Projects



The development of catalytic reactions has revolutionised the synthesis of organic molecules and polymers. In contrast, catalysis is virtually unexplored as a route to molecular and macromolecular inorganic materials. Over the past decade our group has been at the forefront of the development of catalytic reactions with main group substrates. In particular, we have been involved in a broad expansion of this field in the area of dehydrogenation and dehydrocoupling processes that allow access to a wide range of catenated structures based on elements across the p-block. Such catalytic pathways using main group substrates represent an increasingly attractive and convenient alternative to traditional routes such as salt metathesis and reductive coupling reactions. Applications of this work involve the fields of hydrogen storage and transfer, functional inorganic polymers, and ceramic thin films.


Selected Publications:


Mechanism of Metal-Free Hydrogen Transfer between Amine-Boranes and Aminoboranes
Leitao, E.M.; Stubbs, N.E.; Robertson, A.P.M.; Helten, H.; Cox, R.J.; Lloyd-Jones, G.C.; Manners, I.
J. Am. Chem. Soc. 2012, 134, 16805.

Catalysis in Service of Main Group Chemistry: a Versatile Approach to p-Block Molecules and Materials.
Leitao, E.M.; Jurca, T.; Manners, I.
Nature Chem. 2013, 5, 857.

Polyaminoborane Main Chain Scission using N-Heterocyclic Carbenes; Formation of Donor-Stabilised Monomeric Aminoboranes
Stubbs, N.E.; Jurca, T.; Letiao, E.M.; Woodall, C.H.; Manners, I.
Chem. Commun. , 2013, 49, 9098.

Generation of aminoborane monomers RR N=BH2 from amine-boronium cations [RR NH-BH2L]+: metal catalyst-free formation of polyamonoboranes at ambient temperature
Metters, O.J.; Chapman, A.M.; Robertson, A.P.M.; Woodall, C.H.; Gates, P.J.; Wass, D.F.; Manners, I.
Chem. Commun., 2014, 50, 12146.

s-p Conjugated Organosilicon Hybrid Polymers from Copolymerization of a Tetrasiladiene and 1,4-Diethynylbezene
Majumdar, M.; Bejan, I.; Huch, V.; White, A.J.P.; Whittell, G.R.; Schäfer, A.; Manners, I.; Scheschkewitz, D.
Chem. Eur. J., 2014, 20, 9225.

Iron-Catalyzed Dehydrocoupling/Dehydrogenation of Amine-Boranes
Vance, J.R.; Schäfer, A.; Robertson, A.P.M.; Lee, K.; Turner, J.; Whittle, G.R.; Manners, I.
J. Am. Chem. Soc., 2014, 136, 3048.

Mechanistic Studies of the Dehydrocoupling and Dehydropolymerization of Amine-Boranes using a [Rh(Xantphos)]+ Catalyst
Johnson, H.C.; Leitao, E.M.; Whittell, G.R.; Manners, I.; Lloyd-Jones, G.C.; Weller, A.S.
J. Am. Chem., Soc., 2014, 136, 9078.

Iron-Catalyzed Dehydropolymerization: A Convenient Route to Poly(phosphinoboranes) with Molecular-Weight Control
Schäfer, A.; Jurca, T.; Turner, J.; Vance, J.R.; Lee, K.; Du, V.A.; Haddow, M.F.; Whittell, G.R.; Manners, I.
Angew. Chem. Int. Ed., 2015, 54, 4836.

Metal-Free Addition/Head to Tail Polymerization of Transient Phosphinoboranes RPH-BH2: A Route to Poly(phosphinoboranes)
Marquardt, C.; Jurca, T.; Schwan, K-C, J.; Stauber, A.; Virovets, A.V.; Whittell, G.R.; Manners, I., Scheer, M.
Angew. Chem. Int. Ed., 2015, 54, 13782.

Small Molecule Activation by Intermolecular Zr(IV)-Phosphine Frustrated lewis Pairs
Metters, O.J.; Forrest, S.J.K.; Sparkes, H.A.; Manners, I.; Wass, D.F.
J. Am. Chem. Soc., 2016, 138, 1994.

Non-Metal-Catalyzed Heterodehydrocoupling of Phosphines and Hydrosilanes: Mechanistic Studies of B(C6F5)3-Mediated Formation of P-Si Bonds
Wu, L.; Chitnis, S. S.; Jiao, H.; Annibale, V. T.; Manners, I.
J. Am. Chem. Soc., 2017, 139, 16780.

