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Parallel vs Sequential computation

 Most of linear algebra can be done in parallel

. IS an outlier
* |ntuitively its an inherently sequential procedure
 There are theoretical reasons to believe so

* There Is an efficient sequential algorithm



P vs NC!

Class P of poly-time solvable problems

Are there problems with
which do not have ?

Modeled as circuits




Circuit complexity

/N
-
 Complexity parameters : \/
* Size : # of gates
* Depth : length of the longest path
from root to leaf
e Fanin: 2, Fan out _
 Formulas:
* Underlying DAG is a tree g
* No reuse of computation
\_ _J

* Depth = log ( Size )



Circuit complexity

Class NC'! = Poly-Size Formulas

o Efficient parallel computation (formally
CREW PRAM):

size(F) = n@W)

 Polynomially many processors depth(F) = O(log n)

* | ogarithmic computation time

In formula, depth(F) = O(log size(F’))



Circuit complexity
P vs NC' rephrased

» A Boolean function f (candidates: Perfect matching, Gaussian elimination etc)
» That can be computed in poly-time (f € P)

. Any de-Morgan formula computing it has super-poly size (f & NC')



P vs NC!
State of the art

. Andreev’87 : Q(n?>>~°W) for a function in P called the Andreev function
. Also, Andreev’87 : Q(n'1 =) ‘where T is the shrinkage exponent

» Paterson and Zwick’93: 1" > 1.63

« Hastad’98 (breakthrough): 1" > 2 — o(1)

e Tal’'14:1' =12

n3

Best I.b. for Andreev’s function (Tal’14) : €2
° loglogn

n3

Best I.b. for a function in P (Tal’16) : £
. (log log n)-



Cubic formula lower bounds

Andreev’s function

FER s,
Truth Table of a log n bit function i (2°¢" = n)
VI3V e (Vo] ) =




Cubic formula lower bounds

Hastad’s result

13
Tal'14): Q| ———
‘ log log n

 Doesn’t work if there are parity gates at bottom



Our Model A

Augmenting de-Morgan formulas

 de-Morgan formulas : leaf
gates, input literals

 Our model : leaf gates, low
communication functions




Our model

Reformulation

o Formulals]e- &

» Size s de-Morgan formula
« & : A family of Boolean functions

» Leaf gates are functions g € &

e Our model :

« & - low communication complexity Boolean functions

. 5 = 0(n?)



Communication complexity

* Yao’s 2-party model , nm
s m2
* |nput divided into 2 parts
Xy 4 .
X Jx, y)

» Goal : compute f(x, y)
with minimal
communication



Our model

Complexity of Andreev’s function

FER N,
Truth Table of a log 7 bit function i (298" = n)
VI3V e (Vo] ) =




Our model

Prior work - Bipartite Formulas

* Input is divided into two parts, x, y

* Every leaf can gate can access any

Boolean function of either x or y but not
both

* Models a well known measure - graph
complexity

* Tal’16: Bipartite formula complexity of
IP, is Q(n?)

* Earlier methods could not do super
linear

MG e [ PR e [V



Our model

Connection to Hardness Magnification

« MCSPylk] : Given the truth table of a function f on n bits (N = 2")

» Yes : if f has a circuit of size at most k
* No : otherwise

 Meta computational problem with connections to Crypto, learning theory,
circuit complexity etc

¢ OPS’109:
e If there exists an € such that M CSPN[ZO(”)] s not in Formula[N'*€] « XOR

. then, NP & NC'!



Our model
Connection to PRG for polytopes

* Polytope : AND of LTF’s

o LTF:sign(wWx;+ ... +wx, — 0)

‘ Wl,...,Wn,QE L
o EX:3X1+4X2+5.X7 Z 12

 Nisan’94 : Randomized communication complexity O(log n)

» PRG’s for polytopes : Approximate volume computation



Our model

Interesting low communication bottom gates

* Bipartite functions
* Parities
 LTF’s (Linear threshold functions)

* PTF’s (Polynomial threshold functions)



Our results

Target function - Generalized inner product

* (Generalization of binary inner

product

. IPn(xay) — 2

1€|n]

' GIP,’f(xl,xz, ...,xk) = 2 Hx{

A

Y

€| n/k] je|k]

L1 ]
A A A
e %
A A A
] e X
A A A




Our results

Lower bound

o Let GIP,’,f be computed on average by F' € Formulals] - &,

. Thatis, Pr{F(x) = GIP%(x)] > 1/2 + ¢

n2

Then, s = €2 p
) . R€/2n2(?) .

