception of
the last (which is at least divisible by 2s). This gives a satisfying explanation of another
classic result of Fitzgerald ([3]) and perhaps raises new questions about the structure of
the (poorly understood) kernel of the scalar extension map Wq(F )→ Wq

(
F (p)

)
on Witt

groups. Beyond the case of hyperbolicity, it was further shown1 in [20] that Conjecture
1.1 holds if k < 2s−1 or if dim(p) ∈ {2s+1−1, 2s+1}. Since the statement of the conjecture
holds trivially if k ≥ 2s − 1, this covers half of its non-trivial cases. In the present article,
we make the following improvement to this result (at least when char(F ) 6= 2):

Theorem 1.2. If char(F ) 6= 2, then Conjecture 1.1 holds in the case where dim(p) >
2k − 2s−1. In particular, if char(F ) 6= 2, then the conjecture holds when

(1) k ≤ 2s−1 + 2s−2, or
(2) 2s + 2s−1 − 4 ≤ dim(p) ≤ 2s+1.

Note here that the condition dim(p) > 2k − 2s−1 is vacuous if (1) holds (because
dim(p) > 2s) and effectively vacuous if (2) holds (since we may assume that k ≤ 2s − 2).
The second statement of the theorem therefore follows immediately from the first. We
also remark here that the assumption on the characteristic of F is imposed only out of
a sense of caution. Indeed, the proof of Theorem 1.2 is mostly geometric, the main tool
being the action of Steenrod operations on the mod-2 Chow groups of smooth projective
varieties. For some time, the absence of such operations in the characteristic-2 setting
would have rendered our assumption essential (this is the reason it appears in [20], for
example). Thanks to the recent work of Primozic ([18]), however, this is no longer an issue.
At the same time, the proof of Theorem 1.2 uses two results on quadratic forms that are
not explicitly available in characteristic 2, namely, a result of Hoffmann on virtual Pfister
neighbours ([6, Cor. 3]) and Rost’s computation of the Chow groups of Rost motives
([19, Thm. 5]). While it is clear that both results remain valid in characteristic 2, some
algebraic aspects of the existing proofs must be modified in the latter setting. We therefore
choose to err on the side of caution and impose our restriction. Note, however, that the
aforementioned results of [6, 19] are only needed for certain cases of Theorem 1.2. In
particular, the characteristic assumption plays no role if dim(p) ≥ 2s + 2s−1 or k ≤ 2s−1

(the latter confirming that the main result of [20] is valid in characteristic 2) – see Remark
8.10. Along the way to proving Theorem 1.2, we also show that Conjecture 1.1 holds when
dim(q) ≤ 2s+2 + 2s+1 + k, irrespective of the characteristic of F (see Proposition 6.1).

The proof of Theorem 1.2 follows an approach outlined in [20]. More specifically, let
P and Q denote the projective quadrics defined by the vanishing of p and q, respectively.
Over the field F (p), the quadric Q contains a projective linear subspace of dimension
(dim(Q) − k)/2. Passing to Chow groups modulo 2, it turns out that Conjecture 1.1
can be reformulated as the statement that the fundamental class of this linear subspace
is annihilated by a certain family of Steenrod operations. In [24], Vishik introduced a
method for establishing the rationality of elements in the mod-2 Chow groups of smooth
projective varieties over function fields of quadrics obtained via the action of Steenrod
operations, after possibly modding out elements coming from integral torsion classes. A
reinterpretation of this method that avoids the use of algebraic cobordism theory was given

1under the (now unnecessary) assumption that char(F ) 6= 2.



3

by Karpenko in [14]. Taking into account Springer’s theorem on odd-degree extensions
([2, Cor. 18.5]), Conjecture 1.1 effectively proposes that [24, Thm 3.1] (which is optimal
in general) admits a non-trivial refinement in the case where Vishik’s variety Y is itself a
quadric. To achieve the needed refinement in the situation of Theorem 1.2, a key step in
our approach is to show that the relevant linear subspace class in CH(QF (p))/2 can be lifted
under the natural surjection CH(P×Q)/2→ CH(QF (p))/2 to a correspondence that enjoys
a particular decomposition after extension to an algebraic closure of F (see Proposition
8.2). Note that in the general situation considered in [14, 24], one has no such control
over the cycles under consideration. Here, the existence of the needed correspondence is
obtained by examining the possible Chow motivic decompositions of P and Q. As part of
this analysis, we give in §5 a splitting-pattern-theoretic criterion for the existence of binary
direct summands in (internal shells of) the motives of quadrics, an observation which
carries some independent interest (see Proposition 5.1). Another tool in the argument is
Izhboldin’s theorem on stable birational equivalence of quadrics ([8, Thm. 0.2], extended
to characteristic 2 in [7]), which is itself a close descendent of the separation theorem.
Once Proposition 8.2 is established, the last main step in the proof of Theorem 1.2 is
to address a technical problem concerning the action of Steenrod operations on mod-2
reductions of torsion elements in the Chow group of P over a certain extension of F (see
Propositions 7.1 and 8.7). The key ingredients here are the aformentioned computation
of the Chow groups of Rost motives due to Rost, as well as our Proposition 5.1.

In [20, Ex. 1.5], it was shown that Conjecture 1.1 is optimal, in the sense that there
are no further gaps in the possible values of dim(q) determined by the integers s and k
alone. In the final section of the present article, however, we note that the statement
should admit a refinement in the case where p is not a Pfister neighbour. More precisely,
if p is not a Pfister neighbour, and k < 2s−1 + 2s−2, then the conclusion of Conjecture 9.4
should hold with the integer 2s+1 replaced by 2s+2 (see Conjecture 9.4). While we do not
prove this assertion, our methods allow us to show (with the aforementioned characteristic
restrictions) that it holds if the condition that p is not a Pfister neighbour is replaced by
the condition that the upper motive of the quadric P is not binary (Theorem 9.1). Note
that these conditions are conjecturally equivalent by [23, Conj. 4.21].

Finally, we remark that if the integer k is redefined as dim(q)−2i0(qF (p)), with i0(qF (p))
being the maximal dimension of a totally isotropic subspace for qF (p), then we expect
the statement of Conjecture 1.1 to remain valid irrespective of whether p and q are non-
degenerate.2 Evidence for this claim was given in [21], where the case where q is quasilinear
was studied and settled in a large number of cases. Since the methods of the present arti-
cle require the quadrics P and Q to be smooth, we will not deal with degenerate cases here.

Conventions, notation and terminology. If k is a field, then k will denote a fixed
algebraic closure of k. By a variety, we shall mean a quasi-projective scheme of finite type
over a field. Integral (resp. mod-2) Chow groups will be denoted with the letters CH
(resp. Ch). All quadratic forms considered are assumed to be non-degenerate, meaning
that their associated projective quadrics are smooth, or, equivalently, that their quasilinear
parts are anisotropic of dimension ≤ 1 (see [2, §7.A.]). If ϕ is a quadratic form over a
field k which is not isometric to the hyperbolic plane H, then we will write k(ϕ) for the
function field of its associated (integral) projective quadric. To avoid case distinctions, we
also set k(H) = k. While we will recall some standard facts concerning Chow groups of
(products of) quadrics in §§2,3 below, we assume basic familiarity with other aspects of

2In characteristic 2, anisotropic quadratic forms may be far from non-degenerate. If p is quasilinear and
q is degenerate, then the integer i0(qF (p)) may be greater than the Witt index of qF (p) (as defined in [2]).
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the algebraic theory of quadratic forms, including the generic splitting theory of Knebusch
([17]). Important results on function fields of quadrics such as the separation theorem and
the determination of the values of the first higher Witt index ([12]; [18, Prop. 10.4] for
its recent extension to characteristic 2) will be used frequently. For any other undefined
notation or terminology concerning quadratic forms, we refer the reader to [2]. Note that
while we will generally cite [2, Ch. XI] for properties of Steenrod operations on Chow
groups modulo 2, [18] ensures the validity of all these results in characteristic 2.

2. Some notation, terminology and basic facts

Throughout this section we fix an arbitrary field k (not to be confused with the integer k
from the statement of Conjecture 1.1). We consider only varieties X with the property that
the scalar extension map CH(XK) → CH(XL) is an isomorphism for any field extension
L/K with K algebraically closed. This holds if X is the product of finitely many smooth
projective quadrics, the only case needed in the sequel (see, e.g., [2, §68]).

2.A. Chow groups in the limit. Given a smooth variety X over k (satisfying the afore-
mentioned condition), we set

CH(X) = colimK/k CH(XK)

(where K/k runs over all field extensions of k). For any integer i ≥ 0, the i-dimensional
(resp. i-codimensional) part of CH(X) is denoted CHi(X)

(
resp. CHi(X)

)
. Note that

these groups inherit the basic functorial properties of Chow groups – pull-backs along
arbitrary morphisms and push-forwards along proper morphisms. In particular, CH(X)
enjoys a ring structure compatible with pull-backs and subject to the usual projection
formula for proper push-forwards. If K/k is a field extension, and β ∈ CH(XK), then we
write β for the image of β under the canonical homomorphism CH(XK) → CH(X). An
element of CH(X) equal to β for some β ∈ CH(XK) will be said to be K-rational. Note
that pull-backs and proper push-forwards preserve K-rationality for any field extension
K/k. In the sequel, we will also work with mod-2 versions of the groups CH(X). In this
case, the letters CH will be replaced by Ch, with the preceding terminology and notation
pertaining to rationality issues being applied in the same way.

2.B. Chow correspondences. Let X and Y be smooth varieties over k. By a (geomet-
ric) correspondence from X to Y , we shall mean an element of the group CH(X×Y )

(
resp.

CH(X × Y )
)
. For information on the standard composition law for correspondences be-

tween smooth projective varieties over fields, we refer to [2, §62]. Note that this law is
compatible with scalar extension. In particular, if X, Y and Z are smooth projective
varieties over k, then we have an induced group homomorphism

CH(X × Y )× CH(Y × Z)→ CH(X × Z), (α, β) 7→ β ◦ α.

For a fixed β ∈ CH(Y × Z), we will denote the group homomorphism

CH(X × Y )→ CH(X × Z), α 7→ β ◦ α

by β∗. Note that if β is K-rational for some field extension K/k, then β∗ maps K-rational
elements to K-rational elements. Again, all these comments also apply for Chow groups
modulo 2, and we will use the same notation and terminology in that context.
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2.C. Quadrics. Let ϕ be a quadratic form of dimension ≥ 2 over k, let X be the (smooth)
projective quadric defined by the vanishing of ϕ and let n = [dim(X)/2]. For each 0 ≤
i ≤ n, we write H i for the class in CHi(X) of a codimension-i plane section of X, and
hi for its image in Chi(X). If iW (ϕ) > i, then we also write Li for the class in CHi(X)
of a projective linear subspace of dimension i in X, and li for its mod-2 reduction. All
these elements are independent of any of the indicated choices, with one exception in the
case where ϕ is hyperbolic; in this case, there are two independent families of rationally
equivalent projective linear subspaces of dimension n in X. In order to define the element
Ln (or ln), we must therefore choose one of these two classes; following [2, Ch. XIII],
we say that we choose an orientation of X. In the sequel, we will suppress all choices of
orientation from the discussion. When two or more quadrics (over possibly different fields)
are under consideration and related through a given morphism or Chow correspondence,
it is tacitly understood that compatible choices of orientations have been made. We recall
the action of the cohomological Steenrod operations of [1, 18] on the mod-2 classes:

Lemma 2.1 (cf. [2, Cor. 78.5]). Let 0 ≤ i ≤ n. Then:

(1) Sj(hi) =
(
i
j

)
hi+j for any j ≥ 0;

(2) If i < iW (ϕ), then Sj(li) =
(

dim(ϕ)−i−1
j

)
lj for any 0 ≤ j ≤ i.

For each 0 ≤ i ≤ n, we make no notational distinction between the elements H i, Li ∈
CH(Xk) and their images under the canonical map CH(Xk)→ CH(X). The same applies

to the mod-2 classes hi, li ∈ Ch(Xk) and their images in Ch(X). The set {H i, Li | 0 ≤
i ≤ n} (resp. {hi, li | 0 ≤ i ≤ n}) constitutes a basis of CH(X)

(
resp. Ch(X)

)
as an

abelian group (resp. F2-vector space). For more details, including a description of the
ring structures, see [2, §68].

2.D. Degree maps for quadrics. Let ϕ, X and n be as above. For each 0 ≤ i ≤ dim(X),

there is a unique group homomorphism degi : CHi(X)→ Z that sends Hdim(X)−i to 2 and
Li to 1 (assuming that i ≤ n). Composing with the canonical map CHi(X) → CHi(X),
we obtain a homomorphism degi : CHi(X) → Z. Note that degn does not depend on the
choice of orientation of Xk in the case where dim(ϕ) is even.

Lemma 2.2. In the above situation:

(1) deg0 is the usual degree homomorphism CH0(X)→ Z;
(2) For any i and any α ∈ CHi(X), we have degi(α) = deg(H i · α);
(3) For any i, the torsion subgroup of CHi(X) lies in the kernel of degi.

Proof. (1) is clear, while (2) follows from (1) and the identities H i ·Hdim(X)−i = Hdim(X)

and H i ·Li = L0 in CH0(X) (see [2, §68]). Part (3) holds since CH(X) is torsion free. �

Note that degi
(
CHi(X)

)
= 2Z for all i > n. The theorem of Springer on odd-degree

extensions says that deg
(
CH0(X)

)
= 2Z if and only if ϕ is anisotropic ([2, Cor. 71.3]).

2.E. Isotropic quadrics. Suppose now that the form ϕ given above is not split, and let
Y be the projective quadric defined by the vanishing of its anisotropic kernel ϕan. The
choice of a maximal totally isotropic subspace for ϕ yields an obvious k-rational incidence
correspondence inX ∈ CH(Y ×X) with the property that the induced homomorphism
(inX)∗ : CH(Y )→ CH(X) sends H i to H i+a and Li to Li+a for all 0 ≤ i ≤ n− a (see [2,
Lem. 72.3]). Letting prX denote the transpose of inX (i.e., the element obtained from
inX by switching X and Y ), we also have that (prX)∗ : CH(X) → CH(Y ) sends H i to
H i−a and Li to Li−a for all a ≤ i ≤ n ([loc. cit.]). For any field extension K/k, the maps
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(inX)∗ and (prX)∗ send K-rational elements to K-rational elements. Obviously all of this
also applies for the mod-2 Chow groups (with the elements H? and L? being replaced by
h? and l?, respectively). Using Springer’s theorem and Lemma 2.2, we deduce:

Lemma 2.3 (cf. [2, Cor. 72.6]). For any 0 ≤ i ≤ n, the following are equivalent:

(1) iW (ϕ) ≤ i;
(2) The element Li ∈ CH(X) is not F -rational;
(3) The element li ∈ Ch(X) is not F -rational;
(4) degj

(
CHj(X)

)
= 2Z for all j ≥ i.

