Kerry R. Delaney & the lab at Univ. of Victoria

Neurophysiological Research:

  • Mechanisms of synaptic transmission and plasticity
  • Olfactory Bulb: Cellular and network analysis
  • Structural and synaptic defects in a mouse model of Rett syndrome

    Postdoctoral and Grad student Positions Available 2022 Postdoctoral AND Grad student Positions available

    Slugs for research GARDEN SLUGS wanted for research

  • 1992 = before, 2008 = after, 2020 = way after...

    You decide: Is science good for you?

    Professor
    Dept. of Biology
    Box 1700 Stn CSC
    University of Victoria
    Victoria, British Columbia
    Canada V8W 2Y2
    Voice-lab: (250) 472-5656
    Voice-office: (250) 472-5657
    FAX: (250) 721-7021
    kdelaney@uvic.ca

  • UVic Biology Dept.

  • Mitral cell apical dendrites filled with Oregon green BAPTA-1 dextran in an intact frog brain. This image is a maximum intensity projection of fifty optical sections obtained between 45 and 70 microns below the surface using 2-photon microscopy. FOV 90 microns wide.


  • So you want to be a grad student....

  • Biographical Sketch

  • Publication List (some PDF files)
  • IMAGES related to our research

  • Olfactory bulb confocal maximum intensity projection image. 45 microns of depth of olfactory bulb is shown, coded from red to purple. Neurons filled by local injection of dextran conjugated Alexa-488. Central neuron is a granule cell. Spiny dendrites from out of frame granule cells as wells as smooth mitral cell dendrites and axons can also be seen. Science = Art....


    Graduate Research in neuroscience at UVic Biology Dept.

    Current trainees -- 2022 :

  • Shima Ebrahimikonacha
  • Taylor Kaban (PhD candidate)
  • Vasil Kecheliev (PhD candidate)

    ) Research Staff:
    List of Former Trainees

    Research

    Our laboratory is primarily interested in synaptic physiology which results in a wide diversity of projects and opportunities for trainees with a variety of interests and experience. For all our work we combine electrophysiological and optical techniques to monitor neural activity. These include whole cell patch clamp, sharp microelectrode and field potential recordings combined with widefield CCD and 2-photon laser scanning imaging and photomultiplier based spot measurements, mostly using Ca2+ indicator dyes or fluorescent proteins. We run a pair of two 2-photon microscopes off one laser, suitable for in vivo imaging and electrophysiology in small animals (rats, mice and frogs) and for mammalian brain slice and isolated frog/turtle brains. Other than the lasers, these apparatus were built from scratch using old car parts and stuff I "found" in the garbage cans at Bell labs two decades ago. A bit of an exaggeration but they are definitely "home-made". A flexible 2-photon imaging program that coordinates acquisition of optical and electrophysiological signals was written entirely by Dr. James Boyd working our lab using Igor (Wavemetrics) and C++. Many thanks are due to David Kleinfeld at UCSD for some key electronics circuits and technical help along the way, and of course Herr Dr. Winfried Denk who taught me not to bring my head down to tabletop level when the laser is on by cuffing me severely about the ears and yelling "nein dum...pf".

    The interface between our CIHR and NSERC research programs develops from the concept that the processing of information by neural networks can be modified by activity and modulator dependent changes in synaptic connections. We study basic properties of synaptic transmission and apply this understanding to specific circuits and to investigate neural disorders.

    Our NSERC supported research is directed towards understanding the cellular and biochemical basis for activity-dependent and neuromodulator mediated enhancement of neurotransmitter release. Using microfluorometric imaging of fluorescent Ca2+ indicator molecules or Ca2+-sensitive proteins we study the role of Ca2+-dependent processes in presynaptic terminals in modifying the probability of transmitter release in response to action potential activity.
    We study presynaptic calcium's role in synaptic transmission and plasticity at a variety of synapses including crayfish and frog neuromuscular junctions, accessory olfactory bulb and vomeronasal organ Wanna look?.