. Rf/znz(f?) - Randomized communication of & with error €/217 in the

number on forehead communication complexity model



Our results
MCSP lower bounds

o If MCSPy|27"] is computed Formulals] e XOR, then s = O(n?)
e Contrast : OPS’19:

o If there exists an € such that M CSPN[ZO(”)] is not in
Formula[N'*€] « XOR

. then, NP & NC'!

. Our techniques cannot handle MCSP,[2°™)]



Our results
PRG

A pseudo random generator G is said to € fool a function class & if

| Pr |Gy =1- Pr |[fo=1||<e

ze{0,1}1 x€{0,1}"

e fis any function from
. G: {01} - 10,1})"
« zisthe seed, [(n) KK n

 Smaller the seed length compared to n the better



Our results
PRG

* Parities at the bottom can make things harder.
. AC" best known PRG seed length poly(log n)

« ACY o XOR best known only



Our results
PRG

» There is a PRG that e-fools Formula|s] ¢ XOR

« Seed length : 0(\/§ - log s - log(1/€) + log n)

* Seed length is optimal, unless lower bound can be improved



Our results
PRG

 Natural generalization to Formula[s] o &

» There is a PRG that e-fools Formulals] o &

. Seed length : n/k + O(/s - (R NM(Z) + log s) - log(1/€) + logk) - log k

* Number in hand



Our results
PRG - Corollaries

e (Ours + Vio15) : There is a PRG
. Seed length : O(n'? - m'"* . logn - log(n/e))
o ¢-fools intersection of /1 halfspaces over

 Our results beats earlier results whenm = O(n) and ¢ < 1/n



Our results
PRG - Corollaries

 Thereis a PRG
. Seed length : O(n'? - s'* . log n - log(n/e))
» ¢-fools Formula|s| e SYM

* First of its kind
* Blackbox counting algorithm (Whitebox due to CW19)



Our results
SAT Algorithm

« Given circuit class €
e Circuit SAT : Given C € €, is there an x,

 #Circuit SAT : Given C € &, how many x,



Our results
SAT Algorithm

» Randomized #SAT algorithm for Formula|s] o &

e Running time 2"/

t = ()
\/E-logzs-Rlz/

* First of its kind #SAT for unbounded depth Boolean circuits with PTF’s at
the bottom



Our results

Learning algorithm

* There is PAC-learning algorithm
e Learns Formula[n®~"] o« XOR
« Accuracy : ¢, Confidence : 0
. Time complexity : poly(2V°¢" 1/¢,1og(1/65))

 Formula[n*~"] can be learned in 2° [Rei11]

* Crypto connection:

e MOD; o XOR is assumed to compute PRFs (BIP+18)

e If true, Formula[n*?] « XOR can’t be learned in 2°" time



Lower bound technique

Outline
. GIP,’,f cannot even be weakly approximated by low communication
complexity functions

» Weakness of Formulal|s]| o & : Size s formula can be “approximated” by
degree \/E polynomial

. GIP,’f Is weakly approximated by a collection of leaf gates



Lower bound technique
Part |

. GIP,’,f cannot even be weakly approximated by low communication
complexity functions

e |In the number on forehead model

. Protocol computes GIPX with error € (uniform distribution)

. Then commn.comp > n/4~ — log(1/(1 — 2¢))



Lower bound technique
Part i

« Weakness of Formulals] o & : Size s formula can be “approximated” by degree \/E polynomial

 Reichardt’11 . Approximation of Boolean formulas by Polynomials

e I(yy,...,y,) be aformula of size s
« There is a real polynomial p(yy, ..., y,,) of degree 0(\/5)
» Foreveryy € {0,1}",|F(a)—p(a)| < 1/10

. Fact:Forany 0 < € < 1, deg (f) < deg(f) - log(1/e)

 Corollary : For any formula F’ of size s, ;l;ée(F) < \/E - log(1/¢)



Lower bound - proof sketch
'

Reichardt ‘2011

81 82 83 8s

« F correlates well (€) with p « Since each g; has low communication complexity, so does

] H 5i

. I correlates well (S S) with a monomial (pg H gl}) JEISLISI<y/s
JELSLISI<Vs

« I correlated well with the target function f, thus it
correlates well with the monomial ( a low communication



Limitations of our approach

* Jo get better lower bounds, find a smaller degree approximating polynomial
o Approximate degree bound of Reichardt (\/E ) cannot be improved

« AND, function can be computed by a size n de-Morgan formula

» Approximate degree of AND, is 6’(\/;)



Future directions

» Extend lower bounds to Formula|s] e &€ when s = a)(nz)

 Design a PRG of seed length n°D and error € < 1/n for intersection of n half
spaces

 Learn Formulals] e XOR in time 0(/s)



Thank you

Questions?