3. Cycles modulo 2 on products of quadrics

We continue to work over a fixed field k. Let ϕ be a quadratic form of dimension
≥ 2 over k, X its associated (smooth) projective quadric and n = [dim(X)/2]. If Z is
a smooth variety over k satisfying the condition stated at the beginning of §2, then the
external product homomorphisms

Ch(XK)⊗ Ch(ZK)→ Ch
(
(X × Z)K

)
(with K/k running over all field extensions of k) collectively determine a ring isomorphism

Ch(X)⊗ Ch(Z)→ Ch(X × Z)

(see [2, Prop. 64.3]). We again write α × β for the image of a pure tensor α ⊗ β under
this isomorphism. In what follows, we will be interested only in the case where Z is a
product of smooth projective quadrics. Before proceeding, we pause to note the following
basic fact (recall here that k(ϕ) denotes the function field of the (integral) quadric X in
the case where ϕ 6∼= H, and that k(ϕ) = k in the case where ϕ ∼= H):

Lemma 3.1. Let m be a non-negative integer and let z ∈ Chm(Z). Then the following
are equivalent:

(1) Ch(X × Z) contains a k-rational element of the form

(h0 × z) +

(
n∑
i=1

ai(h
i × zi)

)
+

(
n∑
i=0

bi(ln−i × z′i)

)
for some zi ∈ Chm−i(Z), z′i ∈ Chm−dim(X)+n−i(Z) and ai, bi ∈ F2;

(2) z is k(ϕ) rational.

Proof. If ϕ ∼= H, then the statement is clear. Otherwise, the statement follows from the
surjectivity of the pull-back homomorphism

Ch(X × Z)→ Ch(Zk(ϕ))

given by restriction to the generic point of X (see [2, Cor. 57.11]), together with the
descriptions of Ch(X) and Ch(X × Z) given in §2.C and the preceding discussion. �

3.A. Products of quadrics. Now let ϕ1, . . . , ϕm be a collection of m ≥ 2 (not neces-
sarily distinct) quadratic forms of dimension ≥ 2 over k, and let X1, . . . , Xm denote the
(smooth) projective quadrics defined by the vanishing of the ϕ1, . . . , ϕm, respectively. By
the remarks preceding Lemma 3.1, formation of external products gives a ring isomorphism

m⊗
i=1

Ch(Xi)→ Ch(X1 × · · · ×Xm).
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Letting ni = [dim(Xi)/2] for all 1 ≤ i ≤ m, it follows that the set B consisting of
all m-fold external products β1 × · · · × βm with βj ∈ {hi, li | 0 ≤ i ≤ nj} is an F2-

basis of Ch(X1 × · · · ×Xm) (of course, one also has the analogous basis of the integral
group CH(X1 × · · · ×Xm) consisting of external products of elements of the form H?

or L?). We shall henceforth refer to the set B as “the” standard basis of the latter
space. If α ∈ Ch(X1 × · · · ×Xm), then there exist unique elements nb ∈ F2 such that
α =

∑
b∈B nb · b. If nb = 1 for a given b ∈ B, then we shall say that α involves b. We will

now record some basic facts concerning the groups Ch(X1 × . . .×Xm). Note that this
material is implicit in [2, Ch. XIII] (and in earlier work of Vishik; cf. [23]).

3.B. Isotropic reduction. Suppose that K/k is a field extension over which none of the
ϕi are split. For each 1 ≤ i ≤ m, let ai denote the Witt index of (ϕi)K , and let Yi be the
(smooth) projective quadric defined by the vanishing of

(
(ϕi)K

)
an

over K.

Lemma 3.2. There are unique group homomorphisms

f : Ch(Y1 × · · · × Ym)→ Ch(X1 × · · · ×Xm), g : Ch(X1 × · · · ×Xm)→ Ch(Y1 × · · · × Ym)

with the following properties:

(1) The map f (resp. g) raises (resp. lowers) the dimension of homogeneous cycle
classes by the factor a1 + · · ·+ am;

(2) Given elements αj ∈ {hi, li | 0 ≤ i ≤ nj − aj} ⊂ Ch(Yj) (1 ≤ j ≤ m), we have

f(α1 × · · · × αm) = β1 × · · · × βm, where βj =

{
hi+aj if αj = hi

li+aj if αj = li;

(3) Given elements βj ∈ {hi, li | aj ≤ i ≤ nj} ⊂ Ch(Xj) (1 ≤ j ≤ m), we have

g(β1 × · · · × βm) = α1 × · · · × αm, where αj =

{
hi−aj if βj = hi

li−aj if βj = li;

(4) For any field extension L/K, both f and g send L-rational elements to L-rational
elements.

Proof. As discussed above, there are natural identifications of Ch(X1 × · · · ×Xm) with⊗m
i=1 Ch(Xi) and Ch(Y1 × · · · × Ym) with

⊗m
i=1 Ch(Yi). Under these identifications, f =⊗m

i=1(inXi)∗ and g =
⊗m

i=1(prXi)∗ are the desired homomorphisms (inXi and prXi being
the mod-2 reductions of the correspondences considered in §2.E above). �

3.C. Rationality constraints. We now specialize to the case where ϕ2 = · · · = ϕm.
Working under this assumption, let us set ϕ := ϕ2 = · · · = ϕm, X := X2 = · · · = Xm and
n := n2 = · · · = nm.

Lemma 3.3. Suppose that there exists a k-rational element of Ch(X1 ×X × · · · ×X)
involving the standard basis element la × hb1 × · · · × hbm−1 for some 0 ≤ a ≤ n1 and
0 ≤ b1, . . . , bm−1 ≤ n. Let b = max(b1, . . . , bm−1). Then, for any field extension K/k,

iW (ϕK) > b ⇒ iW ((ϕ1)K) > a.

Proof. Among all k-rational elements of Ch(X1 ×X × · · · ×X) involving la × hb1 × · · · ×
hbm−1 , let α be one involving the least number of standard basis elements possible (so
that α is, in particular, homogeneous). Let K/k be an extension for which iW (ϕK) > b.
To prove that iW ((ϕ1)K) > a, we have to show that la ∈ Cha(X1) is K-rational (Lemma
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2.3). Since hdim(X1)−a ∈ Cha(X1) is K-rational, it suffices to show that there exists a
K-rational element β ∈ Ch(X × · · · ×X) with the property that the push-forward

β∗ : Ch(X1 ×X × · · · ×X)→ Ch(X1)

(see 2.B above) sends α to la + chdim(X1)−a for some c ∈ F2. For each (possibly empty)
subset I of {1, . . . ,m− 1}, let γI ∈ Ch(X1 ×X × · · · ×X) be the element obtained from
la × hb1 × · · · × hbm−1 by replacing the factor hbi with ln for each i ∈ I. Let 0 ≤ j < m be
maximal so that α involves an element γI with |I| = j (this makes sense by our choice of
α). Permuting the factors of X ×· · ·×X if necessary, we can then assume that α involves

γ{1,...,j} = la × ln × · · · × ln︸ ︷︷ ︸
j times

×hbi+1 × · · · × hbm−1 .

A quick calculation (using the maximality of j and the minimality of α) now shows that

β := hn × · · · × hn︸ ︷︷ ︸
j times

×lbi+1
× · · · × lbm−1

has the desired property (note that β is K-rational by Lemma 2.3 and our choice of K). �

3.D. Self-correpondences on quadrics. We specialize further to the case where m = 2
and ϕ1 = ϕ2. Working under this assumption, let us now set ϕ := ϕ1 = ϕ2, X := X1 = X2

and n := n1 = n2. Let j1, . . . , jh(ϕ) denote the absolute higher Witt indices of ϕ (see [2,

§25]). Letting d = dim(X), we set Ch≥d(X ×X) =
⊕

i≥d Chi(X ×X). The first part of
the following proposition follows from Lemma 3.3 above. The second part is a variant of a
basic result of Vishik ([23, Cor. 4.14]) due to Karpenko. For a proof, see [2, Lem. 73.19]
(though formulated in a slightly less general way, the statement of the latter is readily
seen to be equivalent to the statement below):

Proposition 3.4. Assume that ϕ is anisotropic, and let α ∈ Ch≥d(X ×X) be a k-rational
element. Let jr−1 ≤ i < jr for some 1 ≤ r ≤ h(ϕ) and let 0 ≤ j ≤ n.

(1) If α involves the standard basis elements hi × lj or lj × hi, then i ≤ j < jr.
(2) If i ≤ j < jr, then α involves hi × lj if and only if it involves ljr−1+jr−i−1 ×

hjr−1+jr−j−1.

3.E. Motives of quadrics. We will write Chow(k) for the category of Chow motives
over k with integral coefficients (see, e.g., [2, Ch. XII]). If Z is a smooth projective k-
variety, we write M(Z) for its motive in Chow(k). In the case where Z = Spec(k), we
simply write Z instead of M

(
Spec(k)

)
. Given any object M in Chow(k), and any integer

i, we write M{i} for the ith Tate twist of M in Chow(k). Recall that the Chow group
functors on the category of smooth projective k-varieties are extended to Chow(k) by
setting CHi(M) := Hom(Z{i},M) and CHi(M) := Hom(M,Z{i}).

Let ϕ, X, n and d be as in §3.D. For each integer 0 ≤ j ≤ n, set Λ(j) = {i | 0 ≤ i ≤
j}
∐
{d − i | 0 ≤ i ≤ j}. If Y denotes the projective quadric defined by the anisotropic

part of ϕ, then one has an isomorphism

M(X) ∼=

 ⊕
i∈Λ(iW (ϕ)−1)

Z{i}

⊕M(Y ){iW (ϕ)} (3.1)

(here M(Y ) = 0 if ϕ is split; see [23, Prop. 2.1]). Now, by a result of Vishik (see [23, §§3,4]
or [2, Ch. XVII]), any direct summand of M(X) decomposes (in an essentially unique
way) into a finite direct sum of indecomposable objects in Chow(k). Since M(Xk)

∼=⊕
i∈Λ(n) Z{i}, it follows that if N is a non-zero direct summand of M(X), then there exists
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a unique non-empty subset Λ(N) ⊆ Λ(n) such that Nk
∼=
⊕

λ∈Λ(N) Z{λ}. Moreover, if N

and N ′ are distinct indecomposable direct summands of M(X), then it is easy to see that
Λ(N) and Λ(N ′) are disjoint, and so the complete motivic decomposition of X determines
a partition of the set Λ(n). We refer to this partition as the motivic decomposition type of
X. As outlined in [2, Ch. XVII], the determination of this invariant is equivalent to the
determination of the k-rational part of the F2-vector space Ch≥d(X ×X) (see also [4]). For
example, Proposition 3.4 (2) above is best interpreted as a statement about the motivic
decomposition type of X. We will interchange between these viewpoints frequently. The
unique indecomposable direct summand N of M(X) for which 0 ∈ Λ(N) (equivalently, for
which CH0(N) = Z · [X]) is called the upper motive of X, and is denoted U(X).

4. On stable birational equivalence of quadratic forms

If σ and τ are anisotropic quadratic forms of dimension ≥ 2 over a field k, then σ and
τ are said to be stably birationally equivalent if both ϕk(ψ) and ψk(ϕ) are isotropic (when
σ 6∼= H 6∼= τ , this is easily seen to be equivalent to requiring that the projective quadrics
associated to σ and τ are stably birationally isomorphic). We have the following necessary
condition for stable birational equivalence of anisotropic forms due to Vishik (see [23, Cor.
4.9], or [2, Thm. 76.5] for a characteristic-free proof):

Proposition 4.1. If σ and τ are stably birationally equivalent anisotropic quadratic forms
of dimension ≥ 2 over a field k, then dim(σ)− i1(σ) = dim(τ)− i1(τ).

Suppose now that ϕ and ϕ′ are anisotropic quadratic forms of dimension ≥ 2 over a field
F , and let X and X ′ denote their associated (smooth) projective quadrics. Let K/F be a
field extension over which neither ϕ nor ϕ′ is split, and let ψ = (ϕK)an and ψ′ = (ϕ′K)an.

Proposition 4.2. Suppose, in the above situation, that ψ and ψ′ are stably birationally
equivalent. Then:

(1) dim(ψ)− i1(ψ) = dim(ψ′)− i1(ψ′);
(2) Let d = dim(ψ)− i1(ψ) = dim(ψ′)− i1(ψ′). If a and b are integers satisfying

iW (ϕK) ≤ a < dim(ϕ)− d− iW (ϕK)

and

iW (ϕ′K) ≤ b < dim(ϕ′)− d− iW (ϕ′K),

then any F -rational element of Ch(X ×X ′) involving the standard basis element

ha × lb also involves ldim(ϕ)−d−a−1 × hdim(ϕ′)−d−b−1.

Proof. Using the map g of Lemma 3.2 (with k = K, m = 2, ϕ1 = ϕ and ϕ2 = ϕ′), we reduce
to the case where K = F . Claim (2) is then that any F -rational element α ∈ Ch(X ×X ′)
involving ha×lb also involves li1(ϕ)−a−1×hi1(ϕ′)−b−1. Suppose, for the sake of contradiction,
that this is not the case. Since ϕ and ϕ′ are stably birationally equivalent, the Witt index of
ϕ over F (ϕ′) is equal to i1(ϕ). In other words, li1(ϕ)−1 ∈ Ch(X) is F (ϕ′)-rational (Lemma

2.3). By Lemma 3.1, it follows that there exists an F -rational element β ∈ Ch(X ′ ×X)
involving the standard basis element h0 × li1(ϕ)−1. If we let γ = β · (hb × h0), then the

composition γ ◦ α ∈ Ch(X ×X) involves ha × li1(ϕ)−1 but not li1(ϕ)−a−1 × h0. Since γ ◦ α
is F -rational, this contradicts Proposition 3.4 (2), and so the lemma follows. �

In order to apply this proposition in the sequel, we will need the following important
theorem originally proved by Izhboldin in characteristic not 2 (see [8, Cor. 2.12]) and later
in characteristic 2 by Hoffmann and Laghribi ([7, Prop. 4.6]):
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Theorem 4.3. Let σ and τ be anisotropic quadratic forms of dimension ≥ 2 over a field k.
Suppose that there exists a positive integer n such that 2n < dim(σ),dim(τ) ≤ 2n+1, and
suppose that dim(σ)− i1(σ) = 2n. If σk(τ) is isotropic, then σ and τ are stably birational
equivalent, and dim(τ)− i1(τ) = 2n.

5. On binary direct summands in the motives of quadrics

Henceforth, we will work over a fixed base field F of any characteristic. For the rest of
the present section, we also fix an anisotropic quadratic form ϕ of dimension ≥ 2 over F .
We let X denote the (smooth) projective quadric defined by the vanishing of ϕ, and we
let j1, . . . , jh(ϕ) (resp. i1, . . . , ih(ϕ)) be the absolute (resp. relative) higher Witt indices of
ϕ (again, see see [2, §25]). The purpose of this section is to prove the following statement:

Proposition 5.1. Suppose, in the above situation, that there exists an integer 1 ≤ r ≤
h(ϕ) such that ir > it for all r < t ≤ h(ϕ). Then:

(1) dim(ϕr−1)− ir = 2n for some positive integer n.
(2) If, in addition, jr−1 < min(ir, 2

n−1), then there exists a motive M in Chow(F )
such that
•
⊕ir−1

i=0 M{i} is a direct summand of M(X), and
• MF

∼= Z{jr−1}
⊕

Z{jr−1 + 2n−1 − 1}.

Remark 5.2. In the language of [23], (2) says that, under the stated assumptions, the rth
shell of M(X) consists of binary motives. Note that it has been conjectured by Vishik
([23, Conj. 4.21]) that any binary direct summand in the motive of a smooth projective
quadric is isomorphic to a Rost motive (i.e., the upper motive of a Pfister quadric) up to
Tate twisting. We do not show in our situation that M{−jr−1} is the Rost motive of an
n-fold Pfister quadric; the existence of M will be enough for our purposes.

