Skip to main content\(\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 5.3 Riemann Sums
Module Learning Objectives.
Express finite sums for approximating area in terms of summation notation.
Define the Definite Integral via Riemann Sums
Evaluate Definite Integrals from the definition
Video 5.3.1. Summation Notation and the Definite Integral.
In this video we introduce summation notation and use it to define the Definite Integral as a Riemann Sum
Video 5.3.2. Evaluating the Definite Integral.
In this video we apply the definition of the definite integral to compute the value of the limit in a specific example.
Video 5.3.3. Reverse Riemann Sum.
In this video we ask the reverse question, starting with a Reimann sum and figuring out what definite integral led to it.