    Physiological measurements are combined with biophysical modeling studies to examine the consequences of molecular level colocalization of channels and vesicles in presynaptic active zones for Ca2+ diffusion and transmitter release such as the work by Vahid Shahrezaei (now faculty at Imperial College London)using numerical including Monte-Carlo simulations. See also Vesicle PDF1 , Vesicle PDF2 Further modeling and experimental work on the effect of reducing the calcium channel density for calcium channel cooperativity at frog neuromuscular junction was undertaken using w-conotoxin to block channels Vesicle PDF3 .

    Past CIHR supported research includes projects integrating synaptic physiology and intrinsic electrophysiological properties of neurons into a network level framework to understand the temporal spatial dynamics that underlie neural processing of sensory signals by the olfactory bulb. For some of this work we have developed a novel in vitro nose-brain preparation that allows brain slice type experiments to be performed in a system where normal patterns of afferent input can be activated by application of odours to the nose. The work involves high speed imaging of Ca2+ and voltage sensitive dye signals from dendrites and/or nerve terminals brain of frogs during stimulation of olfactory epithelia with odours. Complimentary electrophysiological studies are used to relate the activity of individual neurons in the central nervous system (mitral cells and granule cells) to globally distributed oscillatory activity in networks of millions of cells during odour-induced activity. Recordings from mitral and granule cells during odour stimulation of the nose using the in vitro preparation are a significant part of this work. See Delaney and Hall, 1996 and Hall and Delaney, 2002, Davison et al., 2004 for further details. Ben Hall is now at Lundbeck Pharmaceutical in Copenhagen. Ian DAvison is on faculty in the Dept. of Biology at Boston University. Dr. Tibor Zelles of the Hungarian Academy, Institute for Experimental Medicine in Budapest undertook studies on the active properties of dendrites of granule cells using 2 photon imaging.

    Dr. Jamie Johnston was supported by CIHR to study biophysical properties and dendritic distribution of low-voltage activated, T-type calcium channels in mouse mitral cells using a combination of whole cell electrophysiology and 2-photon calcium imaging. As of 2020 Dr. Johnston is a member of the research faculty at Leeds University. Dr. Adam Fekete from Budapest continued eletrophysiological studies of olfactory bulb function and focused on the role of T-channels in supporting transmitter release from mitral dendrites then moved to the Univ. of Toronto with Lu-Yang Wang

    Rett Syndrome research: During the past 10 years we have been working Rett syndrome research using a loss of function mouse model with a mutated non-functional Mecp2 gene (Jaenisch mouse). MeCP2 protein normally binds to methylated DNA acting primarily as a transcription repressor to control many genes required for normal development. Loss of function in this gene is the cause of Rett Syndrome a neurodevelopmental disorder leading to severe cognitive and other systemic dysfunctions primarily in female children. We have crossed these mice with mice that express YFP in subsets of cortical neurons (Feng et al., 2000) to facilitate analysis of neuronal morphologies associated with the Rett phenotype and as a tool to evaluate the success (or failure) of therapeutic interventions. Current work (2022) funded by the International Rett Syndrome Foundation and CIHR investigates cell autonomous versus non-autonomous effects of this X-linked mutation on synaptic transmission and development using immunohistochemistry Rietveld et al., 2015/. cell genotype deficits in nicotinic receptor sensitivity using a a Rett syndrome mouse model. More recent work (2019) uses electrophysiology and optogenetics to study cell-genotype specific effects on nicotinic cholinergic sensitivity in mutant versus wild-type neurons using slices (Azam Asgarihafshejani, now at U of T) published in the journal Neuroscience. MeCP2 is X-linked and due to random X-inactivation female brains are a mosaic of mutant and non-mutant neurons. To identify cell genotype in live slices we cross mice expressing an MeCP2-GFP fusion protein, with Rett mice allows to visualize wild-type (green) versus mutant (not green) neurons for patching in female brains slices. This work has been generously supported by the International Rett Syndrome Foundation, the Ontario Rett Syndrome Foundation and currently by CIHR.