Before proving the proposition, we record the following application:

Corollary 5.3. Let n be a positive integer and let 2n−2 < m ≤ 2n. Suppose, in the above
situation, that 2n + m ≤ dim(ϕ) ≤ min(2n + 3m, 2n+1 + m). If there exists a positive
integer 1 ≤ r ≤ h(ϕ) such that dim(ϕr−1) = 2n + m and dim(ϕr) < 2n, then ir = m and
there exists a motive M in Chow(F ) such that

•
⊕ir−1

i=0 M{i} is a direct summand of M(X), and
• MF

∼= Z{jr−1}
⊕

Z{jr−1 + 2n−1 − 1}.

Proof. For each 1 ≤ t ≤ h(ϕ), let ut be the smallest non-negative integer such that it ≤ 2ut .
By Karpenko’s theorem on the values of the first higher Witt index ([12], [18, Prop. 10.4]),
we then have that dim(ϕt−1)− it ≡ 0 (mod 2ut). Now, by hypothesis, we have

dim(ϕr−1)− ir = dim(ϕr) + ir < 2n + ir,

and so dim(ϕr−1)− ir = 2n − a2ur for some non-negative integer a. Clearly this can only
hold if a = 0, and so ir = m. In particular, dim(ϕr) = dim(ϕr−1) − 2m = 2n −m. Since
m > 2n−2, it follows that dim(ϕr) < 2n−1 + 2n−2, and so the theorem on the first higher
Witt index gives that it < 2n−2 < m = ir for all r < t ≤ h(ϕ) (of course, it suffices to use
the separation theorem here). Since we also have that

jr−1 =
dim(ϕ)− (2n +m)

2
≤ min(m, 2n)

2
= min(2n−1,m) = min

(
dim(ϕr−1)− ir

2
, ir

)
,

the conditions of Proposition 5.1 (2) are satisfied, and so the result follows. �
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Remark 5.4. Again, Corollary 5.3 asserts that, under the stated hypotheses, the rth shell
of M(X) consists of binary motives. In this case, the article [10] of Kahn provides a
hypothetical explanation for this phenomenon that tallies well with Vishik’s binary motive
conjecture, at least if we assume that char(F ) 6= 2 and m > 2n/3. Indeed, let F = F0 ⊂
F1 ⊂ · · · ⊂ Fh(ϕ) be the Knebusch splitting tower of ϕ. If m > 2n/3, then

2dim(ϕr) = 2n+1 − 2m = (2n +m) + (2n − 3m) < 2n +m = dim(ϕr−1),

and so Kahn’s descent conjecture (see [10, Conj. 2, Thm. 3]) predicts that ϕr ∼= τFr for
some anisotropic form τ over F . Since the form π := ϕ − τ becomes hyperbolic over Fr,
and since Fr is a tower of function fields of quadratic forms of dimension > 2s−1, it lies in
Is(F ) (see, e.g., [20, Cor. 3.2]). But dim(π) ≤ dim(ϕ) + dim(ϕr) = 2s+ 2jr−1 < 2s+ 2s−1,
and so a theorem of Vishik ([23, Thm. 6.4]) then implies that π is similar to an s-fold
Pfister form. Finally, since the conditions iW (πK) > 0 and iW (ϕK) > jr−1 are equivalent
for any field extension K/F , it then follows from [23, Thm. 4.15] that the rth shell of
M(X) consists of Tate twists of the Rost motive associated to π. Note that this picture
has been fully realized in the case where dim(ϕr) ≤ 7 by results of several authors (in
particular, Kahn, Laghribi, Izhboldin and Karpenko). For example, the third shell of the
motive of a 15-dimensional anisotropic quadric with absolute splitting pattern (1, 2, 7, 8)
consists of twists of a 7-dimensional Rost motive (at least in characteristic 6= 2).

We now prove Proposition 5.1, which, translated to the language of cycles, says the
following (see [2, Ch. XVII] for details on the translation):

Proposition 5.5. Suppose, in the above situation, that there exists an integer 1 ≤ r ≤
h(ϕ) such that ir > it for all r < t ≤ h(ϕ). Then:

(1) dim(ϕr−1)− ir = 2n for some positive integer n.
(2) If, in addition, jr−1 < min(ir, 2

n−1), then the element

(hjr−1 × ljr−1) + (ljr−1 × hjr−1) ∈ Ch(X ×X)

is F -rational.

Proof. Let F = F0 ⊂ F1 ⊂ · · · · ⊂ Fh(ϕ) be the Knebusch splitting tower of ϕ. Let Y
denote the (smooth) projective quadric over Fr−1 defined by the vanishing of ϕr−1. Since
ir > it for all r < t ≤ h(ϕ), it follows from [2, Lem. 73.18] and Proposition 3.4 that

(h0 × lir−1) + (lir−1 × h0) ∈ Ch(Y × Y )

is Fr−1-rational (alternatively, the upper motive of Y is binary). Statement (1) then
follows from the binary motive theorem of Vishik (see [23, Thm. 4.20] or [2, Cor. 80.8]
for a formulation in the language of cycles; note that this result is now also valid in
characteristic 2 thanks to [18]). Assume now that jr−1 < min(ir, 2

n−1) and let α =
(hjr−1 × ljr−1) + (ljr−1 × hjr−1) ∈ Ch(X ×X). We will show that α is Fj-rational for all
0 ≤ j < r by descending induction on j. The case where j = r − 1 follows from Lemma
3.2 (2) and the fact that h0 × lir−1 + lir−1 × h0 ∈ Ch(Y × Y ) is Fr−1-rational. Suppose
now that 0 ≤ j ≤ r − 2. Assuming that α is Fj+1-rational, we need to show that α is
Fj-rational. By another application of Lemma 3.2, we may assume that j = 0. Let B
denote the standard F2-basis of Ch(X ×X ×X) discussed in §3 above. By Lemma 3.1
and the induction hypothesis, there exists an F -rational element β ∈ Ch(X ×X ×X)
that involves the terms h0 × hjr−1 × ljr−1 and h0 × ljr−1 × hjr−1 but no other element of B
having the form h0×?×?. Among all such elements β, let us choose one that involves the
least number of elements of B as possible. Then β is homogeneous of dimension 2d+ ir−1,
where d = dim X. Note that since r ≥ 2, our standing hypotheses imply that ir > 1.
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Lemma 5.6. In the above situation, we have that

β = (h0×α)+u(hjr−1×h0×ljr−1+ljr−1×h0×hjr−1)+v(hjr−1×ljr−1×h0+ljr−1×hjr−1×h0)

for some u, v ∈ F2.

Proof. For dimension reasons, β involves no standard basis elements of the form l?×l?×l?,
l? × l? × h?, l? × h? × l? or h? × l? × l?. Suppose now that β involves a standard basis
element of the form la×hb×hc for some 0 ≤ a, b, c ≤ n = [d/2]. Let i = max(b, c), and let
1 ≤ t ≤ h(ϕ) be such that jt−1 ≤ i < jt. By Lemma 3.3, it then follows that jt−1 ≤ a < jt,
and so a − (b + c) ≤ it − 1. On the other hand, we have a − (b + c) = ir − 1, and so our
standing assumption on the splitting pattern of ϕ implies that t = r, a = jr−1 and either
(b, c) = (0, jr − 1) or (b, c) = (jr − 1, 0). By symmetry, the same conclusion stands for all
standard basis elements of the form hb× la×hc or hb×hc× la involved in β. We therefore
have that

β = (h0×α)+u(hjr−1×h0×ljr−1)+u′(ljr−1×h0×hjr−1)+v(hjr−1×ljr−1×h0)+v′(ljr−1×hjr−1×h0)

for some u, u′, v, v′ ∈ F2. It remains to show that u = u′ and v = v′. To see this, let
µ = h0 × l0 × h0 ∈ Ch(X ×X ×X). Then µ is F1-rational, and pushing µ · β forward via
the projection X ×X ×X → X ×X to the first and third factors, we see that

u(hjr−1 × ljr−1) + u′(ljr−1 × hjr−1) ∈ Ch(X ×X)

is also F1-rational. Let Y now denote the projective quadric defined by the vanishing of
ϕ1 over F1 (as opposed to ϕr−1). Applying the homomorphism g of Lemma 3.2 (with
k = F1, m = 2 and X = X1 = X2), we get that

u(hj
′
r−2 × lj′r−1−1) + u′(lj′r−1−1 × hj

′
r−2) ∈ Ch(Y × Y )

is F1-rational, where j′1, j
′
2, . . . , j

′
h(ϕ)−1 denote the absolute higher Witt indices of ϕ1 (i.e.,

j′t−1 = jt − i1). Since r ≥ 2, it then follows from Proposition 3.4 (2) that u = u′. The

equality v = v′ is shown in a similar way (in the above argument, replace µ by h0×h0× l0
and then use push-forward onto the product of the first two factors of X ×X ×X). �

Lemma 5.7. In the above situation,

γ = u(h2jr−1 × ljr−1 + lir−1 × hjr−1) + v(hjr−1 × lir−1 + ljr−1 × h2jr−1) ∈ Ch(X ×X)

is F -rational.

Proof. The proof uses a construction of Karpenko (cf. [13] or [2, §81]). To simplify the
notation, let a = jr−1 and b = jr − 1. Our standing assumption is that a < min(b − a +
1, 2n−1). Let a ≤ j ≤ 2a. Then j ≤ b, and, by Lemma 2.1, we have

Sj(lb) =

(
2n + a

j

)
lb−j ,

where Sj denotes the jth Steenrod operation of cohomological type ([1, 18]). Since a <

2n−1, however, the binomial coefficient
(

2n+a
j

)
is odd only in the case where j = a (see,

e.g., [22, Lem. 3.4.2]). Since Sj(ha) = 0 for all j > a, and since Sj(h0) = 0 for all j > 0,
it then follows from Lemma 5.6 and the external product formula for Steenrod operations
([2, Thm. 61.14]) that

S2a(β) = (h0 × h2a × lb−a + h0 × lb−a × h2a) + u(h2a × h0 × lb−a + lb−a × h0 × h2a)

+ v(h2a × lb−a × h0 + lb−a × h2a × h0).
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In particular, the element

η := S2a(β) · (h0 × h0 × hb−2a) = (h0 × h2a × la + h0 × lb−a × hb) + u(h2a × h0 × la + lb−a × h0 × hb)

+ v(h2a × lb−a × hb−2a + lb−a × h2a × hb−2a)

is F -rational. Consider now the morphisms

t12 : X ×X ×X → X ×X ×X and δX×X : X ×X → X ×X ×X ×X
defined by the assignments (x, y, z) 7→ (y, x, z) and (x, y) 7→ (x, y, x, y), respectively. View-
ing η as a geometric correspondence from X × X to X and t∗12(β) as a geometric corre-
spondence in the other direction, we compute that

(δX×X)∗(t∗12(β) ◦ η) = u(h2a × lb−1 + lb−a × ha) + v(ha × lb−a + la × h2a).

This proves the lemma, since both t∗12 and (δX×X)∗ preserve F -rationality. �

Now, to complete the proof of 5.5, it suffices by [2, Prop. 73.23] to show there exists
a non-zero F -rational cycle in Ch≥d(X × X) that does not involve any standard basis
elements of the form h? × li or li × h? with i /∈ [jr−1, jr)

(
or, in another language, that

there is a direct summand N of M(X) with the property that Nk does not involve Tate

motives lying outside the rth shell of M(X)
)
. To this end, consider the morphism

δX × id : X ×X → X ×X ×X, (x, y) 7→ (x, x, y).

By Lemma 5.6, we have
(δX × id)∗(β) = (1 + u)α.

Since (δX × id)∗ preserves F -rationality, it follows that

(1 + u)(hjr−1 × h0)(α) = (1 + u)(h2jr−1 × ljr−1 + lir−1 × hjr−1)

is F -rational. Adding the element γ of Lemma 5.7 to this cycle class, we then get that

(h2jr−1 × ljr−1 + lir−1 × hjr−1) + v(hjr−1 × lir−1 + ljr−1 × h2jr−1) ∈ Ch(X ×X)

is F -rational. Since 0 < jr−1 < ir = jr − jr−1, this proves what we want. �

6. Some special cases of the main conjecture

Following §1, we now let p and q be anisotropic quadratic forms of dimension ≥ 2 over
F , P and Q their associated (smooth) projective F -quadrics, and k = dim((qF (p))an) =
dim(q) − 2iW (qF (p)). Let s be the unique non-negative integer satisfying 2s < dim(p) ≤
2s+1. The aim of this section is to note the following proposition (to be used in the sequel):

Proposition 6.1. Suppose, in the above situation, that either of the following conditions
holds:

(1) p becomes isotropic over any field extension K/F for which dim((qK)an) ≤ k;
(2) dim(q) ≤ 2s+2 + 2s+1 + k.

Then the statement of Conjecture 1.1 holds for the pair (p, q), i.e., dim(q) = a2s+1 + ε for
some non-negative integer a and some integer −k ≤ ε ≤ k.

Note that case (1) of the proposition was essentially treated in [20, §5.3]. We will recall
the details here since the main result of the previous section now allows us to incorporate
case (2) into the argument (moreover, the exposition in [20] contains a minor error).

Proof. We may assume that k ≤ 2s − 2, since otherwise the statement of Conjecture 1.1
holds trivially. Since the statement also holds trivially when 2s+2 + 2s+1 − k ≤ dim(q) ≤
2s+2 + 2s+1 + k, (2) may be replaced by



14 STEPHEN SCULLY

(2’) dim(q) < 2s+2 + 2s+1 − k.

Now, let F = F0 ⊂ F1 ⊂ · · · ⊂ Fh(q) be the Knebusch splitting tower of q, and let
0 ≤ r ≤ h(q) be the unique integer for which qr = (qFr)an has dimension k. We proceed
by induction on r (over all field extensions of F ). If r = 0, then there is nothing to prove,
so assume that r ≥ 1. Since qr−1 becomes isotropic over Fr−1(p), and since dim(p) > 2s,
the separation theorem implies that dim(qr−1) > 2s. Since dim(qr) = k < 2s, Karpenko’s
theorem on the values of the first higher Witt index ([12], [18, Prop. 10.4]) then implies
that dim(qr−1) = 2n+1 − k for some integer n ≥ s. In particular, the statement of
Conjecture 1.1 holds for the pair (p, q) when r = 1. Assume now that r ≥ 2. Applying the
induction hypothesis to q1 (over F1), we get that dim(q1) = a12s+1 + ε1 for some positive

integer a1 and some −k ≤ ε1 ≤ k. If i1(q) ≤ k−ε1
2 , then a12s+1 − k ≤ dim(q) ≤ a12s+1 + k

and so the desired assertion holds with a = a1. We can therefore assume that i1(q) > k−ε1
2 .

Let u be the smallest non-negative integer satisfying the inequality i1(q) ≤ 2u. By another
application of the theorem on the first higher Witt index, we then have that

a12s+1 + ε1 + i1(q) = dim(q)− i1(q) ≡ 0 (mod 2u).

We claim that u ≥ s. Note that this will complete the proof of the proposition, since it
implies that i1(q) ≡ −ε1 (mod 2s), and hence

dim(q) = a12s+1 + ε1 + 2i1(q) ≡ −ε1 (mod 2s+1),

i.e., the desired assertion holds with ε = −ε1. To prove the claim, suppose to the contrary
that u < s, so that i1(q) = µ2u − ε1 for some integer µ. Since i1(q) > k−ε1

2 , we have

µ2u = i1(q) + ε1 >

(
k − ε1

2

)
+ ε1 =

k + ε1
2
≥ 0.

