Skip to main content
Logo image

Introduction to Differential Equations

Section 3.3 Convolution

Subsection 3.3.1 The convolution

We know two binary operations on functions - pointwise addition and multiplication - that takes two functions and give a third. The convolution f(t)*g(t) is a new operation, and one that is going to play particularly nicely with the Laplace Transform and be particularly nice for computing inverse Laplace transforms of products.
The Laplace transformation of a product is not the product of the transforms. All hope is not lost however. We simply have to use a different type of a β€œproduct.” Take two functions f(t) and g(t) defined for tβ‰₯0, and define the convolution 1  of f(t) and g(t) as
(3.8)  (fβˆ—g)(t)=def∫0tf(Ο„)g(tβˆ’Ο„) dΟ„.  
As you can see, the convolution of two functions of t is another function of t.

Example 3.3.1.

Take f(t)=et and g(t)=t for tβ‰₯0. Then
(fβˆ—g)(t)=∫0teΟ„(tβˆ’Ο„) dΟ„=etβˆ’tβˆ’1.
To solve the integral we did one integration by parts.

Example 3.3.2.

Take f(t)=sin⁑(Ο‰t) and g(t)=cos⁑(Ο‰t) for tβ‰₯0. Then
(fβˆ—g)(t)=∫0tsin⁑(ωτ)cos⁑(Ο‰(tβˆ’Ο„)) dΟ„.
Apply the identity
cos⁑(ΞΈ)sin⁑(ψ)=12(sin⁑(ΞΈ+ψ)βˆ’sin⁑(ΞΈβˆ’Οˆ)),
to get
(fβˆ—g)(t)=∫0t12(sin⁑(Ο‰t)βˆ’sin⁑(Ο‰tβˆ’2ωτ)) dΟ„=[12Ο„sin⁑(Ο‰t)+14Ο‰cos⁑(2Ο‰Ο„βˆ’Ο‰t)]Ο„=0t=12tsin⁑(Ο‰t).
The formula holds only for tβ‰₯0. The functions f, g, and fβˆ—g are undefined for t<0.
Convolution has many properties that make it behave like a product. Let c be a constant and f, g, and h be functions. Then
fβˆ—g=gβˆ—f,(cf)βˆ—g=fβˆ—(cg)=c(fβˆ—g),(fβˆ—g)βˆ—h=fβˆ—(gβˆ—h).
The most interesting property for us is the following theorem.
In other words, the Laplace transform of a convolution is the product of the Laplace transforms. The simplest way to use this result is in reverse.

Example 3.3.3.

Suppose we have the function of s defined by
1(s+1)s2=1s+11s2.
We recognize the two entries of Table 3.2.1. That is,
Lβˆ’1{1s+1}=eβˆ’tandLβˆ’1{1s2}=t.
Therefore,
Lβˆ’1{1s+11s2}=∫0tΟ„eβˆ’(tβˆ’Ο„) dΟ„=eβˆ’t+tβˆ’1.
The calculation of the integral involved an integration by parts.

Subsection 3.3.2 Solving ODEs

The next example demonstrates the full power of the convolution and the Laplace transform. We can give the solution to the forced oscillation problem for any forcing function as a definite integral.

Example 3.3.4.

Find the solution to
xβ€³+Ο‰02x=f(t),x(0)=0,xβ€²(0)=0,
for an arbitrary function f(t).
We first apply the Laplace transform to the equation. Denote the transform of x(t) by X(s) and the transform of f(t) by F(s) as usual. We get
s2X(s)+Ο‰02X(s)=F(s),
or in other words
X(s)=F(s)1s2+Ο‰02.
We know
Lβˆ’1{1s2+Ο‰02}=sin⁑(Ο‰0t)Ο‰0.
Therefore,
x(t)=∫0tf(Ο„)sin⁑(Ο‰0(tβˆ’Ο„))Ο‰0 dΟ„,
or if we reverse the order
x(t)=∫0tsin⁑(Ο‰0Ο„)Ο‰0f(tβˆ’Ο„) dΟ„.
Notice one more feature of this example. We can now see how Laplace transform handles resonance. Suppose that f(t)=cos⁑(Ο‰0t). Then
x(t)=∫0tsin⁑(Ο‰0Ο„)Ο‰0cos⁑(Ο‰0(tβˆ’Ο„)) dΟ„=1Ο‰0∫0tsin⁑(Ο‰0Ο„)cos⁑(Ο‰0(tβˆ’Ο„)) dΟ„.
We have computed the convolution of sine and cosine in Example 3.3.2. Hence
x(t)=(1Ο‰0)(12tsin⁑(Ο‰0t))=12Ο‰0tsin⁑(Ο‰0t).
Note the t in front of the sine. The solution, therefore, grows without bound as t gets large, meaning we get resonance.
Similarly, we can solve any constant coefficient equation with an arbitrary forcing function f(t) as a definite integral using convolution. A definite integral, rather than a closed form solution, is usually enough for most practical purposes. It is not hard to numerically evaluate a definite integral.

