For the Fall 2020 version of this course, please go to BrightSpace:
https://bright.uvic.ca/d2l/home/55435

Physics 423: Quantum Mechanics II (Fall 2019)

Professor

Rogério de Sousa


Lectures


Mon, Thur: 11:30 - 12:50,   Elliott 161.

Attendance not required, but strongly recommended.
All lecture notes are available online; please click on the corresponding link to the left.

It is strictly prohibited to use cell phones, laptops, perform texting
or social networking during class 
(as an exception, I allow the use
of laptops or tablets to take notes or access the textbook during class).


Office hours

Thursdays 3:00 - 4:00 pm, Elliott 117.

How to send me a message: Use the forum at coursespaces:

http://coursespaces.uvic.ca/mod/forum/view.php?id=1252594


Please send messages or questions using the UVic coursespaces forum for P423.
That way all students will have access to our conversation. If you wish to send me a private message,
please send it to my UVic email: email

Textbook

"Introduction to Quantum Mechanics", David J. Griffiths, 3rd Ed.

Some sections of the course will closely follow this book, so I strongly recommend its purchase.

Other suggested books

  • "Quantum Mechanics", Vols. 1 and 2, by Claude Cohen-Tannoudji, Bernard Diu and Frank Laloë
    Very didatic presentation of the formalism and applications of QM, written by the French master.
    Specially useful for people interested in AMO (atomic, molecular, and optical physics).

  • "Quantum Mechanics", Franz Schwabl
    My favourite book for the wave function (differential equations based) formalism.

  • "Modern Quantum Mechanics", J.J. Sakurai
    My favourite book for the operator formalism. Specially useful for people interested in
    particle physics and quantum field theory.


Topics to be covered

Review of the postulates of QM; motion of a charged particle in an electromagnetic field.
Aproximation methods I: Time independent perturbation theory, fine structure of the hydrogen atom, variational principle.
Identical particles: Bosons and Fermions, atoms, solids.
Approximation methods II: Time dependent perturbation theory, Fermi's golden rule, interaction with the radiation field, spontaneous emission.
If time allows: Scattering theory: Partial waves, phase shifts, Born approximation.


Grading scheme

Assignments 20%
Midterm 30%
Final 50%


Assignments

There will be 8 assignments.  All assignments are already posted on this website, with noted due dates
on Friday at 6pm  (Exceptions will be posted on this website). The assignments must be inserted in the 
"P423"  dropbox located in the left of Elliott 136. 

Assignment solutions will be available online (links on the left) a few days after the due date.


The assignments will be graded by the TA, Seamus Beairsto.  Any questions on grading should be addressed
directly to him by email, at email.

Midterm exam

Oct. 28th (Monday), in class 11:30 am - 12:50.


Notes on the exams

  • On all examinations the only acceptable calculator is the sharp EL-510R.  This calculator can be bought in the bookstore
    for about $10.  DO NOT bring any other calculator to the examinations. 
  • You are allowed one 8.5X11'' handwritten formula/note sheet (you may write on both sides).
    You will be responsible for the "usual" constants and equations that we have dealt with in class on a regular basis.

Final letter grade: UVic's percentage grading system

A+ 90-100 Exceptional performance.
A 85-89 Outstanding performance.
A- 80-84 Excellent performance.
B+ 77-79 Very good.                       
B 73-76 Good.                
B- 70-72 Solid.
C+ 65-69 Satisfactory.                      
C 60-64 Minimally satisfactory.
50-59 Marginal performance.  
F   0-49       Unsatisfactory performance.  

How to succeed

  • Attend classes;
  • Most important: Work on the assignments by yourself.  If you can't solve a problem, talk to your classmates, 
    or attend the office hour.  However, it is extremely important that you attempt to solve the problem by yourself first.
    Experience shows that students who copy solutions from others usually perform very poorly in the exams and fail the course.
  • Common mistake: Some students do not study/review the book/notes before attempting the assignments. Instead,
    they "pick" the notes trying to find the material needed to solve a particular problem. Such method does not work
    because it leads to fragmented knowledge; the student does not understand the connection between the topics.
    Moreover, studying that way does not prepare for the exam, because there will be no book or notes to "pick" during the exam. 
  • Suggestion on how to study: Do a subject review before attempting the assignment, by reading the book/notes. 
    Start by reading the assignment fully, and then attempt the problem that appears to be easier (it is okay to briefly go
    back to the book or notes during the assignment).
  • Solve extra problems to practice for the exams.