At the same time, we also have

µ2u = i1(q) + ε1 ≤ 2u + k < 2u + 2s,

and so 0 < µ2u ≤ 2s. If µ2u = 2s, then we again have that i1(q) ≡ −ε1 (mod 2s), and the
result follows as above. It will therefore be enough to show that we cannot have 0 < µ2u <
2s. Suppose otherwise. Since dim(q)− i1(q) = a12s+1 + ε1 + i1(q) = a12s+1 + µ2u, it then
follows from Vishik’s theorem on excellent connections in the motives of smooth projective
quadrics (more precisely, from [25, Thm. 2.1], which is now also valid in characteristic 2
thanks to [18]) that the Tate motive Z{a12s} is isomorphic to a direct summand of U(Q)F ,
where U(Q) denotes the upper motive of Q (see §3.E). Let j = iW (qF (p))− 1−a12s. Then

j =

(
dim(q)− k

2

)
− 1− a12s = i1(q)− 1−

(
k − ε1

2

)
,

and so 0 ≤ j < i1(q) (recall that i1(q) > (k − ε1)/2). By [23, Thm. 4.13] ([2, §73]
in any characteristic), it follows that U(Q){j} is isomorphic to a direct summand of
M(Q). Now, by the preceding discussion, the Tate motive Z{a12s+j} = Z{iW (qF (p))−1}
is isomorphic to a direct summand of U(Q){j}F . To obtain the desired contradiction,
it therefore suffices to show that M(Q) admits an indecomposable direct summand N
with the property that Z{iW (qF (p)) − 1} is isomorphic to a direct summand of NF , but
Z{j} is not. Suppose first that we are in case (1), i.e., that p becomes isotropic over
any field extension K/F for which dim((qK)an) ≤ k. In this case, it follows from [23,
Thm. 4.15] (the proof of which is valid in any characteristic) that M(Q) admits a direct
summand isomorphic to U(P ){iW (qF (p)) − 1}. Now the Tate motive Z{iW (qF (p)) − 1} is
isomorphic to a direct summand of U(P ){iW (qF (p))−1}F by definition. At the same time,
this is not true of Z{j}, since j < iW (qF (p)) − 1 − a12s < iW (qF (p)) − 1 (remember that
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a1 > 0). Thus, the unique direct summand N of M(Q) satisfying N ∼= U(P ){iW (qF (p))−1}
has the desired properties in this case. Suppose now that we are in case (2’), i.e., that
dim(q) < 2s+2 + 2s+1 − k. Recall that dim(qr−1) = 2n+1 − k for some integer n ≥ s. If
dim(qr−1) = 2s+1 − k (i.e., n = s), then it follows from Izhboldin’s Theorem 4.3 that qr−1

is stably birational equivalent to pFr−1 (note that the latter form is anisotropic, since qr−1

becomes isotropic over its function field). By the specialization results of Knebusch ([17,
§3]), it then follows that condition (1) holds, and so may conclude as before. Assume now
that dim(qr−1) = 2n+1 − k for some integer n > s. We then have that

ir(q) = i1(qr−1) = 2n − k ≥ 2s+1 − k > k > dim(qt) > it(q)

for all r < t ≤ h(q). At the same time, our assumption on dim(q) gives that

jr−1(q) =
dim(q)− (2n+1 − k)

2
<

(2s+2 + 2s+1 − k)− (2s+2 − k)

2
= 2s ≤ min(ir(q), 2

n−1),

and so Proposition 5.1 tells us that the rth shell of M(Q) consists of binary motives, i.e.,
there is a motive M in Chow(F ) such that

•
⊕ir(q)−1

i=0 M{i} is a direct summand of M(Q), and
• MF

∼= Z{jr−1(q)}
⊕

Z{jr−1(q)− 2n − 1}.
Since iW (qF (p)) = jr(q), the summand N := M{ir(q)− 1} then has the desired properties
(again, we are using here that j < iW (qF (p))− 1). This completes the induction step and
the proof of the proposition. �

Remarks 6.2. (1) Let F = F0 ⊂ F1 ⊂ · · · ⊂ Fh(q) be the Knebusch splitting tower of q,
and let 0 ≤ r ≤ h(q) be the unique integer for which qr = (qFr)an has dimension k. As
implicitly observed in the proof of the proposition, the following are then equivalent:
• p becomes isotropic over any field extension K/F for which dim((qK)an) ≤ k;
• p becomes isotropic over Fr;
• There exists a field extension of F over which the dimension of the anisotropic

part of q lies in the interval (2s, 2s+1];
• r ≥ 1 and dim(qr−1) = 2s+1 − k.

(2) Note that the inductive argument used here yields a stronger result: Assume that
k < 2s. Then, in either of the two cases under consideration, the statement of [20,
Conjecture 5.1] holds for the pair (p, q). More precisely, let 0 ≤ r ≤ h(q) be the unique
non-negative integer for which dim(qr) = k. Then, for each 0 ≤ t < r, there exist
non-negative integers at, bt, and integers −k ≤ εt ≤ k such that:
• dim(qt) = at2

s+1 + εt; and
• with one possible exception, either it+1(q) ≤ k+εt

2 or it+1(q) = bt2
s+1 + εt. The

possible exception is where dim(qt) = 2s+1 − k, in which case t = r − 1 and
it+1(q) = 2s − k

We omit the details, but the reader is referred to [20, §5] for further information.

7. A technical proposition

In this section we state and prove a technical proposition that will serve as the basic tool
in the proof of our main theorem. We continue with the set up of the previous section. We
now also let dP and dQ denote the dimensions of P and Q respectively, and set nP = [dP /2]
and nQ = [dQ/2]. Finally, we fix a non-negative integer nQ − nP < m ≤ nQ (recall that s
denotes the unique non-negative integer for which 2s < dim(p) ≤ 2s+1).
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Proposition 7.1. Assume, in the above situation, that the element h0×lm ∈ ChdP +m(P ×Q)
is F -rational and let 0 ≤ j ≤ m be an integer satisfying j > dQ −m− 2s+1 + 2. Suppose
that there exists a field extension K/F with the following properties:

(1) iW (qK) > m;
(2) iW (pK) ≤ dP − dQ + j +m+ 1;
(3) If a ≤ nQ −m and η ∈ Cha(PK) is the mod-2 reduction of a torsion element of

CHa(U(P )K), then degdP−a−b(µ) ≡ 0 (mod 4) for any pair (b, µ) consisting of an

integer b ≥ 0 and an integral representative µ ∈ CHa+b(PK) of Sb(η) ∈ Cha+b(PK).

Then the binomial coefficient
(dQ−m+1

j

)
is even.

Remark 7.2. We remind the reader that U(P ) denotes here the upper motive of P (§3.E).
We also remark that when the proposition is applied in the sequel, the field K will have
the property that pK is anisotropic. In particular, replacing (2) with the more visually
appealing condition that pK is anisotropic will not affect anything that follows.

Proof. Since m > nQ − nP , we have that dP + m > nP + nQ, and so 2CHdP +m(P ×Q)
consists of F -rational elements (see §3.A). Since the mod-2 cycle class h0×lm is F -rational,
it follows that there exists an integral class B ∈ CHdP +m(P ×Q) such that B = H0×Lm.
Let ν ∈ CHdP (P × P ) be the projector defining the upper motive U(P ). Replacing B

with B ◦ ν if necessary, we can assume that B ◦ ν = ν (note that B ◦ ν = H0 × Lm). Let
β ∈ ChdP +m(P ×Q) denote the mod-2 reduction of B (so that β = h0 × lm). The proof
now begins by observing an identity implicit in [14, Proof of Thm. 1.2] (having its origin
in [24]). Let P ′ be a (2s − 1)-dimensional subquadric of P , let π′Q : P ′ × Q → Q be the

canonical projection, and let ι denote the natural embedding of P ′×Q into P ×Q. Since
(π′Q)∗

(
ι∗(β)

)
∈ Ch(Q) is homogeneous of codimension dQ−m−dim(P ′) = dQ−m−2s+1,

it is annihilated by the Steenrod operation S2s−1+a for any a > dQ −m − 2s+1 + 2 ([2,
Thm. 61.13]). In particular, this holds for a = j. By [2, Prop. 61.10], it follows that

0 = S2s−1+j
(

(π′Q)∗
(
ι∗(β)

))
=

2s−1∑
l=0

(π′Q)∗

(
(cl(−TP ′)× h0) · S2s−1+j−l(ι∗(β)

))
(here −TP ′ denotes the virtual normal bundle of P ′ and cl(−TP ′) its lth Chern class
modulo 2). Using the fact that Steenrod operations commute with pull-backs ([2, Thm.
61.9]) together with the projection formula for proper push-forwards ([2, Prop. 56.9]) we
note that the sum appearing on the right side of the preceding expression equals

2s−1∑
l=0

(πQ)∗
(
ι∗(cl(−TP ′)× h0) · S2s−1+j−l(β)

)
,

where πQ = π′Q ◦ ι is the canonical projection from P × Q to Q. Now, since dim(P ′) is

one less than a power of 2, we have cl(−TP ′) = hl for all l ≥ 0 (see [2, Lem. 78.1]). As

ι∗(hl × h0) = hl+dP−dim(P ′) × h0 = hl+dP−2s+1 × h0, we deduce from the above that

2s−1∑
l=0

π∗
(
(hl+dP−2s+1 × h0) · S2s−1+j−l(β)

)
= 0

in Ch(Q) (the identity implicit in [14, Proof of Thm. 1.2]). Relabelling 2s − 1 + j − l as i
and multiplying through by hm−j ∈ Ch(Q), we arrive at the identity

dQ−m∑
i=j

hm−j · π∗
(
(hdP +j−i × h0) · Si(β)

)
= 0
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in Ch0(Q) (again, we have also used here that β is homogeneous of codimension dQ −m,
so that Si(β) = 0 for all i > dQ −m). Using the projection formula, this becomes

dQ−m∑
i=j

(πQ)∗
(
(hdP +j−i × hm−j) · Si(β)

)
= 0.

For each i, let us now fix an integral representative si ∈ CHdP +m−i(P ×Q) of the mod-2
class Si(β), specifically taking sdQ−m to be B2, where B is the integral lift of β fixed at
the beginning of the proof (see [2, Thm. 61.13]). The preceding identity then tells us that

dQ−m∑
i=j

(πQ)∗
(
(HdP +j−i ×Hm−j) · si

)
∈ 2CH0(Q).

Since q is anisotropic, Springer’s theorem (see Lemma 2.3) now gives that

dQ−m∑
i=j

deg
(

(πQ)∗
(
(HdP +j−i ×Hm−j) · si

))
≡ 0 (mod 4).

By functoriality of push-forwards, we deduce that

dQ−m∑
i=j

deg
(

(πP )∗
(
(HdP +j−i ×Hm−j) · si

))
≡ 0 (mod 4),

where πP denotes the canonical projection from P × Q to Q. By another application of
the projection formula, this becomes

dQ−m∑
i=j

deg
(
HdP +j−i · (πP )∗

(
(H0 ×Hm−j) · si

))
≡ 0 (mod 4),

or
dQ−m∑
i=j

degdP +j−i

(
(πP )∗

(
(H0 ×Hm−j) · si

))
≡ 0 (mod 4)

(Lemma 2.2). In particular, in order to prove the proposition, it will be enough to show
that

degdP +j−i

(
(πP )∗

(
(H0 ×Hm−j) · si

))
≡

{
2
(dQ−m+1

j

)
(mod 4) if i = j

0 (mod 4) otherwise.
(7.1)

Since degdP +j−i is insensitive to scalar extension, we are, with one caveat, free to replace
the field F with the field K given in the statement of the proposition. The caveat is that
U(P )K need not be the upper motive of PK . To avoid any confusion, let us now write N
instead of U(P ) (so that NK is the direct summand of M(PK) defined by the projector
νK). Replacing F by K, we can then assume that the following hold:

(i) iW (q) > m;
(ii) iW (p) ≤ dP − dQ + j +m+ 1; and
(iii) If a ≤ nQ − m and η ∈ Cha(P ) is the mod-2 reduction of a torsion element

of CHa(N), then degdP−a−b(µ) ≡ 0 (mod 4) for any pair (b, µ) consisting of an

integer b ≥ 0 and an integral representative µ ∈ CHa+b(P ) of Sb(η) ∈ Cha+b(P ).
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Let us first show that (7.1) holds for i = dQ −m. Since sdQ−m = B2, we have

sdQ−m = B2 = B
2

= (H0 × Lm)2 = H0 × L2
m

in CH(P ×Q). Now, since j ≤ m, we have that j = dQ −m if and only if m = nQ (in
which case dQ is even and j = nQ). If m 6= nQ, then L2

m = 0, and so the degree of interest
is 0. If m = nQ, on the other hand, then this degree equals

degdP

(
(πP )∗

(
H0 × L2

nQ

))
= 2deg(L2

nQ
).

Since we also have j = nQ in this case, it then only remains to check that deg(L2
nQ

) ≡(
dQ−nQ+1

nQ

)
(mod 2). But

L2
nQ

=

{
L0 if dQ is divisible by 4

0 otherwise,

([2, Ex. 68.3]) and so the claim holds.
Let us now assume that j < dQ −m and fix an integer j ≤ i < dQ −m. By (i) and

Lemma 2.3, the class Lm ∈ CHm(Q) descends to a unique element of CHm(Q) that we
denote in the same way. Since B = H0 × Lm, it follows that β = (h0 × lm) + γ, where
γ ∈ ChdP +m(P ×Q) is the mod-2 reduction of the torsion integral class B− (H0×Lm) ∈
CHdP +m(P ×Q). For each l ≥ 0, let tl ∈ CHdP +m−l(P ×Q) be an integral representative
of Sl(γ) ∈ ChdP +m−l(P ×Q), specifically setting t0 := B − (H0 × Lm). Since

Si(h0 × lm) =

(
dQ −m+ 1

i

)
(h0 × lm−i)(

Lemma 2.1 together with the external product formula for Steenrod operations ([2, Thm.

61.14])
)
, it follows that

si ≡
(
dQ −m+ 1

i

)
(H0 × Lm−i) + ti (mod 2).

Now, by (ii) we have

iW (p) ≤ dP − dQ + j +m+ 1 = dP + j − (dQ −m− 1) ≤ dP + j − i,
and so the image of degdP +j−i : CHdP +j−i(P )→ Z equals 2Z by Lemma 2.3. Thus, modulo
4, the left side of (7.1) is congruent to

degdP +j−i

(
(πP )∗

((
dQ −m+ 1

i

)
(H0 × Lj−i) + (H0 ×Hm−j) · ti

))
which is readily seen to equal

2δij

(
dQ −m+ 1

i

)
+ degdP +j−i

(
(πP )∗

(
(H0 ×Hm−j) · ti

))
.

(δij being the Kronecker delta). To show that (7.1) holds (for this i), it now remains to
show that

degdP +j−i
(
(πP )∗

(
(H0 ×Hm−j) · ti

))
≡ 0 (mod 4).

We will do this by proving that

degdP +j−i

(
(πP )∗

(
(H0 ×Hm−j+i−l) · tl

))
≡ 0 (mod 4) (7.2)

for all 0 ≤ l ≤ i, arguing by induction on l. Since t0 is torsion, the assertion holds when
l = 0

(
Lemma 2.2 (3)

)
. Assume now that l > 0. Since γ is represented by the torsion
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class t0, tl is divisible by 2 in CH(P ×Q) (by the compatibility of Steenrod operations
with scalar extension). If l < m − j + i − nQ, then Hm−j+i−l is also divisible by 2 in

CH(Q), and so (H0×Hm−j+i−l) · tl ≡ 0 (mod 4). To complete the induction step, we can
therefore assume that l ≥ m− j + i− nQ. Consider now the element

η := (πP )∗
(
(h0 × hm−j+i−l) · γ

)
∈ Chi−j−l(P ).