Subsection 3.3.3 Volterra integral equation

A common integral equation is the Volterra integral equation 2 
x(t)=f(t)+∫0tg(tβˆ’Ο„)x(Ο„) dΟ„,
where f(t) and g(t) are known functions and x(t) is an unknown we wish to solve for. To find x(t), we apply the Laplace transform to the equation to obtain
X(s)=F(s)+G(s)X(s),
where X(s), F(s), and G(s) are the Laplace transforms of x(t), f(t), and g(t) respectively. We find
X(s)=F(s)1βˆ’G(s).
To find x(t) we now need to find the inverse Laplace transform of X(s).

Example 3.3.5.

x(t)=eβˆ’t+∫0tsinh⁑(tβˆ’Ο„)x(Ο„) dΟ„.
We apply Laplace transform to obtain
X(s)=1s+1+1s2βˆ’1X(s),
X(s)=1s+11βˆ’1s2βˆ’1=sβˆ’1s2βˆ’2=ss2βˆ’2βˆ’1s2βˆ’2.
It is not hard to apply Table 3.1.5 to find
x(t)=cosh⁑(2t)βˆ’12sinh⁑(2t).

Subsection 3.3.4 Exercises

Exercise 3.3.1.

Let f(t)=t2 for tβ‰₯0, and g(t)=u(tβˆ’1). Compute fβˆ—g.
Solution.
fβˆ—g=∫0tΟ„2u(tβˆ’Ο„βˆ’1)dΟ„=∫0tβˆ’1Ο„2dΟ„=13(tβˆ’1)3

Exercise 3.3.2.

Let f(t)=t for tβ‰₯0, and g(t)=sin⁑t for tβ‰₯0. Compute fβˆ—g.
Answer.
tβˆ’sin⁑(t)

Exercise 3.3.3.

Let f(t)=cos⁑t for tβ‰₯0, and g(t)=eβˆ’t. Compute fβˆ—g.
Answer.
12(cos⁑t+sin⁑tβˆ’eβˆ’t)

Exercise 3.3.4.

Find the solution to
mxβ€³+cxβ€²+kx=f(t),x(0)=0,xβ€²(0)=0,
for an arbitrary function f(t), where m>0, c>0, k>0, and c2βˆ’4km>0 (the system is overdamped). Write the solution as a definite integral.
Solution.
Taking the Laplace transform
ms2X+csX+kX=F(s)X=F(s)1ms2+cs+k⏟G(s)G=1m1(s+c2m)2+kmβˆ’c24m2=1m1(s+c2m)2βˆ’(c2βˆ’4km2m)2=1mωω(s+c2m)2βˆ’Ο‰2
Where we defined ω≑c2βˆ’4km2m>0. We can now find g(t) using the shifting property
g(t)=1mΟ‰eβˆ’c2mtsinh⁑(Ο‰t)
And finally using convolution
x(t)=∫0tf(Ο„)1mΟ‰eβˆ’c2m(tβˆ’Ο„)sinh⁑(Ο‰(tβˆ’Ο„))dΟ„

Exercise 3.3.5.

Find the solution to
mxβ€³+cxβ€²+kx=f(t),x(0)=0,xβ€²(0)=0,
for an arbitrary function f(t), where m>0, c>0, k>0, and c2βˆ’4km<0 (the system is underdamped). Write the solution as a definite integral.
Answer.
x(t)=∫0tf(Ο„)1mΟ‰eβˆ’c2m(tβˆ’Ο„)sin⁑(Ο‰(tβˆ’Ο„))dΟ„

Exercise 3.3.6.

Find the solution to
mxβ€³+cxβ€²+kx=f(t),x(0)=0,xβ€²(0)=0,
for an arbitrary function f(t), where m>0, c>0, k>0, and c2=4km (the system is critically damped). Write the solution as a definite integral.
Answer.
x(t)=∫0tf(Ο„)1meβˆ’c2m(tβˆ’Ο„)dΟ„

Exercise 3.3.7.

