The development of catalytic reactions has revolutionised the synthesis of organic molecules and polymers. In contrast, catalysis is virtually unexplored as a route to molecular and macromolecular inorganic materials. Over the past decade our group has been at the forefront of the development of catalytic reactions with main group substrates. In particular, we have been involved in a broad expansion of this field in the area of dehydrogenation and dehydrocoupling processes that allow access to a wide range of catenated structures based on elements across the p-block. Such catalytic pathways using main group substrates represent an increasingly attractive and convenient alternative to traditional routes such as salt metathesis and reductive coupling reactions. Applications of this work involve the fields of hydrogen storage and transfer, functional inorganic polymers, and ceramic thin films.

Selected Publications:

  1. Catalysis in Service of Main Group Chemistry: a Versatile Approach to p-Block Molecules and Materials.
    Leitao, E.M.; Jurca, T.; Manners, I.
    Nat. Chem., 2013, 5, 857.

  2. Non-Metal-Catalyzed Heterodehydrocoupling of Phosphines and Hydrosilanes: Mechanistic Studies of B(C6F5)3-Mediated Formation of P-Si Bonds
    Wu, L.; Chitnis, S. S.; Jiao, H.; Annibale, V. T.; Manners, I.
    J. Am. Chem. Soc., 2017, 139, 16780.

  3. Addition of a Cyclophosphine to Nitriles: An Inorganic "Click" Reaction Featuring Protio-, Organo-, and Main Group Catalysis
    Chitnis, S. S.; Sparkes, H. A.; Annibale, V. T.; Pridmore, N. E.; Oliver, A. M.; Manners, I.
    Angew. Chem. Int. Ed., 2017, 56, 9536.

  4. Homo- and Heterodehydrocoupling of Phosphines Mediated by Alkali Metal Catalysts
    Wu. L.; Annibale, V.; Jiao, H.; Brookfield, A.; Collison, D.; Manners, I.
    Nat. Commun., 2019, 10, 2786.

  5. Metal-Free Dehydropolymerisation of Phosphine-Boranes using Cyclic (Alkyl)(Amino)Carbenes as Hydrogen Acceptors
    Oldroyd, N.L.; Chitnis, S.S.; Annibale, V.T.; Arz, M.A.; Sparkes, H.A.; Manners, I.
    Nat. Commun., 2019, 10, 1370.

  6. Trivalent Titanocene Alkyls and Hydrides as Well-Defined, Highly Active, and Broad Scope Precatalysts for Dehydropolymerization of Amine-Boranes
    LaPierre, E.A.; Patrick, B.O.; Manners, I.
    J. Am. Chem. Soc., 2019, 141, 20009.

  7. Ring-Opening Polymerization of Cyclic Phosphonates: Access to Inorganic Polymers with a Pv-O Main Chain
    Arz, M.A.; Annibale, V.T.; Kelly, N.L.; Hanna, J.V.; Manners, I.
    J. Am. Chem. Soc., 2019, 141, 2894.

  8. Polyphosphinoborane Block Copolymer Synthesis Using Catalytic Reversible Chain-Transfer Dehydropolymerization
    Race, J.J.; Heyam, A.; Wiebe, M.A.; Hernandez, J.D.G.; Ellis, C.E.; Lei, S.; Manners, I.; Weller, A.S.
    Angewandte Chemie, 2023, 62, e202216106.

  9. Transition-Metal-Free Dehydropolymerization of Phosphine–Boranes at Ambient Temperature
    Wiebe, M.A.; Kundu, S.; LaPierre, E.A.; Patrick, B.O.; Manners, I.
    Chem. Eur. J., 2023, 29, e202202897.

  10. A Crystalline Monomeric Phosphaborene
    LaPierre, E.A.; Patrick, B.O.; Manners, I.
    J. Am. Chem. Soc., 2023, 145, 7107.

  11. Synthesis of a Carbene-Stabilized (Diphospha)aminyl Radical and Its One Electron Oxidation and Reduction to Nonclassical Nitrenium and Amide Species
    LaPierre, E.A.; Wantanabe, L.; Patrick, B.O.; Rawson, J.M.; Tuononen, H.M.; Manners, I.
    J. Am. Chem. Soc., 2023, 145, 9223.

