Given \(\theta\) in Quad III and \(\cot\theta=2\text{,}\) find the values of the remaining trig functions.
Solution.
First, cotangent and tangent are reciprocals, so
\begin{equation*}
\tan \theta = \frac{1}{\cot\theta}=\frac{1}{2}.
\end{equation*}
Next use the identity \(\cot^2\theta+1\csc^2\theta\) to get \(\csc\theta\text{:}\)
\begin{align*}
\cot^2\theta + 1 = \amp \csc^2\theta \\
2^2 + 1 = \amp \csc^2\theta\\
\csc\theta = \amp \pm\sqrt{5}\\
\csc\theta = \amp -\sqrt{5}
\end{align*}
since \(\theta\) is in Quad III.
Cosecant and sine are reciprocals, so
\begin{equation*}
\sin\theta = \frac{1}{\csc\theta} = - \frac{1}{\sqrt{5}}.
\end{equation*}
Using \(\sin^2\theta+\cos^2\theta=1\text{,}\) we get
\begin{align*}
\cos^2\theta + \left(-\frac{1}{\sqrt{5}}\right)^2 = \amp 1\\
\cos^2\theta = \amp \frac{4}{5}\\
\cos \theta = \amp \pm \frac{2}{\sqrt{5}} \\
\cos \theta = \amp -\frac{2}{\sqrt{5}}
\end{align*}
since \(\theta\) is in Quad III.
Cosine and secant are reciprocals, so
\begin{equation*}
\sec\theta = \frac{1}{\cos\theta} = - \frac{\sqrt{5}}{2}.
\end{equation*}
This gives us all six trig function values.