Appendix B Table of Laplace Transforms
The function \(u\) is the Heaviside function, \(\delta\) is the Dirac delta function, and
\begin{equation*}
\Gamma(t) =
\int_0^\infty e^{-\tau} \tau^{t-1} \, d\tau ,
\qquad
\operatorname{erf}(t) =
\frac{2}{\sqrt{\pi}} \int_0^t e^{-\tau^2} \, d\tau ,
\qquad
\operatorname{erfc}(t) =
1 - \operatorname{erf}(t) .
\end{equation*}
\(f(t)\) | \(F(s) = \mathcal{L} \bigl\{ f(t) \bigr\}= \int_0^\infty e^{-st} f(t) \, dt\) |
\(C\) | \(\frac{C}{s}\) |
\(t\) | \(\frac{1}{s^2}\) |
\(t^2\) | \(\frac{2}{s^3}\) |
\(t^n\) | \(\frac{n!}{s^{n+1}}\) |
\(t^p \quad (p > 0)\) | \(\frac{\Gamma(p+1)}{s^{p+1}}\) |
\(e^{-at}\) | \(\frac{1}{s+a}\) |
\(\sin (\omega t)\) | \(\frac{\omega}{s^2+\omega^2}\) |
\(\cos (\omega t)\) | \(\frac{s}{s^2+\omega^2}\) |
\(\sinh (\omega t)\) | \(\frac{\omega}{s^2-\omega^2}\) |
\(\cosh (\omega t)\) | \(\frac{s}{s^2-\omega^2}\) |
\(u(t-a)\) | \(\frac{e^{-as}}{s}\) |
\(\delta(t)\) | \(1\) |
\(\delta(t-a)\) | \(e^{-as}\) |
\(\operatorname{erf}\left( \frac{t}{2a} \right)\) | \(\frac{1}{s} e^{(as)^2} \operatorname{erfc}(as)\) |
\(\frac{1}{\sqrt{\pi t}} \exp\left(\frac{-a^2}{4t}\right) \quad (a \geq 0)\) | \(\frac{e^{-as}}{\sqrt{s}}\) |
\(\frac{1}{\sqrt{\pi t}} - a e^{a^2 t} \operatorname{erfc}(a \sqrt{t}) \quad (a>0)\) | \(\frac{1}{\sqrt{s}+a}\) |
\(a f(t) + b g(t)\) | \(a F(s) + bG(s)\) |
\(f(at) \quad (a > 0)\) | \(\frac{1}{a}F\left( \frac{s}{a} \right)\) |
\(f(t-a)u(t-a)\) | \(e^{-as} F(s)\) |
\(e^{-at} f(t)\) | \(F(s+a)\) |
\(g'(t)\) | \(sG(s)-g(0)\) |
\(g''(t)\) | \(s^2G(s)-sg(0)-g'(0)\) |
\(g'''(t)\) | \(s^3G(s)-s^2g(0)-sg'(0)-g''(0)\) |
\(g^{(n)}(t)\) | \(s^nG(s)-s^{n-1}g(0)-\cdots-g^{(n-1)}(0)\) |
\((f * g)(t) = \int_0^t f(\tau) g(t-\tau) \, d\tau\) | \(F(s)G(s)\) |
\(tf(t)\) | \(-F'(s)\) |
\(t^nf(t)\) | \({(-1)}^nF^{(n)}(s)\) |
\(\int_0^t f(\tau) d\tau\) | \(\frac{1}{s} F(s)\) |
\(\frac{f(t)}{t}\) | \(\int_s^\infty F(\sigma) d\sigma\) |