Skip to main content\(\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 2.3 Basic Derivative Rules
Module Learning Objectives.
Derive Derivative Rules for sums, constant multiples, and powers
Video 2.3.1. Derivitive Rules for Sums, Constant Multiples, and Powers.
In this video we’ll derive our first derivative rules which we will use over and over again for sums, multiplying by a constant, and for \(x^n\)
Post-video reflection.
What is the derivative of linear combination \(af(x)+bg(x)\) where \(a,b\) are constants and \(f(x), g(x)\) are functions?