The domain of
\(f\) is the set of all real numbers except
\(\frac{1}{4}\text{.}\) To find an expression for the inverse of
\(f\text{,}\) if it exists, we need to solve the equation
\(y = f(x)\) for
\(x\text{.}\)
If
\(y = f(x)\text{,}\) then
\(y = \frac{2x}{4x-1}\) and
\(x \neq \frac{1}{4}\text{.}\) Thus
\(y(4x-1) = 2x\text{,}\) so
\(4xy - y = 2x\text{.}\) This equation can be rearranged to obtain
\(y = 4xy - 2x = x(4y-2)\text{,}\) so that
\(x = \frac{y}{4y-2}\text{.}\)
Therefore, if
\(f\) has an inverse, it is
\(g(y) = \frac{y}{4y-2}\text{.}\) The domain of
\(g\) is the set of all real numbers except
\(\frac{1}{2}\text{.}\) We need to check that
\(f(x) = y\) if and only if
\(g(y) = x\text{.}\)
Suppose
\(f(x) = y\text{.}\) Then
\(y = \frac{2x}{4x-1}\) and
\(x \neq \frac{1}{4}\text{,}\) so that
\begin{equation*}
\begin{aligned}
g(y) &= g\left(\frac{2x}{4x-1}\right) \\
&= \frac{\frac{2x}{4x-1}}{4\frac{2x}{4x-1} - 2} \\
&= \frac{\frac{2x}{4x-1}}{4\frac{2x}{4x-1} - 2\frac{4x-1}{4x-1}} \\
&= \frac{ \left(\frac{2x}{4x-1}\right) }{ \left(\frac{2}{4x-1}\right)} \\
&= x
\end{aligned}
\end{equation*}
Now suppose that
\(g(y) = x\text{.}\) Then
\(x = \frac{y}{4y-2}\) and
\(y \neq \frac{1}{2}\text{,}\) so that
\begin{equation*}
\begin{aligned}
f(x) &= f\left(\frac{y}{4y-2}\right) \\
&= \frac{ 2\frac{y}{4y-2} } { 4 \frac{y}{4y-2} - 1 } \\
&= \frac{ \frac{2y}{4y-2} } { 4 \frac{y}{4y-2} - \frac{4y-2}{4y-2} } \\
&= \frac{ \frac{2y}{4y-2} } { 4 \frac{y}{4y-2} - \frac{4y-2}{4y-2} } \\
&= \frac{ \left( \frac{2y}{4y-2} \right) } {\left( \frac{2}{4y-2} \right)} \\
&= y
\end{aligned}
\end{equation*}
Therefore,
\(f\) has an inverse, and is the function
\(g\text{.}\) That is,
\(f^{-1}(y) = \frac{y}{4y-2}\text{.}\)