The potential of polymers that possess functionality as a result of the presence of metal centres has intrigued scientists since the mid 1950s. However, until recently, the development of the field has been held back by synthetic problems. Our group has developed ring-opening polymerization routes to well-defined classes of polymers containing main group and/or transition metal centers using ring-opening polymerization (ROP) of strained precursors. Block copolymers with metal centres present in one of the blocks are of particular interest because of their self-assembly to functional nanostructured thin films and nanoparticles (micelles) in a selective solvent. At a fundamental level we are interested in the structures, bonding, and strain present in the strained monomers and the mechanisms for ROP. The more applied side of our work involves the development of, for example, new charge transport materials, magnetic and catalytically-active ceramic materials, stimuli-responsive materials, sensors, liquid crystalline materials, and etch resists for nanolithographic applications.

Selected Publications:

  1. Functional soft materials from metallopolymers and metallosupramolecular polymers
    Whittell, G.R.; Hager, M.D.; Schubert, U.S.; Manners, I.
    Nat. Mater., 2011, 10, 176.

  2. Large- Area Nano-Square Arrays from Shear-Alignment Block Copolymer Thin Films
    Kim, S.Y.; Nunns, A.; Gwyther, J.; Davis, R.L.; Manners, I.; Chaikin, P.M.; Register, R.A.
    Nano Lett., 2014, 14, 5698.

  3. Direct writing of patterned ceramics using electron-beam lithography and metallopolymer resists
    Clendenning, S. B.; Aouba, S.; Rayat, M.S.; Grozea, D.; Sorge, J.B.; Broderson, P.M.; Sodhi, R.A.S.; Lu, Z-H.; Yip, C.M.; Freeman, M.S.; Ruda, H.E.; Manners, I.
    Adv. Mater., 2004, 16, 215.

  4. Polyferrocenylsilanes: Synthesis, Properties and Applications
    Hailes, R.L.N.; Oliver, A.M.; Gwyther, J.; Whittell, G.R.; Manners, I.
    Chem. Soc. Rev., 2016, 45, 5358.

  5. Main-chain metallopolymers at the static-dynamic boundary based on nickelocene
    Musgrave, R.A.; Russell, A.D.; Hayward, D.W.; Whittell, G.R.; Lawrence, P.G.; Gates, P.J.; Green, J.C.; Manners, I.
    Nat. Chem., 2017, 9, 743.

  6. Chiral Transmission to Cationic Polycobaltocenes over Multiple Length Scales Using Anionic Surfactants
    Musgrave, R.A.; Choi, P.; Harniman, R.L.; Richardson, R.M.; Shen, C.; Whittell, G.R.; Crassous, J.; Qui, H.; Manners, I.
    J. Am. Chem. Soc., 2018, 140, 7222.

  7. C-Term Faraday Rotation in Low Symmetry tert-Butyl Substituted Polyferroceniums
    Delage-Laurin, L.; Young, H.K.S.; LaPierre, E.A.; Warndorf, M.C.; Manners, I.; Swager, T.M.
    ACS Macro Lett., 2023, 12, 646.

Our research group has been at the forefront of the development of "Living" Crystallization-Driven Self-Assembly (CDSA) of Block Copolymers and other building blocks such as planar π-stacking organic molecules and metallocycles to form well-defined colloidally-stable 1D and 2D materials with tunable dimensions, spatially controlled surface and core chemistries, and potential applications from information storage and nanoelectronics to biomedicine. A focus has been on polyferrocenylsilane block copolymers, which were developed in our group, but our more recent work has also involved block copolymers with crystallizable π-conjugated or biodegradable segments. Together with our collaborators, we are currently investigating the fundamentals of the fascinating living CDSA process and also a range of potential applications of the resulting phase-separated thin films and core-shell nanostructures (micelles) as nanowires, nanoscopic barcodes, self-assembled heterojunctions, catalysts, and as magnetic dot precursors and in drug/gene delivery.