By construction, η is the mod-2 reduction the torsion integral class

η̃ = (πP )∗
(
(H0 ×Hm−j+i−l) · t0

)
.

We claim that η̃ ∈ CHi−j−l(N). Since t0 = B − (H0 × Lm), we have

η̃ = (πP )∗
(
(H0 ×Hm−j+i−l) ·B)

)
− (πP )∗

(
(H0 ×Hm−j+i−l) · (H0 × Lm)

)
= (πP )∗

(
(H0 ×Hm−j+i−l) ·B)

)
− δi−l,j(πP )∗(H

0 × L0)

= (πP )∗
(
(H0 ×Hm−j+i−l) ·B)

)
− δi−l,jH0

Now H0 ∈ CH0(N) (by the definition of N). At the same time, since we chose B so that
B ◦ ν = B, we have (πP )∗

(
(H0 × Hm−j+i−l) · B)

)
∈ CHi−j−l(P ) ◦ ν = CHi−j−l(N) by

Lemma 10.1 in the appendix. The claim therefore follows from the preceding equality.
Since i− j − l ≤ nQ −m, it now follows from (iii) that degdP +j−i(µ) ≡ 0 (mod 4) for any

integral representative µ ∈ CHi−j(P ) of Sl(η). On the other hand, another application of
[2, Prop. 61.10], shows that

Sl(η) =

l∑
r=0

(πP )∗

((
h0 × cr(−TQ)

)
· Sl−r

(
(h0 × hm−j+i−l) · γ

))
(7.3)

Now, for each r ≥ 0, the external product formula for Steenrod operations ([2, Thm.
61.14]) together with Lemma 2.1 gives that

Sl−r
(
(h0×hm−j+i−l)·γ

)
= (h0×hm−j+i−l)·Sl−r(γ)+

(
l−r∑
u=1

au(h0 × hm−j+i−l+u) · Sl−r−u(γ)

)
for some au ∈ F2. Since we also have cr(−TQ) = brh

r for some br ∈ F2 with b0 = 1 ([2,
Lem. 78.1]), it follows from (7.3) that

Sl(η) = (πP )∗
(
(h0 × hm−j+i−l) · Sl(γ)

)
+

l∑
u=1

cu(πP )∗
(
(h0 × hm−j+i−l+u) · Sl−u(γ)

)
for some elements cu ∈ F2. Letting du be an integral lift of cu, we get that Sl(η) is
represented by the integral class

(πP )∗
(
(H0 ×Hm−j+i−l) · tl

)
+

l∑
u=1

du(πP )∗
(
(H0 ×Hm−j+i−l+u) · tl−u

)
∈ CHdP +j−i(P )

Thus, by the discussion preceding (7.3), the left side of (7.2) (for the given l) is congruent
to

−
l∑

u=1

dudegdP +j−i

(
(πP )∗

(
(H0 ×Hm−j+i−l+u) · tl−u

))
modulo 4. The validity of (7.2) (for the given l) then follows from the induction hypothesis.
This completes the proof of the proposition. �
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Remark 7.3. As indicated above, the proof of this proposition stems from [24] (and [14,
Proof of Thm. 1.2]). The existence of the extension K/F is used here to handle Steenrod
operations of smaller degree than those considered (implicitly) in [24]. Note that if X is
a smooth projective quadric over a field, and η ∈ Ch(X) the mod-2 reduction of a torsion
element of CH(X), then a cycle obtained from η by the application of a Steenrod operation
need not be represented by an element of degree divisible by 4 (see, e.g., [5, Rem. 5.1]).
It is for this reason that we are imposing condition (3) on K/F .

8. Proof of the main theorem

We now proceed to prove our main result. We continue with the set-up and notation
of sections 6 and 7. Recall here that k = dim((qF (p))an) = dim(q)− 2iW (qF (p)). Since the
statement of Conjecture 1.1 holds trivially if k ≥ 2s− 1, we will assume for the remainder
of this section that k ≤ 2s − 2. We can also assume that dim(q) > k (i.e., that qF (p) is
isotropic). As discussed in the proof of Proposition 6.1, it then follows from the separation
theorem and Karpenko’s theorem on the values of the first higher Witt index ([12], [18,
Prop. 10.4]) that dim(q) ≥ 2s+1 − k. In particular, we have dQ > k. We begin by noting
the following reformulation of our conjecture:

Lemma 8.1. Conjecture 1.1 holds for the pair (p, q) if and only if(
(dim(q) + k)/2

j

)
≡ 0 (mod 2) (8.1)

for all
(
dQ+k

2

)
− 2s + 2 ≤ j ≤ dQ−k

2 . In this case, the integer a appearing in the statement

of the conjecture is even if and only if (8.1) also holds for j =
(
dQ+k

2

)
− 2s + 1.

Proof. If l =
(

dim(q)+k
2

)
− j, then(

dQ + k

2

)
− 2s + 2 ≤ j ≤

dQ − k
2

⇔ k < l < 2s.

The condition in the statement of the lemma is therefore equivalent to the condition that(
(dim(q) + k)/2

l

)
≡ 0 (mod 2)

for all k < l < 2s. By a basic fact on the parity of binomial coefficients (see, e.g., [22,
Lem. 3.4.2]), however, the latter holds if and only if

dim(q) + k

2
= a2s + µ

for some non-negative integer a and some 0 ≤ µ ≤ k, i.e., if and only if

dim(q) = a2s+1 + ε

for some non-negative integer a and some −k ≤ ε ≤ k. Furthermore, the integer a is even

if and only if
(

(dim(q)+k)/2
2s

)
is even, i.e., (8.1) also holds for j =

(
dQ+k

2

)
− 2s + 1. �

We are going to use Propositions 6.1 and 7.1 to show that the condition of the lemma
(and hence the statement of Conjecture 1.1) is satisfied under the hypotheses of Theorem
1.2. To this end, let B be the standard basis of Ch(P ×Q) discussed in §3.A above.
Since iW (qF (p)) = (dim(q) − k)/2 = (dQ − k)/2 + 1, the element l(dQ−k)/2 ∈ Ch(Q) is

F (p)-rational (Lemma 2.3). By Lemma 3.1, it follows that there exists an F -rational class
α ∈ Ch(P ×Q) involving the element h0× l(dQ−k)/2 ∈ B. Among all such α, let us now fix
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one involving the least number of elements of B possible. Note then that α is homogeneous
of codimension (dQ + k)/2. The basic observation here is the following:

Proposition 8.2. Suppose, in the above situation, that dim(p) > 2k − 2s−1. Then either

• α = h0 × l(dQ−k)/2, or

• α involves the element li1(p)−1 × h(dQ+k)/2−dP +i1(p)−1 ∈ B.

Remarks 8.3. The assumption that dim(p) > 2k−2s−1 is important for the argument that
follows; this (partly) explains the condition on dim(p) in Theorem 1.2. We also remark
here that the second of the two outcomes for α can occur only when p is a maximal
splitting form, i.e., when i1(p) = dim(p)− 2s.

Proof. Assume that α does not involve the element li1(p)−1 × h(dQ+k)/2−dP +i1(p)−1. It

then follows that α involves no element of the form li × hj with i < i1(p). Indeed, if
ν ∈ ChdP (P ×P ) is (mod-2 reduction of) the idempotent correspondence that determines
the upper motive of P , then the minimality property of α gives that α = α ◦ ν (note that
ν involves h0× l0). Since ν does not involve any terms of the form li×hi with i < i1(p)−1
(see [23, Thm. 4.13] or [2, §73]), the claim follows.

Now, let C be the subset of B consisting of standard basis elements of codimension
(dQ + k)/2. Explicitly, C consists of the following elements:

• hi × hj , where 0 ≤ i ≤ nP , 0 ≤ j ≤ nQ and i+ j = (dQ + k)/2;
• hi × lj , where 0 ≤ i ≤ nQ − (dQ − k)/2 and j − i = (dQ − k)/2;
• li × hj , where 0 ≤ i ≤ nP and i− j = dP − (dQ + k)/2.

Let β ∈ C with β 6= h0 × l(dQ−k)/2. To prove the proposition, we have to show that α

does not involve β. If β is F -rational (i.e., if β = hi × hj for some i, j), then this is
immediate from the minimality property of α. We may therefore assume that β belongs
to either the second of third class of elements of C listed above. Here, we will argue as
follows: Assuming that α does involve β, we will use the results of §4 and §5 to split off
a direct summand in the motive of P (here with F2 coefficients) having the property that
the restriction of α to the complementary direct summand still involves h0× l(dQ−k)/2, but

fewer of the remaining elements of C than α itself (thereby contradicting the minimality
property of α). For the sake of simplicity, we will avoid making the motivic interpretation
explicit and work only on the level of cycles. In order to make this argument precise, it
will be necessary to separate various cases and subcases.

Case 1. β = li × hj for some i, j with j ≤ (dQ − k)/2 (and i − j = dP − (dQ + k)/2). In
this case, the element

γ := α · (h0 × h(dQ−k)/2−j) ∈ Ch(P ×Q)

involves li×h(dQ−k)/2, and so the F -rational correspondence η := γt ◦α ∈ ChdP +i(P × P )
involves h0× li. By Proposition 3.4 (1) however, this implies that i < i1(p), and hence con-
tradicts our earlier observation that α involves no terms of the form li×hj with i < i1(p).
We can therefore conclude that α does not involve β in this case.

Case 2. β = hi× lj for some i, j satisfying 1 ≤ i ≤ nQ− (dQ−k)/2 and j− i = (dQ−k)/2.
Suppose, to the contrary, that α involves β. Let F = F0 ⊂ F1 ⊂ · · · ⊂ Fh(p) be the
Knebusch splitting tower of p. By Lemma 3.3 (with X1 = Q and X = P ), there then
exists 2 ≤ l ≤ h(p) such that dim(pl−1) ≥ dim(p)− 2i and dim((qFl

)an) ≤ k− 2i. In what
follows, we fix the smallest such l. We also set ψ = (qF (p))an. Then dim(ψ) = k, and we
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have iW (ψFl
) ≥ i by the definition of l. We now consider three subcases:

Subcase 2a. k − 2i ≥ 2s−1. Let ψ′ ⊂ ψ be a subform of dimension k − i + 1. since
iW (ψFl

) ≥ i, ψ′ becomes isotropic over Fl. Let 2 ≤ r ≤ l be minimal so that ψ′ becomes
isotropic over Fr. Since dim(ψ′) ≤ dim(ψ) = k < 2s, the separation theorem then implies
that dim(pr−1) ≤ 2s. Let us write dim(pr−1) = 2s−1 +m for some integer m ≤ 2s−1. We
claim that, with r and m as given, the form p satisfies the conditions of Corollary 5.3.
First, we have

m = dim(pr−1)− 2s−1 ≥ dim(pl−1)− 2s−1

≥ dim(p)− 2i− 2s−1

> max(2s, 2k − 2s−1)− 2i− 2s−1

≥ max(2s, 2k − 2s−1)− (k − 2s−1)− 2s−1

= max(2s, 2k − 2s−1)− k
≥ 2s−2.

Rearranging the preceding inequalities then gives

dim(p) ≤ 2i+ 2s−1 +m ≤ k +m

< 2s +m

≤ 2s−1 + 3m

= max(2s−1 + 3m, 2s +m).

Now, since ψ′ is anisotropic over Fr−1, but isotropic over Fr, a theorem of Karpenko and
Merkurjev ([16, Thm. 4.1] or [2, Thm. 76.5]) implies that

ir(p) = i1(pr−1) ≥ dim(pr−1)− dim(ψ′) + 1 = dim(pr−1)− k + i.

In particular, we have

dim(pr) = dim(pr−1)− 2ir(p) ≤ dim(pr−1)− 2(dim(pr−1)− k + i)

= 2k − (dim(pr−1) + 2i)

≤ 2k − (dim(pl−1) + 2i)

≤ 2k − dim(p)

< 2k − (2k − 2s−1)

= 2s−1.

This proves our claim, so we can conclude that ir(p) = m and that

(hjr−1(p) × ljr(p)−1) + (ljr(p)−1 × hjr−1(p)) ∈ Ch(P × P )

is F -rational. Now, since

dim(p)− 2i > 2k − 2s−1 − 2i > k > 2s−1,

we have dim(pr) < dim(p) − 2i ≤ dim(pr−1), and so jr−1(p) ≤ i < jr(p). Thus, multi-

plying the preceding cycle class through by hi × hjr(p)−i−1 ∈ Ch(P × P ), we get that the
correspondence

η = (hi × li) + (ljr(p)−i−1 × hjr(p)−i−1) ∈ ChdP (P × P )

is F -rational. In particular, the element

α− α ◦ η ∈ Ch(P ×Q)
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is F -rational. Note, however, that this contradicts the minimality property of α. In-
deed, since i > 0, the constructed element involves h0 × l(dQ−k)/2, but not β = hi × lj
nor any element of B that is not involved in α. We conclude that this subcase cannot occur.

Subcase 2b. 2s − k ≤ k − 2i < 2s−1. We claim in this subcase that there exists a field
extension K/F such that if σ = (qK)an and τ = (pK)an, then:

(a) 2s−1 < dim(σ), dim(τ) ≤ 2s;
(b) dim(σ)− i1(σ) = 2s−1; and
(c) dim((σK(τ))an) ≤ k − 2i < 2s−1.

Note first that 2s−1 + i ≤ k < 2s by assumption. Since i > 0, and since dim(ψ) = k, the
splitting pattern of q therefore contains an integer in the open interval (2s−1, 2s). We can
now define K as follows: Take K ′ to be the largest field in the Knebusch splitting tower
of q for which (qK′)an has dimension > 2s−1, and then take K to be the largest field in
the Knebusch splitting tower of pK′ over which (qK′)an remains anisotropic. Define σ and
τ as above. It is then clear that 2s−1 < dim(σ) < 2s, and since σK(τ) is isotropic (by the
choice of K), the separation theorem then gives that dim(τ) ≤ 2s. On the other hand,
since the dimension of the anisotropic part of q over the composite field K · Fl is at most
k − 2i < 2s−1, σ becomes isotropic over K · Lr. By the definition of K, it follows that
dim(τ) ≥ dim(pl−1). But

dim(pl−1) ≥ dim(p)− 2i > 2k − 2s−1 − 2i ≥ 2(2s−1 + i)− 2s−1 − 2i = 2s−1,

and so condition (a) is satisfied, i.e., 2s−1 < dim(σ), dim(τ) ≤ 2s. At the same time, if L/K
is a field extension for which dim((qL)an) ≤ 2s−1, then we must have that dim((qL)an) ≤ k−
2i. Indeed, if k − 2i < dim((qL)an) ≤ 2s−1, then dim((qL)an) would become isotropic over
the composite field L ·Fl, thereby contradicting the separation theorem (since dim(pl−1) >
2s−1). It follows that (c) is satisfied. Moreover, since dim(σ1) ≤ 2s−1 by the definition of
K, we get that dim(σ1) ≤ k − 2i < 2s−1. By Karpenko’s theorem on the values of the
first higher Witt index ([12], [18, Prop. 10.4]), it follows that dim(σ)− i1(σ) = 2s−1, i.e.,
condition (b) is also satisfied, and so our claim is proved. By Theorem 4.3, it follows that
the forms σ and τ are stably birational equivalent, and that dim(τ) − i1(τ) = dim(σ) −
i1(σ) = 2s−1 (see Proposition 4.1). Now, since dim(τ) = dim(p)−2iW (pK), the inequalities

dim(p)− 2i ≤ dim(pl−1) ≤ dim(τ) and 2s − dim(τ) < 2s−1 < dim(p)− 2i

imply that
iW (pK) ≤ i < dim(p)− 2s−1 − iW (pK).