Addition of a Cyclophosphine to Nitriles: An Inorganic "Click" Reaction Featuring Protio-, Organo-, and Main Group Catalysis
Chitnis, S. S.; Sparkes, H. A.; Annibale, V. T.; Pridmore, N. E.; Oliver, A. M.; Manners, I.
Angew. Chem. Int. Ed., 2017, 56, 9536.

Metal-Free Dehydropolymerisation of Phosphine-Boranes Using Cyclic (Alkyl)(Amino)Carbenes as Hydrogen Acceptors
Oldroyd, N.; Chitnis, S.; Annibale, V.; Sparkes, H.; Manners, I.
Nature Commun., 2019, in press.



The potential of polymers that possess functionality as a result of the presence of metal centres has intrigued scientists since the mid 1950s. However, until recently, the development of the field has been held back by synthetic problems. Our group has developed ring-opening polymerization routes to well-defined classes of polymers containing main group and/or transition metal centers using ring-opening polymerization (ROP) of strained precursors. Block copolymers with metal centres present in one of the blocks are of particular interest because of their self-assembly to functional nanostructured thin films and nanoparticles (micelles) in a selective solvent. At a fundamental level we are interested in the structures, bonding, and strain present in the strained monomers and the mechanisms for ROP. The more applied side of our work involves the development of, for example, new charge transport materials, magnetic and catalytically-active ceramic materials, stimuli-responsive materials, sensors, liquid crystalline materials, and etch resists for nanolithographic applications.



Selected Publications:


Shaped Ceramics with Tunable Magnetic Properties from Metal-Containing Polymers
MacLachlan, M.J.; Ginzburg, M.; Coombs, N.; Coyle, T.W.; Raju, N.P.; Greedan, J.E.; Ozin, G.A.; Manners, I.,
Science, 2000, 287, 1460.

Putting Metals into Polymers
Manners. I.,
Science, 2001, 294, 1664.

Photocontrolled Living Polymerizations
Tanabe, M.; Vandermeulen, G.W.M.; Chan, W.Y.; Cyr, P.W.; Vanderark, L.; Rider, D.A.; Manners, I.,
Nature Materials, 2006, 5, 467.

Photonic Crystal Full Color Displays
Arsenault, A.C.; Puzzo, D.P.; Manners, I.; Ozin, G.A.
Nature Photonics, 2007, 1, 468.

Strained Metallocenophanes and Related Organometallic Rings Containing -Hydrocarbon Ligands and Transition-Metal Centers
Herbert, D.E.; Mayer, U.F.J.; Manners, I.
Angew Chem. Int. Ed. Engl., 2007, 46, 5060.

Tetragonal and Helical Morphologies from Polyferrocenylsilane Block Polyelectrolytes via Ionic Self-Assembly
Ahmed, R.; Patra, S.K.; Hamley, I.W.; Manners, I.; Faul, C.F.J.
J. Am. Chem. Soc., 2013, 135, 2455.

Large- Area Nano-Square Arrays from Shear-Alignment Block Copolymer Thin Films
Kim, S.Y.; Nunns, A.; Gwyther, J.; Davis, R.L.; Manners, I.; Chaikin, P.M.; Register, R.A.
Nano Lett. 2014, 14, 5698.

Length Control of Supramolecular Polymeric Nanofibers based on Stacked Planar Platinum(II) Complexes by Seeded Growth
Robinson, M.E.; Lunn, D.J.; Nazemi, A.; Whittell, G.R.; de Cola, L., Manners, I.
Chem. Comm., 2015, 51, 15921.

Polyferrocenylsilanes: Synthesis, Properties and Applications
Hailes, R.L.N.; Oliver, A.M.; Gwyther, J.; Whittell, G.R.; Manners, I.
Chem. Soc. Rev., 2016, 45, 5358.

Main-chain metallopolymers at the static-dynamic boundary based on nickelocene
Musgrave, R.A.; Russell, A.D.; Hayward, D.W.; Whittell, G.R.; Lawrence, P.G.; Gates, P.J.; Green, J.C.; Manners, I.
Nature Chem., 2017, 9, 743.

Chiral Transmission to Cationic Polycobaltocenes over Multiple Length Scales Using Anionic Surfactants
Musgrave, R.A.; Choi, P.; Harniman, R.L.; Richardson, R.M.; Shen, C.; Whittell, G.R.; Crassous, J.; Qui, H.; Manners, I.
J. Am. Chem. Soc., 2018, 140, 7222.