Solve xβ€³+x=sin⁑t, x(0)=0, xβ€²(0)=0 using convolution.
Answer.
12(sin⁑tβˆ’tcos⁑t)

Exercise 3.3.8.

Solve x‴+xβ€²=f(t), x(0)=0, xβ€²(0)=0, xβ€³(0)=0 using convolution. Write the result as a definite integral.
Answer.
∫0tf(Ο„)(1βˆ’cos⁑(tβˆ’Ο„)) dΟ„

Exercise 3.3.9.

Find the Laplace transform of: t∫0tcos⁑(tβˆ’Ο„)sin(Ο„) dΟ„
Solution.
Using the property of derivatives of the transform and the Convolution property, we write \[\mathcal{L}\left[t\int_0^t \cos(t-\tau) sin(\tau)   d\tau\right]=-\frac{d}{ds}\mathcal{L}\left[\int_0^t \cos(t-\tau) sin(\tau)   d\tau\right]=-\frac{d}{ds}\left[\mathcal{L}(\cos t)\cdot\mathcal{L}(\sin t)\right]\] \[=-\frac{d}{ds}\left[\frac{s}{(s^{2}+1)}\right]=\frac{3 s^2-1}{\left(s^2+1\right)^3}\]

Exercise 3.3.10.

Find the Laplace transform of: ∫0tcos⁑(tβˆ’Ο„)sin(Ο„) dΟ„
Answer.
s(s2+1)2

Exercise 3.3.11.

Write down the solution to xβ€³βˆ’2x=eβˆ’t2, x(0)=0, xβ€²(0)=0 as a definite integral. Hint: Do not try to compute the Laplace transform of eβˆ’t2.
Solution.
Taking the Laplace transform of the equation
s2Xβˆ’2X=L{eβˆ’t2}=F(s)X=F(s)1s2βˆ’2⏟G(s)G(s)=122s2βˆ’(2)2β†’g(t)=12sinh⁑(2t)
So using the convolution property
x(t)=∫0teβˆ’Ο„212sinh⁑(2(tβˆ’Ο„))dΟ„

Exercise 3.3.12.

x(t)=eβˆ’t+∫0tcos⁑(tβˆ’Ο„)x(Ο„) dΟ„.
Solution.
Taking the Laplace transform of the equation and solving for X
X=1s+1s2+1s2βˆ’s+1
Splitting the fraction and completing the square, this gives
x(t)=13et/2sin⁑(32t)+13et/2cos⁑(32t)+23eβˆ’t

Exercise 3.3.13.

x(t)=cos⁑t+∫0tcos⁑(tβˆ’Ο„)x(Ο„) dΟ„.
Answer.
x(t)=13et/2sin⁑(32t)+et/2cos⁑(32t)

Exercise 3.3.14.

Compute Lβˆ’1{s(s2+4)2} using convolution.
Solution.
First we re-write: \[\mathcal{L}^{-1}\left[\frac{s}{(s^{2}+4)^{2}}\right]=\frac{1}{2}\mathcal{L}^{-1}\left[\frac{2}{(s^{2}+4)}\cdot\frac{s}{(s^{2}+4)}\right]\] Now using the Convolution property of the Laplace tranform, we write: \[\mathcal{L}^{-1}\left[\frac{s}{(s^{2}+4)^{2}}\right]=\frac{1}{2}\sin(2t)\star\cos(2t)=\frac{1}{2}t\sin t\cos t\]

Exercise 3.3.15.

Compute Lβˆ’1{2s3(sβˆ’4)} using convolution.
Answer.
132(e4tβˆ’1βˆ’4tβˆ’8t2)
For those that have seen convolution before, you may have seen it defined as (fβˆ—g)(t)=βˆ«βˆ’βˆžβˆžf(Ο„)g(tβˆ’Ο„) dΟ„. This definition agrees with (3.8) if you define f(t) and g(t) to be zero for t<0. When discussing the Laplace transform the definition we gave is sufficient. Convolution does occur in many other applications, however, where you may have to use the more general definition with infinities.
Named for the Italian mathematician Vito Volterra 3  (1860–1940).
en.wikipedia.org/wiki/Vito_Volterra
For a higher quality printout use the PDF version: https://www.jirka.org/diffyqs/diffyqs.pdf