Similarly, since dim(σ) = dim(q)− 2iW (qK), and since j = i+ (dQ− k)/2, the inequalities

k − 2i < 2s−1 < dim(σ) and 2s − dim(σ) = dim(σ1) ≤ k − 2i

give that
iW (qK) ≤ j < dim(q)− 2s−1 − iW (qK).

By Proposition 4.2 (with d = 2s−1), it follows that α involves the standard basis element

ldim(p)−2s−1−i−1 × hdim(q)−2s−1−j−1.

Noting that

i ≤ dim(p)− 2s−1 − i− 1 and dim(q)− 2s−1 − j − 1 ≤ j.
(the first inequality says that dim(p)− 2i > 2s−1, and the second that k − 2i < 2s−1), we
can then consider the F -rational element

γ = α · (h(dim(p)−2s−1−i−1)−i × hj−(dim(q)−2s−1−j−1)) ∈ Ch(P ×Q).
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Now, by construction, the correspondence η = γt◦α ∈ ChdP (P × P ) involves the standard
basis element hi× li, but does not involve h0× l0. Indeed, in order for η to involve h0× l0,
we would require α to involve a term of the form la × hb with b ≤ (dQ − k)/2 (see the
definition of γ). By Case 2, however, α does not involve any such terms. As a result, we
see that the F -rational cycle class

α− α ◦ η ∈ Ch(P ×Q)

involves h0× l(dQ−k)/2, but not β = hi× lj nor any element of B that is not involved in α.
As this contradicts the minimality property of α, we can also conclude that this subcase
does not occur.

Subcase 2c. k − 2i < min(2s − k, 2s−1). In this subcase, we claim that there exists a field
extension K/F such that if σ = (qK)an and τ = (pK)an, then:

(a) 2s−2 < dim(σ), dim(τ) ≤ 2s−1;
(b) dim(σ)− i1(σ) = 2s−2; and
(c) dim((σK(τ))an) ≤ k − 2i < 2s−2.

We first observe that the splitting pattern of q contains an integer in the interval (k −
2i, 2s−1). This is clear if k = dim(ψ) < 2s, so we can assume that 2s−1 ≤ dim(ψ) < 2s.
Let 0 ≤ m ≤ k− 2s−1 be such that 2s−1 +m is the smallest integer ≥ 2s−1 in the splitting
pattern of q. The theorem on the values of the first higher Witt index then implies that
the next smallest integer in the splitting pattern of q is 2s−1−m, and this must be ≤ k−2i
by assumption. But this implies that

k − 2i ≥ 2s−1 −m ≥ 2s−1 − (k − 2s−1) = 2s − k,

contrary to the standing hypothesis. Thus, there exists an extension F ′/F such that
dim((qF ′)an) ∈ (k−2i, 2s−1). Since (qF ′·Fl

)an has dimension at most k−2i, the separation
theorem then implies that dim(pl−1) ≤ 2s−1. In particular, we have that dim(p) − 2i ≤
2s−1. Since dim(p) > 2s, it follows that 2i > 2s−1, and so k− 2i < min(2s− k, k− 2s−1) ≤
2s−2. Now, we have

dim(p)− 2i > max(2k − 2s−1, 2s)− 2i

≥ max(2k − 2s−1, 2s)− 2
(
nQ − (dQ − k)/2

)
≥ max(2k − 2s−1, 2s)− k
= max(k − 2s−1, 2s − k)

≥ 2s−2,

so that 2s−2 < dim(p)− 2i ≤ dim(pl−1) ≤ 2s−1. By another application of the separation
theorem, it follows that the splitting pattern of q does not contain an integer in the interval
(k−2i, 2s−2], and hence contains an integer in the open interval (2s−2, 2s−1). In summary,
we have established the following:

• k − 2i < 2s−2.
• 2s−2 < dim(p)− 2i ≤ dim(pl−1) ≤ 2s−1.
• The splitting pattern q contains an integer in the open interval (2s−2, 2s−1).

Using these observations, the same arguments used in subcase 2b now show the existence of
an extension K/F for which σ = (qK)an and τ = (pK)an satisfy conditions (a)-(c) above;
explicitly, we let K ′ be the largest field in the Knebusch splitting tower of q for which
dim((qK′)an) > 2s−2, and then take K to be the largest field in the Knebusch splitting
tower of pK′ over which (qK′)an remains anisotropic. With this choice of K, we again have
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that dim(τ) ≥ dim(pl−1). By Theorem 4.3, it follows that σ and τ are stably birational
equivalent, and that dim(τ) − i1(τ) = dim(σ)− i1(σ) = 2s−2 (see Proposition 4.1). Now,
since dim(τ) = dim(p)− 2iW (pK), the inequalities

dim(p)− 2i ≤ dim(pl−1) ≤ dim(τ) and 2s−1 − dim(τ) < 2s−2 < dim(p)− 2i

imply that

iW (pK) ≤ i < dim(p)− 2s−2 − iW (pK).

Similarly, since dim(σ) = dim(q)− 2iW (qK), and since j = i+ (dQ− k)/2, the inequalities

k − 2i < 2s−2 < dim(σ) and 2s−1 − dim(σ) = dim(σ1) ≤ k − 2i

(for the second inequality, recall that the splitting pattern of q contains no integer in the
interval (k − 2i, 2s−2]) imply that

iW (qK) ≤ j < dim(q)− 2s−1 − iW (qK).

Proposition 4.2 (with d = 2s−2) therefore implies that α involves the standard basis
element

ldim(p)−2s−2−i−1 × hdim(q)−2s−2−j−1.

Noting that

i ≤ dim(p)− 2s−2 − i− 1 and dim(q)− 2s−2 − j − 1 ≤ j
(the first inequality says that dim(p)− 2i > 2s−2 and the second that k − 2i < 2s−2), we
can then consider the F -rational element

γ = α · (h(dim(p)−2s−1−i−1)−i × hj−(dim(q)−2s−1−j−1)) ∈ Ch(P ×Q).

As in subcase 2b, the composition η = γt ◦ α ∈ ChdP (P × P ) then involves the standard
basis element hi × li, but does not involve h0 × l0. In particular, the F -rational element

α− α ◦ η ∈ Ch(P ×Q)

involves h0× l(dQ−k)/2, but not β = hi× lj nor any element of B that is not involved in α.
Since this contradicts the minimality property of α, we again conclude that this subcase
cannot occur.

Since subcases 2a-2c cover all possible values of k − 2i, we conclude that α does not
involve β = hi × lj (i.e., case 2 does not occur). We are thus left with:

Case 3. β = li × hj for some i, j satisfying 1 ≤ i ≤ nP , i − j = dP − (dQ + k)/2 and
j > (dQ−k)/2 (recall that the case where j ≤ (dQ−k)/2 was dealt with in Case 2 above).
Suppose to the contrary that α involves β, and let F = F0 ⊂ F1 ⊂ · · · ⊂ Fh(q) now
denote the Knebusch splitting pattern of q (as opposed to p). By Lemma 3.3 (now with
X1 = P and X = Q), there then exists 1 ≤ l ≤ h(q) such that dim((pFl

)an) ≤ dP − 2i and
dim(ql−1) ≥ dim(q)− 2j = (dP − 2i) + (dim(p)− k). In what follows, we fix the smallest
such l. Note that the inequality j > (dQ − k)/2 is equivalent to dim(q)− 2j ≤ k. On the
other hand, we have

dim(q)− 2j ≥ dim(p)− k > max(k − 2s−1, 2s − k) ≥ 2s−2,

and so 2s−2 < dim(q)− 2j ≤ k < 2s. Lastly, note that we then have

dP − 2i = (dim(q)− 2j)− (dim(p)− k) ≤ 2k − dim(p) < 2s−1.

We will now consider two subcases:
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Subcase 3a. dim(q) − 2j > 2s−1 (in particular, dim(ql−1) > 2s−1). Let 1 ≤ r ≤ h(p) be
minimal so that dim(pr) ≤ dP − 2i. Since dim((qFl

)an) ≤ dP − 2i, and since dim(ql−1) >
2s−1 by assumption, the separation theorem implies that dim(pr−1) > 2s−1. Suppose that
dim(pr−1) > 2s. Since dim(p) ≤ 2s+1, we can then write dim(pr−1) = 2s + m for some
1 ≤ m ≤ 2s. Now, since dim(pr) ≤ dP − 2i < 2s−1, the theorem on the values of the
first higher Witt index implies that ir(p) = i1(pr−1) = m > 2s−1. In particular, we have
dim(p) ≤ 2s+1 < min(2s + 3m, 2s+1 + m) and it(p) ≤ dim(pr)/2 < 2s−2 < ir(p) for all
r < t ≤ h(p). By Corollary 5.3, it follows that the correspondence

(hjr−1(p) × ljr(p)−1) + (ljr(p)−1 × hjr−1(p)) ∈ Ch(P × P )

is F -rational (this is equivalent to saying that the rth shell of P consists of binary motives;
see Proposition 5.5 and the remarks that precede it). Now, since dim(pr) ≤ dP − 2i <
dim(pr−1), we have jr−1(p) < i < jr(p), and so multiplying the above correspondence by

hjr(p)−i−1 × hi−jr−1(p) ∈ Ch(P × P ), we get that

η = (hjr−1(p)+jr(p)−i−1 × ljr−1(p)+jr(p)−i−1) + (li × hi) ∈ Ch(P × P )

is F -rational. If jr−1(p) + jr(p)− i− 1 = 0
(
i.e., π = (h0 × l0) + (li × hi)

)
, then we must

have that r = 1, and Proposition 4.1 (2) then implies that i = i1(p)− 1 = dim(p)− 2s− 1.
But since dP − 2i ≤ 2k − dim(p), we have

i ≥ dim(p)− (k + 1) > dim(p)− 2s,

and so this is not the case. On the other hand, if jr−1(p) + jr(p) − i − 1 > 0, then the
F -rational element

α− α ◦ η ∈ Ch(P ×Q)

involves h0 × l(dQ−k)/2, but not β = li × hi nor any element of B that is not involved in

α. Since this contradicts the minimality property of α, we conclude that dim(pr−1) 6> 2s,
i.e., 2s−1 < dim(pr−1) ≤ 2s. With this established, let K ′ be the field of definition of pr−1,
let K be the largest entry of the Knebusch splitting tower of qK′ over which pr−1 remains
anisotropic, and let σ = (qK)an and τ = (pK)an. We claim that:

(a) 2s−1 < dim(σ), dim(τ) ≤ 2s;
(b) dim(τ)− i1(τ) = 2s−1; and
(c) dim((τK(σ))an) ≤ dP − 2i < 2s−1.

Since dim(τ) = dim(pr−1) by definition, we have 2s−1 < dim(τ) ≤ 2s+1. Moreover, since

dim(τ1) ≤ dim(pr) ≤ dP − 2i,

the specialization results of Knebusch ([17, §3]) imply that dim((τL)an) ≤ dP − 2i < 2s−1

for any field extension L/K with the property that τL is isotropic. In particular, this
applies to L = K(σ) (τK(σ) is isotropic by the definition of K), and so (c) holds. At
the same time, it also applies to L = K(τ), and statement (b) is then a consequence
of the theorem on the values of the first higher Witt index. With (a)-(c) established, it
now follows from Theorem 4.3 that σ and τ are stably birational equivalent, and that
dim(σ) − i1(σ) = dim(τ) − i1(τ) = 2s−1 (see Proposition 4.1). Now, since dim(τ) =
dim(p)− 2iW (pK), the inequalities

dim(τ) = dim(pr−1) > dP − 2i and 2s − dim(τ) = dim(τ1) ≤ dP − 2i

imply that
iW (pK) ≤ i < dim(p)− 2s−1 − iW (pK).

At the same time, we also have

iW (qK) ≤ j < dim(q)− 2s−1 − iW (qK).
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Indeed, since dim((pFl
)an) ≤ dP − 2i, we have dim(σ) ≥ dim(ql−1) > dim(q) − 2j by the

definition of K. Since dim(σ) = dim(q)− 2iW (qK), this gives the first inequality, and the
second follows from the fact that 2s−dim(σ) < 2s−1 ≤ dim(q)−2j. In view of Proposition
4.2, we conclude from the preceding discussion that α involves the standard basis element

hdim(p)−2s−1−i−1 × ldim(q)−2s−1−j−1.

By Case 2, this is possible only if dim(p)−2s−1− i−1 = 0. But the latter equality implies
that

2i = 2dim(p)− 2s − 2 > dim(p)− 2 = dP ,

which is impossible. We can therefore conclude that this subcase does not occur.

Subcase 3b. dim(q)− 2j ≤ 2s−1. In this subcase, we have that

dP − 2i = (dim(q)− 2j)− (dim(p)− k) ≤ 2s−1 −max(k − 2s−1, 2s − k) < 2s−2.

As in the previous subcase, let 1 ≤ r ≤ h(p) be minimal so that dim(pr) ≤ dP − 2i. Since
dim((pFl

)an) ≤ dP −2i < 2s−2, and since dim(ql−1) > 2s−2, the separation theorem implies
that dim(pr−1) > 2s−2. Suppose that dim(pr−1) > 2s−1, and write dim(pr−1) = 2n + m
for unique integers n ∈ {s − 1, s} and 1 ≤ m ≤ 2n. Since dim(pr) < 2s−2, the theorem
on the values of the first higher Witt index gives that ir(p) = i1(pr−1) = m > 2s−2. In
particular, m > 2n−1 and so min(2n + 3m, 2n+1 +m) = 2n+1 +m. If dim(p) > 2n+1 +m,
then

dim(q)− 2j = (dP − 2i) + (dim(p)− k)

> dim(pr) + (2n+1 +m− k)

= (2n −m) + (2n+1 +m− k)

= 2n + (2n+1 − k)

≥ 2n + (2s − k)

> 2n,

contrary to our assumption that dim(q) − 2j ≤ 2s−1. We therefore have that dim(p) >
2n+1 +m = min(2n + 3m, 2n+1 +m). Since it(p) ≤ dim(pr)/2 < 2s−3 < m = ir(p) for all
r < t ≤ h(p), Corollary 5.3 now implies that the correspondence

(hjr−1(p) × ljr(p)−1) + (ljr(p)−1 × hjr−1(p)) ∈ Ch(P × P )

is F -rational (again, this is equivalent to saying that the rth shell of P consists of binary
motives). Now, since dim(pr) ≤ dP − 2i < dim(pr−1), we have jr−1(p) < i < jr(p), and so

multiplying the above correspondence by hjr(p)−i−1 × hi−jr−1(p) ∈ Ch(P × P ), we get that

η = (hjr−1(p)+jr(p)−i−1 × ljr−1(p)+jr(p)−i−1) + (li × hi) ∈ Ch(P × P )

is F -rational. If jr−1(p) + jr(p)− i− 1 = 0
(
i.e., π = (h0 × l0) + (li × hi)

)
, then we must

have that r = 1, and Proposition 3.4 (2) then implies that i = i1(p)− 1 = dim(p)− 2n− 1.
This is impossible: indeed, as noted in the previous subcase, we have i > dim(p)− 2s. In
particular, the stated equality implies that i1(p) = dim(p) − 2s−1, thereby contradicting
the separation theorem (the latter implies that i1(p) ≤ dim(p)− 2s). On the other hand,
if jr−1(p) + jr(p)− i− 1 > 0, then the F -rational element

α− α ◦ η ∈ Ch(P ×Q)

involves h0× l(dQ−k)/2, but not β = li× hj nor any element of B that is not involved in α.