Our research group has been at the forefront of the development of "Living" Crystallization-Driven Self-Assembly (CDSA) of Block Copolymers and other building blocks such as planar π-stacking organic molecules and metallocycles to form well-defined colloidially-stable 1D and 2D materials with tunable dimensions, spatially controlled surface and core chemistries, and potential applications from information storage and nanoelectronics to biomedicine. A focus has been on polyferrocenylsilane block copolymers, which were developed in our group, but our more recent work has also involved block copolymers with crystallizable π-conjugated or biodegradable segments. Together with our collaborators, we are currently investigating the fundamentals of the fascinating living CDSA process and also a range of potential applications of the resulting phase-separated thin films and core-shell nanostructures (micelles) as nanowires, nanoscopic barcodes, self-assembled heterojunctions, catalysts, and as magnetic dot precursors and in drug/gene delivery.


Selected Publications:


Cylindrical Block Copolymer Micelles and Co-Micelles of Controlled Length and Architecture
Wang, X.; Guerin, G.; Wang, H.; Wang, Y.; Manners, I.; Winnik, M.A.
Science, 2007, 317, 644.

Complex and Hierarchical Micelle Architectures from Diblock Copolymers using Living, Crystallization-Driven Polymerizations
Gaedt, T.; Ieong, N.S.; Cambridge, G., Winnik, M.A.; Manners, I.
Nature Materials, 2009, 8, 144.

Monodisperse cylindrical micelles by crystallization-driven living self-assembly
Gilroy, J.G.; Gaedt, T.; Whittell, G.R.; Chabanne,L.; Mitchels, J.M.; Richardson, R.M.; Winnik, M.A.; Manners, I.
Nature Chemistry, 2010, 2, 566.

Non-Centrosymmetric Cylindrical Block Copolymer Micelles by Unidirectional Growth
Rupar, P.A.; Chabanne, L.; Winnik, M.A.; Manners, I.
Science, 2012, 337, 559.

Colour-Tunable Fluorescent Multiblock Micelles
Hudson, Z.M.; Lunn, D.J.; Winnik, M.A.; Manners, I.
Nature Comm., 2014, 5, 3372.
For a highlight of this work see, "Nanopixels of Any Color", Chem. Eng. News, 2014, 92, 10.

Tailored Hierarchical Micelle Architectures using Living Crystallization-Driven Self-Assembly in Two Dimensions
Hudson, Z.M.; Boott, C.E.; Robinson, M.E.; Rupar, P.A.; Winnik, M.A.; Manners, I.
Nature Chem., 2014, 6, 893.
For a highlight of this work see, "Served on a nanoplate", Nature Chem., 2014, 6, 857.

Transformation and Patterning of Supermicelles using Dynamic Holographic Assembly
Gould, O.E.C.; Qiu, H.; Lunn, D.J.; Rowden, J.; Harniman, R.L.; Hudson, Z.M.; Winnik, M.A.; Miles. M.J. and Manners, I.
Nature Comm., 2015, 6, 10009.

Non-Covalent Synthesis of Supermicelles with Complex Architectures using Spatially Confined Hydrogen-Bonding Interactions
Li, X.; Gao, Y.; Boott, C.E.; Winnik, M.A.; Manners, I.
Nature Comm., 2015, 6, 8127.

Multidimensional Hierarchical Self-Assembly of Amphiphilic Cylindrical Block Comicelles
Qiu, H.; Hudson, Z.M.; Winnik, M.A.; Manners, I.
Science, 2015, 347, 1329.

Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends
Qiu, H.; Gao, Y.; Boott, C.E.; Gould, O.E.C.; Harniman, R.L.; Miles, M.J.; Webb, S.E.D.; Winnik, M.A., Manners, I.
Science, 2016, 352, 697.

Two dimensional assemblies from crystallizable homopolymers with charged termini
He, X.; Hsiao, M-S.; Boott, C.E.; Harniman, R.L.; Nazemi, A.; Li, X.; Winnik, M.A.; Manners, I.
Nature Mat., 2017, 16, 481.

Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly
Boott, C.E.; Gwyther, J.; Harniman, R.L.; Hayward, D.W.; Manners, I.
Nature Chem., 2017, 9, 785.

Uniform electroactive fiber-like micelle nanowires for organic electronics
Li, X.; Wolanin, P.J.; MacFarlane, L.R.; Harniman, R.L.; Qian, J.; Gould, O.E.C.; Dane, T.G.; Rudin, J.; Cryan, M.J.; Schmaltz, T.; Frauenrath, H.; Winnik, M.A.; Faul, C.F.J.; Manners, I.
Nature Commun., 2017, 8, 15909.

Long-range Exciton Transport in Conjugated Polymer Nanofibers Prepared by Seeded Growth
Jin, X.-H.; Price, M.B.; Finnegan, J.R.; Boott, C.E.; Richter, J.M.; Rao, A.; Menke, M.; Friend, R.H.; Whittell, G.R.; Manners, I.
Science, 2018, 360, 897.