Selected Publications:

  1. Multidimensional Hierarchical Self-Assembly of Amphiphilic Cylindrical Block Comicelles
    Qiu, H.; Hudson, Z.M.; Winnik, M.A.; Manners, I.
    Science, 2015, 347, 1329.

  2. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends
    Qiu, H.; Gao, Y.; Boott, C.E.; Gould, O.E.C.; Harniman, R.L.; Miles, M.J.; Webb, S.E.D.; Winnik, M.A., Manners, I.
    Science, 2016, 352, 697.

  3. Two dimensional assemblies from crystallizable homopolymers with charged termini
    He, X.; Hsiao, M-S.; Boott, C.E.; Harniman, R.L.; Nazemi, A.; Li, X.; Winnik, M.A.; Manners, I.
    Nat. Mater., 2017, 16, 481.

  4. Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly
    Boott, C.E.; Gwyther, J.; Harniman, R.L.; Hayward, D.W.; Manners, I.
    Nat. Chem., 2017, 9, 785.

  5. Uniform electroactive fiber-like micelle nanowires for organic electronics
    Li, X.; Wolanin, P.J.; MacFarlane, L.R.; Harniman, R.L.; Qian, J.; Gould, O.E.C.; Dane, T.G.; Rudin, J.; Cryan, M.J.; Schmaltz, T.; Frauenrath, H.; Winnik, M.A.; Faul, C.F.J.; Manners, I.
    Nat. Commun., 2017, 8, 15909.

  6. Long-range Exciton Transport in Conjugated Polymer Nanofibers Prepared by Seeded Growth
    Jin, X.-H.; Price, M.B.; Finnegan, J.R.; Boott, C.E.; Richter, J.M.; Rao, A.; Menke, M.; Friend, R.H.; Whittell, G.R.; Manners, I.
    Science, 2018, 360, 897.

  7. Tailored Multifunctional Micellar Brushes via Crystallization-Driven Growth from a Surface
    Cai, J.; Li, C.; Kong, N.; Lu, Y.; Lin, G.; Wang, X.; Yao, Y.; Manners, I.; Qiu, H.
    Science, 2019, 366, 1095.

  8. Cellular Uptake and Targeting of Low Dispersity, Dual Emissive, Segmented Block Copolymer Nanofibers
    Street, S.; He, Y.; Jin, X.; Hodgson, L.; Verkade, P.; Manners, I.
    Chem. Sci., 2020, 11, 8394.

  9. Tailored Self-Assembled Photocatalytic Nanofibers for Visible-light Driven Hydrogen Production
    Tian, J.; Zhang, Y.; He, Y.; Jin, X-H.; Pearce, S. Eloi, J-C.; Harniman, R.L.; Alibhai, D.; Ye, R.; Philiips, D.L.; Manners, I.
    Nat. Chem., 2020, 12, 1150.

  10. Scalable and Uniform Length-Tunable Biodegradable Block Copolymer Nanofibers with a Polycarbonate Core via Living Polymerization-Induced Crystallization-Driven Self-assembly
    Ellis, C.E.; Hernandez, J.D.G.; Manners, I.
    J. Am. Chem. Soc., 2022, 144, 20525.

  11. Length-Controlled Nanofiber Micelleplexes as Efficient Nucleic Acid Delivery Vehicles
    Street, S.T.G.; Chrenek, J.; Harniman, R.L.; Letwin, K.; Mantell, J.M.; Borucu, U.; Willerth, S.M.; Manners, I.
    J. Am. Chem. Soc., 2022, 144, 19799.

  12. High Resolution Cryo-Electron Microscopy Structure of Block Copolymer Nanofibers with a Crystalline Core
    Tian, J.; Xie, S.-H.; Borucu, U.; Lei, S.; Zhang, Y.; Manners, I.
    Nat. Mater., 2023, 22, 786.

  13. Uniform Segmented Platelet Micelles with Compositionally Distinct and Selectively Degradable Cores
    Tong, Z.; Xie, Y.; Arno, M.C.; Zhang, Y.; Manners, I.; O'Reilly, R.K.; Dove, A.P.
    Nat. Chem., 2023, 15, 824.