Since this contradicts the minimality property of α, we conclude that dim(pr−1) 6> 2s−1,
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and so 2s−2 < dim(pr−1) ≤ 2s−1. Now, let K ′ be the field of definition of pr−1, let K be the
largest entry in the Knebusch splitting tower of qK′ over which pr−1 remains anisotropic,
and let σ = (qK)an and τ = (pK)an. The same argument used in subcase 3a above then
gives that:

(a) 2s−2 < dim(σ), dim(τ) ≤ 2s−1;
(b) dim(τ)− i1(τ) = 2s−2; and
(c) dim((τK(σ))an) ≤ dP − 2i < 2s−2.

By Theorem 4.3, it follows that σ and τ are stably birational equivalent, and that dim(σ)−
i1(σ) = dim(τ) − i1(τ) = 2s−2 (see Proposition 4.1). Now, since dim(τ) = dim(p) −
2iW (pK), the inequalities

dim(τ) = dim(pr−1) > dP − 2i and 2s−1 − dim(τ) = dim(τ1) ≤ dP − 2i

imply that

iW (pK) ≤ i < dim(p)− 2s−2 − iW (pK).

At the same time, we also have that

iW (qK) ≤ j < dim(q)− 2s−2 − iW (qK).

Indeed, since dim((pFl
)an) ≤ dP − 2i, we have dim(σ) ≥ dim(ql−1) ≥ dim(q) − 2j by the

definition of K. Since dim(σ) = dim(q) − 2iW (qK), this gives the first inequality, and
the second follows from the fact that 2s−1 − dim(σ) < 2s−2 < dim(q) − 2j. In view of
Proposition 4.2, we conclude from the preceding discussion that α involves the standard
basis element

hdim(p)−2s−2−i−1 × ldim(q)−2s−2−j−1.

By Case 2, this is possible only if dim(p)−2s−2− i−1 = 0. But the latter equality implies
that

2i = 2dim(p)− 2s−1 − 2 > dim(p)− 2 = dP ,

which is impossible. We can therefore conclude that this subcase does not occur.

Since dim(q) − 2j ≤ 2s−1, subcases 3a and 3b cover all possible values of j, and so
we can conclude that α does not involve β = li × hj , i.e., case 3 does not occur. This
completes the proof of the proposition. �

Proposition 8.2 is the first step towards being able to apply the technical Proposition
7.1 to our situation. We still need, however, to be able to deal with condition (3) in the
statement of the latter. To this end, we first note that this condition is automatically
satisfied if the codimension of the given cycle class is small enough:

Lemma 8.4. Let Y be a smooth projective quadric over a field L, and let i be an integer

≤ dim(Y )
4 . If γ ∈ Chi(Y ) is represented by a torsion element of CHi(Y ), then Sj(γ) ∈

Chi+j(Y ) is represented by a torsion element of CHi+j(Y ) for any j ≥ 0.

Proof. By [2, Thm. 61.13], we have

Sj(γ) =

{
γ2 if j = i

0 if j > i,

and so the statement holds when j ≥ i. Assume now that j < i. Since γ is represented by a
torsion element of CHi(Y ), and since Steenrod operations commute with scalar extension,

we have Sj(γ) = 0 in Chi+j(Y ). In particular, if µ ∈ CHi+j(Y ) is an integral representative

of Sj(γ), then µ ∈ 2CHi+j(Y ). On the other hand, since j < i, the inequality i ≤ dim(Y )
4
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implies that i + j < dim(Y )/2, and so µ = 2aH i+j for some integer a (see §2.C above).
The element µ− 2aH i+j ∈ CHi+j(Y ) is then a torsion class representing Sj(γ). �

Remark 8.5. We cannot avoid making some assumption on the codimension of γ here (cf.
Remark 7.3).

Now, to handle condition (3) of Proposition 7.1, we will use the following consequence
of this lemma:

Lemma 8.6. Let L, Y , i and γ be as in Lemma 8.4. Let ϕ be a quadratic form of dimen-
sion ≥ 2 over L, and let X denote its associated (smooth) projective quadric. Suppose we
are given a mod-2 Chow correspondence θ ∈ Chd(Y ×X) (for some d ≥ 0) and an inte-
gral representative σ of the element Sb

(
θ∗(γ)

)
∈ Chd−i−b(X), where b is a non-negative

integer. If iW (ϕ) ≤ d− i− b, then degd−i−b(σ) ≡ 0 (mod 4).

Proof. Since iW (ϕ) ≤ d − i − b, we have degd−i−b
(
CHd−i−b(X)

)
= 2Z (Lemma 2.3). In

view of Lemma 2.2 (3), it thus suffices to show that Sb
(
θ∗(γ)

)
is represented by a torsion

element of CHd−i−b(X). This follows immediately from Lemma 8.4 together with Lemma
10.2 in the appendix below. �

We will now apply this to our given form p over F . Recall again that U(P ) denotes the
upper motive of the quadric P (see §3.E). The result we need here is the following:

Proposition 8.7. Suppose, in the above situation, that char(F ) 6= 2, and that K/F is
a field extension preserving the anisotropy of p and all of its higher Witt indices. Let

a be an integer ≤ min
((

dP +1
4

)
+ 2s−3, 2s−1 − 1

)
, and let η ∈ Cha(PK) be the mod-2

reduction of a torsion element of CHa(U(P )K). Then degdP−a−b(µ) ≡ 0 (mod 4) for any

pair (b, µ) consisting of an integer b ≥ 0 and an integral representative µ ∈ CHa+b(PK) of

Sb(η) ∈ Cha+b(PK).

Proof. Let us assume first that K = F . As in the proof of Lemma 8.4, [2, Thm. 61.13]
gives that Sb(η) is represented by a torsion element of CHa+b(P ) for all b ≥ a. Thus,
for all such b, the congruence degdP−a−b(µ) ≡ 0 (mod 4) follows from Lemma 2.2 (3) and
Lemma 2.3 (remember that p is anisotropic). Assume now that b < a, so that

dP − a− b ≥ dP − 2a+ 1

≥ dP − 2

(
min

((
dP + 1

4

)
+ 2s−3

)
, 2s−1 − 1

)
+ 1

= max

((
dP − 1

2

)
− 2s−2 + 1, dP − 2s + 3

)
. (8.2)

Let F = F0 ⊂ F1 ⊂ · · · ⊂ Fh(p) be the Knebusch splitting tower of p, and let r be the
largest non-negative integer for which jr−1(p) ≤ dP−a−b. Let X ′ be the projective quadric
defined by the vanishing of pr−1 over Fr−1. Considering the motivic decomposition (3.1)
for PFr−1 , we find a correspondence in : CHdP−jr−1(p)(X

′ × PFr−1) with the property that
the push-forward (in)∗ : CH(X ′)→ CH(PFr−1) identifies the torsion subgroups of CH(X ′)

and CH(PFr−1) (this is the correspondence inPFr−1 considered in §2.E). Passing to Chow

groups modulo 2, it follows that ηFr−1 = (in)∗(γ0), where γ0 ∈ Cha−jr−1(p)(X ′) is the

mod-2 reduction of a torsion element of CHa−jr−1(p)(X ′) (and in now denotes the mod-2
reduction of the integral correspondence considered above). We separate two cases.
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Case 1. dim(pr−1) ≤ 2dP − 4a+ 2. In this case, we have

4
(
a− jr−1(p)

)
= 4

(
a−

(
dim(p)− dim(pr−1)

2

))
= 4a− 2dim(p) + 2dim(pr−1)

= 4a− 2dP + 2dim(pr−1)− 4

≤ dim(pr−1)− 2

= dim(X ′).

At the same time, we have

iW (pFr−1) = jr−1(p) ≤ dP − a− b
=

(
dP − jr−1(p)

)
−
(
a− jr−1(p)

)
− b,

and so the conditions of Lemma 8.6 are satisfied for the following data:

L = Fr−1; Y = X ′; ϕ = pFr−1 ; X = PFr−1 ; i = a− jr−1(p);

d = dP − jr−1(p); γ = γ0; θ = in; σ = ηFr−1 .

It follows that degdP−a−b(µFr−1) ≡ 0 (mod 4), and since degdP−a−b(µ) does not change
under scalar extension, this proves what we want.

Case 2. dim(pr−1) ≥ 2dP − 4a+ 3. In this case, we have

dim(pr−1) ≥ 2dP − 4

(
min

((
dP + 1

4

)
+ 2s−3, 2s−1 − 1

))
+ 3

= max
(
dP − 2s−1 + 2, 2dP − 2s+1 + 7

)
= max

(
dim(p)− 2s−1, 2dim(p)− 2s+1 + 3

)
. (8.3)

In particular, if dim(p) ≥ 2s + 2s−1, then dim(pr−1) ≥ 2s + 1. By the separation theorem,
we then have that i1(pr−1) ≤ dim(pr−1)− 2s, and hence

jr(p) = jr−1(p) + i1(pr−1) =

(
dim(p)− dim(pr−1)

2

)
+ i1(pr−1) ≤ dim(p)− 2s.

This is impossible, however. Indeed, we have jr(p) > dP−a−b by our choice of r, and (8.2)
implies that dP − a− b > dim(p)− 2s. We must therefore have that dim(p) < 2s + 2s−1.
Now, since jr(p) > dP − a− b, another application of (8.2) gives that

dim(pr) = dim(p)− 2jr(p)

≤ dim(p)− 2(dP − a− b+ 1)

= dP − 2(dP − a− b)

≤ dP − 2

((
dP − 1

2

)
− 2s−2 + 1

)
= 2s−1 − 1.

On the other hand, (8.3) tells us that dim(pr−1) > 2s−1 (since dim(p) > 2s). By
Karpenko’s theorem on the values of the first higher Witt index ([12], [18, Prop. 10.4]),
it follows that pr−1 is a maximal splitting form, i.e., dim(pr−1) − i1(pr−1) is equal to
the largest power of 2 less than dim(pr−1). Since dim(p) < 2s + 2s−1, the inequality
dim(pr) < 2s−1 forces that 2s−1 < dim(pr−1) ≤ 2s, and so dim(pr−1) − i1(pr−1) = 2s−1.
By a result of Hoffmann ([6, Cor. 3]), there then exists an extension L/Fr−1 over which
pr−1 remains anisotropic, but becomes a neighbour of an s-fold Pfister form π (here we are
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using that char(F ) 6= 2). Let ψ denote the complementary form subform of π, and let Z
be the projective quadric over L defined by its vanishing (assuming that ψ has dimension
≥ 1). By a theorem of Rost ([19, Prop. 4] or [15, Thm. 7.1]), we then have that

M(X ′L) ∼=

dim(pr−1)−2s−1−1⊕
l=0

Rπ{l}

⊕M(Z){dim(pr−1)− 2s−1} (8.4)

in Chow(L), Rπ being the Rost motive associated to π. Consider the correspondence
θ ∈ CH2s−1+jr−1(p)−2(Z×XL) giving the inclusion of M(Z){jr−1(p)+dim(pr−1)−2s−1} as
a direct summand of M(XL). We claim that ηL = θ∗(γ), where γ is the mod-2 reduction

of a torsion element of CH2s−1+jr−1(p)+a−dP−2(Z) (and θ now denotes the mod-2 reduction
of the integral correspondence considered above). Before proving this, let us show how it
completes the proof by way of Lemma 8.6: Observe first that

2s−1 + jr−1(p) + a− dP − 2 ≤ dim(Z)

4
.

Indeed, suppose that this is not the case. Since dim(Z) = 2s − dim(pr−1) − 2, we then
have that

4(2s−1 + jr−1(p) + a− dP − 2) > 2s − dim(pr−1)− 2

Rearranging this inequality
(
and using that dim(pr−1) = dim(p)− 2jr−1(p)

)
, we get

3dP − 2s − 2jr−1(p) + 4 < 4a.

Together with our standing assumption on a, this yields

3dP − 2s − 2jr−1(p) + 4 < 4

((
dP + 1

4

)
+ 2s−3

)
= dP + 2s−1 + 1,

which simplifies to 2jr−1(p) ≥ 2dim(p)− (2s + 2s−1). But we then have

dim(pr−1) = dim(p)− 2jr−1(p)

≤ 2s + 2s−1 − dim(p)

< 2s + 2s−1 − 2s

= 2s−1,

contrary to the established inequality dim(pr−1) ≥ 2s−1 + 1. This proves the claim on the
codimension of γ. At the same time, the anisotropy of (pr−1)L gives that

iW (pL) = iW (pFr−1) = jr−1(p)

≤ dP − a− b
= (2s−1 + jr−1(p)− 2)− (2s−1 + jr−1(p) + a− dP − 2)− b

and so the conditions of Lemma 8.6 are satisfied for the following data (with L, γ and θ
as given):

Y = Z; ϕ = pL; X = PL; i = 2s−1 + jr−1(p) + a− dP − 2;

d = 2s−1 + jr−1(p)− 2; σ = ηL.

It then follows that degr−a(µ) = degr−a(µL) ≡ 0 (mod 4), as desired. It remains to
prove our claim that ηL is induced from the mod-2 reduction of a torsion element of
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CH2s−1+jr−1(p)+a−dP−2(Z). To this end, we consider the direct summand

N :=

dim(pr−1)−2s−1−1⊕
l=0

Rπ{l}

of M(X ′L) from (8.4). We must again treat two cases separately.

Subcase 1. jr−1(p) ≥ a− 2s−2 + 1. In this case, we have

dim(X ′)−
(
a− jr−1(p)

)
≥ dim(X ′)− (2s−2 − 1)

= dim(pr−1)− 2s−2 − 1

= (2s−2 − 1) + (dim(pr−1)− 2s−1).

Now, by another result of Rost, the group CHt(Rπ) is torsion free for all t ≥ 2s−2 (see
[19, Thm. 5] or [15, Cor. 8.2]; here we are again using that char(F ) 6= 2). Setting u :=
dim(X ′)−

(
a−jr−1(p)

)
, it follows that the group CHu(N) is torsion free. But then (8.4) im-

plies that the pushforward θ∗ identifies the torsion subgroups of CHu−(dim(pr−1)−2s−1)(Z) =

CH2s−1+jr−1(p)+a−dP−2(Z) and CHa(PL). This proves the claim in this case.

Subcase 2. jr−1(p) ≤ a− 2s−2. Let 0 ≤ m ≤ 2s−1 be such that dim(pr−1) = 2s−1 +m. In
this case, we then have that

m = dim(pr−1)− 2s−1 = dim(p)− 2jr−1(p)− 2s−1

≥ dim(p)− 2(a− 2s−2)− 2s−1

= dim(p)− 2a

≥ dim(p)− 2

((
dP + 1

4

)
+ 2s−3

)
= dP + 2−

(
dP + 1

2

)
− 2s−2

=

(
dP + 3

2

)
− 2s−2

≥
(

2s + 2

2

)
− 2s−2

= 2s−2 + 1.

Using the inequality a ≤ 2s−1 − 1, we deduce that

dim(p) = 2s−1 +m+ 2jr−1(p) ≤ 2s−1 +m+ 2(a− 2s−2)

= m+ 2a

< 2s +m

= min(2s−1 + 3m, 2s +m)

(the last equality being valid since m > 2s−2). Since dim(pr) < 2s−1, it then follows from

Corollary 5.3 that the direct summand N of M(X ′L) descends to a direct summand Ñ
of M(X). Now, because dim(p) > 2s > dim(pr−1), the upper motive U(P ) is a direct

summand of the complementary direct summand of Ñ . By (8.4) (and (3.1) applied to
XL), it follows that U(P )L is isomorphic to a direct sum of Tate motives and a direct
summand of M(Z){jr−1(p) + dim(pr−1) − 2s−1}. Since ηL ∈ CHa(U(P )L), this again
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implies that ηL = θ∗(γ), where where γ is the mod-2 reduction of a torsion element of

CH2s−1+jr−1(p)+a−dP−2(Z), as desired.
We have proven the proposition in the case where K = F . To treat the case where

K 6= F , we simply apply the very same arguments to the form pK (which is anisotropic).
Indeed, degdP−a−b(µ) does not change under scalar extension, and the only issue that

needs to be addressed concerns the splitting of the motivic summand Ñ of M(P ) in
subcase 2 above (using Corollary 5.3): When applying the same considerations to M(PK),
we need the resulting summand to be complementary to U(P )K

(
which could be larger

than U(PK)
)
. This is ensured, however, by our assumption that pK has the same higher

Witt indices as p: Indeed, under this assumption, Corollary 5.3 can be applied to P ,
showing that the relevant summand of M(PK) descends to a summand of M(P )

(
which is

complementary to U(P )
)
. With this remark, the proof of the proposition is complete. �

Remark 8.8. Note that we only used the characteristic assumption on F to invoke [6,
Cor. 3] and [19, Thm. 5], and that these were only used in the situation where dim(p) <
2s−1 + 2s−2 and 2dP − 4a + 3 ≤ dim(pr−1) ≤ 2s (r being as in the proof). In particular,
the characteristic assumption is not needed if dim(p) ≥ 2s + 2s−1 or 4a < 2dP − 2s + 3.

With the preceding proposition, we are finally ready to prove Theorem 1.2, restated
here for the reader’s convenience.

Theorem 8.9. If char(F ) 6= 2, then Conjecture 1.1 holds in the case where dim(p) >
2k−2s−1. In other words, if char(F ) 6= 2 and dim(p) > 2k−2s−1, then dim(q) = a2s+1 +ε
for some integer a ≥ 0 and integer −k ≤ ε ≤ k.

Proof. Recall that we are assuming that k ≤ 2s − 2 and that dim(q) > k. Let F =
F0 ⊂ F1 ⊂ · · · ⊂ Fh(q) be the Knebusch splitting tower of q, and let 1 ≤ r ≤ h(q) be
the unique integer for which qr = (qFr)an has dimension k. As discussed in the proof of
Proposition 6.1, we then have dim(qr−1) = 2n+1 − k for some n ≥ s. If n = s, then pFr is
isotropic

(
Remark 6.2 (1)

)
, and the desired assertion follows from Proposition 6.1. Assume

now that n > s, and let K = Fr = Fr−1(qr−1). Since dim(qr−1) = 2n+1 − k > 2s+1,
the separation theorem implies that pK is anisotropic and has the same higher Witt
indices as p. Consider now the geometric correspondence α ∈ Ch(P ×Q) from Proposition
8.2 and the discussion that precedes it. We claim that α does not involve the element
li1(p)−1 × h(dQ+k)/2−dP +i1(p)−1. Suppose otherwise. Since dim(p) > 2s, it follows from the
separation theorem that i1(p) ≤ dim(p)− 2s. Using that k ≤ 2s − 2, we get that

(dQ + k)/2− dP + i1(p)− 1 ≤ (dQ + k)/2− dP + (dim(p)− 2s)− 1

= (dQ + k)/2− 2s + 1

< (dQ + k)/2− k
= (dQ − k)/2 = iW (qF (p)).

Thus, multiplying α by a suitable element of the form h?×hi1(p)−1, we see that there is an
F -rational element of Ch(P ×Q) involving l0× hiW (qF (p))−1. Since iW (qK) = iW (qF (p)), it
then follows from Lemma 3.3 that pK is isotropic, a contradiction. The claim follows, and
since dim(p) > 2k− 2s−1, it now follows from Proposition 8.2 that α = h0× l(dQ−k)/2. Let

m =
dQ−k

2 . Note that since k ≤ 2s − 2 ≤ dim(p) − 3, we have that nQ − nP < m ≤ nQ.

Since h0 × lm ∈ ChdP +m(P ×Q) is F -rational, we are in a position to attempt to apply
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Proposition 7.1. To this end, let us fix an integer
(
dQ+k

2

)
− 2s + 2 ≤ j ≤ dQ−k

2 . Note that

j >

(
dQ + k

2

)
− 2s+1 + 2 = dQ −

(
dQ − k

2

)
− 2s+1 + 2 = dQ −m− 2s+1 + 2,

i.e., j satisfies the assumption of Proposition 7.1 (with m =
dQ−k

2 ). Now, by our choice of
K, we have that

(1) iW (qK) = m+ 1, and
(2) pK is anisotropic (and so iW (pK) ≤ dP − dQ + j +m+ 1).

We claim that

(3) If a ≤ nQ −m and η ∈ Cha(PK) is the mod-2 reduction of a torsion element of
CHa(U(P )K), then degdP−a−b(µ) ≡ 0 (mod 4) for any pair (b, µ) consisting of an

integer b ≥ 0 and an integral representative µ ∈ CHa+b(PK) of Sb(η) ∈ Cha+b(PK).

This follows from Proposition 8.7: Indeed, since pK has the same higher Witt indices as
p, the latter tells us that it will be enough to check that

nQ −m ≤ min

((
dP + 1

4

)
+ 2s−3, 2s−1 − 1

)
.

But

nQ −m = nQ −
(
dQ − k

2

)
= [k/2],

and a quick calculation now shows that the needed inequality follows from our assumptions
that dim(p) > 2k− 2s−1 and k ≤ 2s− 2. Now, since (1), (2) and (3) hold, Proposition 7.1
tells us that the binomial coefficient(

dQ −m+ 1

j

)
=

(
(dim(q) + k)/2

j

)
is even. Since this holds for any

(
dQ+k

2

)
− 2s + 2 ≤ j ≤ dQ−k

2 , Lemma 8.1 then tells us

that the statement of Conjecture 1.1 holds for the pair (p, q). �

Remark 8.10. The characteristic assumption was only used to verify condition (3) above
(for the given K). In view of Remark 8.8, this condition is satisfied in any characteristic
if dim(p) ≥ 2s + 2s−1 or 4(nQ −m) < 2dP − 2s + 3. Unravelling the second condition, we
find that the characteristic assumption is not needed if dim(p) ≥ 2s + 2s−1 or k ≤ 2s−1

(note that the condition dim(p) > 2k − 2s−1 is vacuous in these cases).

9. A refinement for non-Pfister neighbours

In this last section, we point out that the above arguments allow for a refinement of
Theorem 1.2 in the case where k < 2s−1 +2s−2. We continue with the set-up and notation
of the three preceding sections. Our result is the following:

Theorem 9.1. Suppose, in the above situation, that char(F ) 6= 2 and that k < 2s−1+2s−2.
If the upper motive U(P ) is not a binary motive, then dim(q) = a2s+2 + ε for some non-
negative integer a and some −k ≤ ε ≤ k (i.e., the statement of Conjecture 1.1 holds for
the pair (p, q), but with the exponent of the 2-power raised from s+ 1 to s+ 2).

Remark 9.2. When we say that an object in Chow(F ) is binary, we mean that it becomes
isomorphic to a direct sum of exactly two Tate motives after scalar extension to F .
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Proof. Following the proof of Theorem 8.9, let F = F0 ⊂ F1 ⊂ · · · ⊂ Fh(q) be the Knebusch
splitting tower of q, and let 0 ≤ r ≤ h(q) be such that dim(qr) = k. We claim that pFr

is anisotropic. Granted this, the result is implicit in the proof of Theorem 8.9. Indeed, in
the latter, we used the anisotropy of pFr together with the inequality dim(p) > 2k − 2s−1

(which always holds if k < 2s−1 + 2s−2) to show that the binomial coefficient
(

(dim(q)+k)/2
j

)
is even for any

(
dQ+k

2

)
− 2s + 2 ≤ j ≤ dQ−k

2 . The reader will observe, however, that we

only needed here that j ≥
(
dQ+k

2

)
−2s+1 +2. Thus, if pFr is anisotropic, then the proof of

Theorem 8.9 shows that
(

(dim(q)+k)/2
j

)
is even for all

(
dQ+k

2

)
−2s+1 ≤ j ≤ dQ−k

2 , which is

precisely what we need by Lemma 8.1. To finish the proof, let us suppose to the contrary
that pFr is isotropic. By Remark 6.2 (1) and the proof of Proposition 6.1, this implies that
N := U(P ){iW (qF (p)) − 1} is isomorphic to a direct summand of M(Q). We claim that
N is a binary motive. Since N is a Tate twist of the non-binary motive U(P ), this will
give the desired contradiction. Observe, however, that ir(q) > it(q) for all r < t ≤ h(q).
Indeed, the proof of Theorem 8.9 shows that dim(qr−1) = 2s+1 − k. The former assertion
then follows readily from the inequality dim(qr) = k < 2s−1 + 2s−2 (compare the proof of
Corollary 5.3). In view of Proposition 3.4, we deduce that N must be binary, and so we
are done

(
note that N begins in the rth shell of M(Q)

)
. �

Remark 9.3. Again, the characteristic assumption is not needed if dim(p) ≥ 2s + 2s−1 or
k ≤ 2s (Remark 8.10).

Recall now (Remark 5.2) that it has been conjectured by Vishik that the upper motive
U(P ) is binary if and only p is a Pfister neighbour (the ‘if’ implication being known by
Rost). Thus, Theorem 9.1 should eventually be replaced by the following:

Conjecture 9.4. Suppose, in the above situation, that k < 2s−1 + 2s−2. If p is not a
Pfister neighbour, then dim(q) = a2s+2 + ε for some non-negative integer a and some
−k ≤ ε ≤ k (i.e., the statement of Conjecture 1.1 holds for the pair (p, q), but with the
exponent of the 2-power raised from s+ 1 to s+ 2).

Remarks 9.5. (1) By [11], Vishik’s conjecture is known to hold when char(F ) 6= 2 and
dim(p) ≤ 16. By Theorem 9.1, it follows that Conjecture 9.4 is true in the latter case.

(2) Note that the inequality k < 2s−1 + 2s−2 cannot be relaxed in Theorem 9.1 or
Conjecture 9.4. Indeed, for any integer s ≥ 2, Hoffmann has given examples of
anisotropic non-Pfister neighbours p of dimension 2s + 2s−2 with the property that
dim(p1) = dim((pF (p))an) = 2s−1 + 2s−2 (see [6, Ex. 2]). It is easy to check directly
that the upper motives of the associated quadrics are not binary in these examples.

10. Appendix

In this short appendix, we record (for lack of reference) a couple of basic facts concerning
the composition of Chow correspondences that are used in sections 7 and 8 above.

Lemma 10.1. Let X and Y be smooth projective varieties over a field, and let πX denote
the canonical projection from X×Y to X. Then, for any α ∈ CH(X×Y ), ν ∈ CH(X×X)
and σ ∈ CH(Y ), the following hold:

(1) (πX)∗(α ◦ ν) =
(
(πX)∗(α)

)
◦ ν.

(2)
(
([X]× σ) · α) ◦ ν = ([X]× σ) · (α ◦ ν).

In particular, if α ◦ ν = α, then (πX)∗
(
([X]× σ) · α

)
∈ CH(X) ◦ ν.
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Proof. If α ◦ ν = α, then
(
([X] × σ) · α

)
◦ ν = ([X] × σ) · α by (2). Replacing α with

([X] × σ) · α in (1) then yields the last statement. To prove (1) and (2), consider the
commutative diagram

X × Y
πX
��

X ×X × Yπ13oo

π12
��

f
// X ×X ×X × Y

π123
��

X X ×Xπ1
oo

g
// X ×X ×X

where g = idX × δX (δX being the diagonal embedding of X into X × X), f = g × idY
and the other maps are the natural projections.

(1) Since the right square is cartesian, and since f and g are regular embeddings of
the same codimension, we have (π12)∗ ◦ f∗ = g∗ ◦ (π123)∗ (see [2, Prop. 55.3]). By the
definition of the composition law for correspondences (see [2, §62]), we therefore have that

(πX)∗(α ◦ ν) = (πX)∗

(
(π13)∗

(
f∗(ν × α)

))
= (πX ◦ π13)∗

(
f∗(ν × α)

)
= (π1 ◦ π12)∗

(
f∗(ν × α)

)
= (π1)∗

(
(π12)∗

(
f∗(ν × α)

))
= (π1)∗

(
g∗
(
(π123)∗(ν × α)

))
= (π1)∗

(
g∗
(
ν × (πX)∗(α)

))
=

(
(πX)∗(α)

)
◦ ν,

as desired.
(2) Note that f∗([X ×X ×X]× σ) = [X ×X]× σ = (π13)∗([X]× σ). Since f∗ is a ring

homomorphism, it follows that(
([X]× σ) · α

)
◦ ν = (π13)∗

(
f∗
(
ν ×

(
([X]× σ) · α

)))
= (π13)∗

(
f∗([X ×X ×X]× σ) · f∗(ν × α)

)
= (π13)∗

(
(π13)∗([X]× σ) · f∗(ν × α)

)
= ([X]× σ) · (π13)∗

(
f∗(ν × α)

)
= ([X]× σ) · (α ◦ ν)

(here we have used the projection formula ([2, Prop. 56.9]) for the fourth equality). �

Lemma 10.2. Let X and Y be smooth projective varieties over a field, let α ∈ Ch(Y )
and let θ ∈ Ch(Y ×X). For any b ≥ 0, we then have that

Sb
(
θ∗(α)

)
=

∑
i+j+k=b

(
Sk(θ)

)
∗
(
ci(−TY ) · Sj(α)

)
,

where −TY denotes the virtual normal bundle of Y , and ci(−TY ) its ith Chern class modulo
2.

Proof. Let f = δY × idX : Y ×X → Y × Y ×X, where δY is the diagonal embedding of
Y into Y × Y , and let πX denote the canonical projection from Y ×X onto X. Using [2,
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Prop. 61.10, Thm. 61.9], we compute that

Sb
(
θ∗(α)

)
= Sb

(
(πX)∗

(
f∗(α× θ)

))
=

∑
i

(πX)∗

(
(ci(−TY )× [X]) · Sb−i

(
f∗(α× θ)

))
=

∑
i

(πX)∗

(
(ci(−TY )× [X]) · f∗

(
Sb−i(α× θ)

))
=

∑
i+j+k=b

(πX)∗

(
(ci(−TY )× [X]) · f∗

(
Sj(α)× Sk(θ)

))
=

∑
i+j+k=b

(πX)∗

(
f∗
((
ci(−TY ) · Sj(α)

)
× Sk(θ)

))
=

∑
i+j+k=b

(
Sk(θ)

)
∗
(
ci(−TY ) · Sj(α)

)
,

as desired. �
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